1
|
Linacre A, Petcharoen P. Latent DNA detection on items of forensic relevance. Forensic Sci Int 2025; 370:112460. [PMID: 40188736 DOI: 10.1016/j.forsciint.2025.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
This review focusses on the use of DNA binding dyes to detect and record the presence of latent DNA on items of forensic relevance. Latent DNA can be crucial in forensic investigations and remains invisible unless an enhancement method is applied. Latent DNA is deposited on items of forensic relevance through various modes of transfer, with direct contact between skin and the item being the most common. Skin cells, otherwise called dead keratinocytes or corneocytes, have been shown to contain highly variable amounts of DNA. There is no standardised presumptive test for skin cells, but the advent of DNA-binding dyes allowed for the first time, the presence and number of stained corneocytes to be recorded. A commonly used DNA binding dye is Diamond™ Nucleic Acid Dye (DD). The dye has been used to detect the presence of latent DNA within biological deposits on a range of substrates and has been used to assess shedder status. This review discusses the many potential benefits of staining a substrate with a dye to detect latent DNA and then being able to target collection of a sample only where there is cellular material present. Despite advantages, the use of dyes to detect cellular material has not transitioned into forensic science practice; the reasons for this are discussed including some of the problems of dye staining of substrates. The review concludes by highlighting opportunities for conducting research to monitor cell deposition, persistence and transfer.
Collapse
Affiliation(s)
- Adrian Linacre
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Piyamas Petcharoen
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
2
|
Takenaka S, Sato S. Electrochemically active DNA ligands for gene detection: present and future. ANAL SCI 2025; 41:639-652. [PMID: 40108085 DOI: 10.1007/s44211-025-00745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Electrochemical gene sensing methods are gaining attention as diagnostic chips. Here, we review the electrochemically active DNA ligand-based sensing methods. Various DNA ligands have been reported in these studies, among which metal complexes, methylene blue, and ferrocenyl naphthalene diimide (FND) have been studied in detail. DNA probe immobilized electrodes have been created, hybridization reactions on the electrodes with target DNA fragments have been performed, and electrochemical gene detection has been possible using these DNA ligands. An example of the realization of this system is the successful and accurate cancer diagnosis using FND to examine abnormal methylation of the hTERT gene, providing reassurance about the system's reliability. In addition, electrochemical detection of PCR products has been realized using the current decrease due to the double-stranded DNA binding of methylene blue although it is a signal-off system. A naphthalene diimide derivative with ferrocene and β-CD, FNC, increased the current upon double-stranded DNA binding. Using these FNCs, the detection of PCR products in a homogeneous system was realized. Electrochemical qPCR was realized with these ligands. Since FNDs also bind strongly to tetraplex or G-quadruplex (G4) DNA, we succeeded in electrochemically detecting telomerase activity, which is known as a cancer marker, using FNDs to detect the amount of telomeric DNA elongation, which is its substrate, as the amount of G4 DNA. This technique has realized compassionate cancer diagnosis from oral swab fluid. It is known that G4 is also present in viral genome RNA, and a viral testing method using G4 is expected to be a potential alternative to PCR. The first example was the electrochemical detection of novel coronaviruses using incFND as an RNA G4 ligand.
Collapse
Affiliation(s)
- Shigeori Takenaka
- Department of Applied Chemistry, Kyushu Institute of Technology, Kitakyushu, 804 8550, Japan.
| | - Shinobu Sato
- Department of Applied Chemistry, Kyushu Institute of Technology, Kitakyushu, 804 8550, Japan
| |
Collapse
|
3
|
Chen T, Hojka M, Davey P, Sun Y, Zhou F, Lawson T, Nixon PJ, Lin Y, Liu LN. Engineering Rubisco condensation in chloroplasts to manipulate plant photosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40087764 DOI: 10.1111/pbi.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Although Rubisco is the most abundant enzyme globally, it is inefficient for carbon fixation because of its low turnover rate and limited ability to distinguish CO2 and O2, especially under high O2 conditions. To address these limitations, phytoplankton, including cyanobacteria and algae, have evolved CO2-concentrating mechanisms (CCM) that involve compartmentalizing Rubisco within specific structures, such as carboxysomes in cyanobacteria or pyrenoids in algae. Engineering plant chloroplasts to establish similar structures for compartmentalizing Rubisco has attracted increasing interest for improving photosynthesis and carbon assimilation in crop plants. Here, we present a method to effectively induce the condensation of endogenous Rubisco within tobacco (Nicotiana tabacum) chloroplasts by genetically fusing superfolder green fluorescent protein (sfGFP) to the tobacco Rubisco large subunit (RbcL). By leveraging the intrinsic oligomerization feature of sfGFP, we successfully created pyrenoid-like Rubisco condensates that display dynamic, liquid-like properties within chloroplasts without affecting Rubisco assembly and catalytic function. The transgenic tobacco plants demonstrated comparable autotrophic growth rates and full life cycles in ambient air relative to the wild-type plants. Our study offers a promising strategy for modulating endogenous Rubisco assembly and spatial organization in plant chloroplasts via phase separation, which provides the foundation for generating synthetic organelle-like structures for carbon fixation, such as carboxysomes and pyrenoids, to optimize photosynthetic efficiency.
Collapse
Affiliation(s)
- Taiyu Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Marta Hojka
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, London, UK
| | - Philip Davey
- School of Life Sciences, University of Essex, Colchester, UK
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, London, UK
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- MOE Key Laboratory of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Li W, Sun J, Sun R, Wei Y, Zheng J, Zhu Y, Guo T. Integral-Omics: Serial Extraction and Profiling of Metabolome, Lipidome, Genome, Transcriptome, Whole Proteome and Phosphoproteome Using Biopsy Tissue. Anal Chem 2025; 97:1190-1198. [PMID: 39772508 DOI: 10.1021/acs.analchem.4c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The integrative multiomics characterization of minute amounts of clinical tissue specimens has become increasingly important. Here, we present an approach called Integral-Omics, which enables sequential extraction of metabolites, lipids, genomic DNA, total RNA, proteins, and phosphopeptides from a single biopsy-level tissue specimen. We benchmarked this method with various samples, applied the workflow to perform multiomics profiling of tissues from six patients with colorectal cancer, and found that tumor tissues exhibited suppressed ferroptosis pathways at multiomics levels. Together, this study presents a methodology that enables sequential extraction and profiling of metabolomics, lipidomics, genomics, transcriptomics, proteomics, and phosphoproteomics using biopsy tissue specimens.
Collapse
Affiliation(s)
- Wei Li
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Sun
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Yujuan Wei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
| | - Tiannan Guo
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| |
Collapse
|
5
|
Jackson KM, Kabbale KD, Macchietto M, Meya D, Tiffin P, Nielsen K. Virulence-associated variants in Cryptococcus neoformans sequence type 93 are less likely to be associated with population structure compared to independent rare mutations. Microbiol Spectr 2025; 13:e0170924. [PMID: 39601574 PMCID: PMC11705857 DOI: 10.1128/spectrum.01709-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Cryptococcus neoformans is a pathogenic yeast that is the causative agent of cryptococcal meningitis. While it is well known that the genotype of C. neoformans impacts patient outcomes, the reason for this association has not been well elucidated. In this study, we examined the relationship between two subpopulations in the sequence type 93 clade of C. neoformans: ST93A and ST93B. We found extensive linkage disequilibrium (LD) among the single nucleotide polymorphisms (SNPs) that differentiate ST93A from ST93B. We also found differences in the extent of linkage among SNPs within each subpopulation; LD was more extensive within ST93B than ST93A. SNPs associated with virulence were in long-range linkage disequilibrium with less frequency than recurrent SNPs not associated with virulence. We investigated the karyotype of ST93A and ST93B using contour-clamped gel electrophoresis and long-read sequencing and found that the extensive long-range linkage was not due to chromosomal rearrangements. Overall, we found that the two subpopulations in ST93 are driven by SNPs in LD. We additionally found that recurrent SNPs associated with virulence were less frequently evolutionarily linked and were two times more likely to be independent, congruent mutations rather than tied to phylogeny.IMPORTANCECryptococcus neoformans is an important pathogen that is widely distributed and ubiquitous in the environment. The majority of the human population has a latent, controlled infection suggesting that C. neoformans is uniquely adapted to cause infection. In spite of this, the reason C. neoformans is a pathogen remains unknown; interestingly, most environmental isolates are avirulent but are genetically very similar to disease-causing virulent isolates. Recent evidence from genome-wide association studies shows that small mutations in key virulence-associated genes are associated with the virulence of specific isolates. The data presented here provide an evolutionary framework for those small mutations. The mutations that impact disease are not being collected over long-term evolution. The mutations may instead occur independently during infection. Identifying these genes that are more likely to be mutated during infection will be fundamental for understanding C. neoformans virulence.
Collapse
Affiliation(s)
- Katrina M. Jackson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kisakye Diana Kabbale
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Intensive Sciences, Kampala, Uganda
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Sciences and Pathology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
6
|
Wery M, Foretek D, Andjus S, Verdys P, Morillon A. Northern Blotting: Protocols for Radioactive and Nonradioactive Detection of RNA. Methods Mol Biol 2025; 2863:13-28. [PMID: 39535701 DOI: 10.1007/978-1-0716-4176-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Northern blotting is a common technique in RNA biology, allowing to detect and quantify RNAs of interest following separation by gel electrophoresis, transfer to a membrane, and hybridization of specific anti-complementary labelled probes. In this chapter, we describe our protocol for efficient RNA extraction from yeast, separation on agarose gel, and capillary transfer to a membrane. We provide two different methods for strand-specific detection of several types of RNAs using oligonucleotide probes, the first using radioactive 32P-labelled probes, the second based on nonradioactive digoxigenin-labelled probes.
Collapse
Affiliation(s)
- Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France.
| | - Dominika Foretek
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France
| | - Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France
| | - Perrine Verdys
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France, Paris Cedex 05, France.
| |
Collapse
|
7
|
Nishigaki K. Discoveries by the genome profiling, symbolic powers of non-next generation sequencing methods. Brief Funct Genomics 2024; 23:775-797. [PMID: 39602495 DOI: 10.1093/bfgp/elae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Next-generation sequencing and other sequencing approaches have made significant progress in DNA analysis. However, there are indispensable advantages in the nonsequencing methods. They have their justifications such as being speedy, cost-effective, multi-applicable, and straightforward. Among the nonsequencing methods, the genome profiling method is worthy of reviewing because of its high potential. This article first reviews its basic properties, highlights the key concept of species identification dots (spiddos), and then summarizes its various applications.
Collapse
Affiliation(s)
- Koichi Nishigaki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama 338-8570, Japan
| |
Collapse
|
8
|
Ouyang C, Jin X, Guo Q, Luo S, Zheng Y, Zou J, An B, Li D. Highly Efficient Agrobacterium tumefaciens Mediated Transformation of Oil Palm Using an EPSPS-Glyphosate Selection System. PLANTS (BASEL, SWITZERLAND) 2024; 13:3343. [PMID: 39683136 DOI: 10.3390/plants13233343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Oil palm (Elaeis guineensis Jacq.) is the most efficient oil-producing crop globally, yet progress in its research has been hampered by the lack of effective genetic transformation systems. The EPSPS gene, encoding 5-enolpyruvylshikimate-3-phosphate synthase, has been used as a transgenic selection marker in various crops, including rice and soybean. This study evaluated the EPSPS/glyphosate selection system for oil palm transformation. We constructed a binary expression vector, pCGlyDESCLI-C, containing the TIPS-EiEPSPS selection marker from goosegrass and the mScarlet-I red fluorescent reporter gene. This vector was introduced into oil palm embryonic callus (EC) via Agrobacterium-mediated transformation. After optimizing the transformation steps, positive calli were obtained, and integration of the foreign gene into the oil palm genome was confirmed through molecular analysis. Notably, the selection efficiency of the EPSPS/glyphosate selection system exceeded that of the traditional hpt/hygromycin selection system, demonstrating its advantages. Our findings support the effectiveness of the TIPS-EiEPSPS/glyphosate selection system for oil palm genetic transformation, marking its first application in this species and offering a valuable tool for advancing research on this economically significant crop.
Collapse
Affiliation(s)
- Chao Ouyang
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Xiongxia Jin
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qinghui Guo
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Shaojie Luo
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yusheng Zheng
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jixin Zou
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Baoguang An
- Guangdong Bolian Biotechnology Co., Ltd., Guangzhou 511466, China
| | - Dongdong Li
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
9
|
Boodhoo N, Shoja Doost J, Sharif S. Biosensors for Monitoring, Detecting, and Tracking Dissemination of Poultry-Borne Bacterial Pathogens Along the Poultry Value Chain: A Review. Animals (Basel) 2024; 14:3138. [PMID: 39518862 PMCID: PMC11545827 DOI: 10.3390/ani14213138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The poultry industry plays a crucial role in global food production, with chickens being the most widely consumed as a rich protein source. However, infectious diseases pose significant threats to poultry health, underscoring the need for rapid and accurate detection to enable timely intervention. In recent years, biosensors have emerged as essential tools to facilitate routine surveillance on poultry farms and rapid screening at slaughterhouses. These devices provide producers and veterinarians with timely information, thereby promoting proactive disease management. Biosensors have been miniaturized, and portable platforms allow for on-site testing, thereby enhancing biosecurity measures and bolstering disease surveillance networks throughout the poultry supply chain. Consequently, biosensors represent a transformative advancement in poultry disease management, offering rapid and precise detection capabilities that are vital for safeguarding poultry health and ensuring sustainable production systems. This section offers an overview of biosensors and their applications in detecting poultry diseases, with a particular emphasis on enteric pathogens.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.D.); (S.S.)
| | | | | |
Collapse
|
10
|
Peña-Martín MC, Marcos-Vadillo E, García-Berrocal B, Heredero-Jung DH, García-Salgado MJ, Lorenzo-Hernández SM, Larrue R, Lenski M, Drevin G, Sanz C, Isidoro-García M. A Comparison of Molecular Techniques for Improving the Methodology in the Laboratory of Pharmacogenetics. Int J Mol Sci 2024; 25:11505. [PMID: 39519058 PMCID: PMC11546559 DOI: 10.3390/ijms252111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
One of the most critical goals in healthcare is safe and effective drug therapy, which is directly related to an individual's response to treatment. Precision medicine can improve drug safety in many scenarios, including polypharmacy, and it requires the development of new genetic characterization methods. In this report, we use real-time PCR, microarray techniques, and mass spectrometry (MALDI-TOF), which allows us to compare them and identify the potential benefits of technological improvements, leading to better quality medical care. These comparative studies, as part of our pharmacogenetic Five-Step Precision Medicine (5SPM) approach, reveal the superiority of mass spectrometry over the other methods analyzed and highlight the importance of updating the laboratory's pharmacogenetic methodology to identify new variants with clinical impact.
Collapse
Affiliation(s)
- María Celsa Peña-Martín
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - David Hansoe Heredero-Jung
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - María Jesús García-Salgado
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Sandra Milagros Lorenzo-Hernández
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Romain Larrue
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France;
| | - Marie Lenski
- CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS-IMPact of the Chemical Environment on Health, University of Lille, F-59000 Lille, France;
| | - Guillaume Drevin
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - María Isidoro-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Moon K, Basnet P, Um T, Choi IY. Review of the technology used for structural characterization of the GMO genome using NGS data. Genomics Inform 2024; 22:14. [PMID: 39358775 PMCID: PMC11445869 DOI: 10.1186/s44342-024-00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
The molecular characterization of genetically modified organisms (GMOs) is essential for ensuring safety and gaining regulatory approval for commercialization. According to CODEX standards, this characterization involves evaluating the presence of introduced genes, insertion sites, copy number, and nucleotide sequence structure. Advances in technology have led to the increased use of next-generation sequencing (NGS) over traditional methods such as Southern blotting. While both methods provide high reproducibility and accuracy, Southern blotting is labor-intensive and time-consuming due to the need for repetitive probe design and analyses for each target, resulting in low throughput. Conversely, NGS facilitates rapid and comprehensive analysis by mapping whole-genome sequencing (WGS) data to plasmid sequences, accurately identifying T-DNA insertion sites and flanking regions. This advantage allows for efficient detection of T-DNA presence, copy number, and unintended gene insertions without additional probe work. This paper reviews the current status of GMO genome characterization using NGS and proposes more efficient strategies for this purpose.
Collapse
Affiliation(s)
- Kahee Moon
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea.
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
12
|
Almeida-da-Silva CLC, Moreira-Souza ACDA, Ojcius DM. Traditional approaches and recent tools for studying inflammasome activity. J Immunol Methods 2024; 533:113744. [PMID: 39147232 DOI: 10.1016/j.jim.2024.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Inflammasomes play a major role in the immune response to infection, development of autoimmune disease, and control of cancer. Western blots were originally used in the early 2000s to characterize inflammasome activation. Since then, a panoply of techniques has been developed to characterize and visualize inflammasome activation in cells, tissues, and animals. This review article describes the most common techniques used by researchers in the inflammasome field and proposes that cell-specific characterization of inflammasome activation in tissues or animals may soon be commonly reported.
Collapse
Affiliation(s)
| | | | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni, School of Dentistry, San Francisco, CA 94103, USA.
| |
Collapse
|
13
|
Adams PE, Thies JL, Sutton JM, Millwood JD, Caldwell GA, Caldwell KA, Fierst JL. Identifying transgene insertions in Caenorhabditis elegans genomes with Oxford Nanopore sequencing. PeerJ 2024; 12:e18100. [PMID: 39285918 PMCID: PMC11404476 DOI: 10.7717/peerj.18100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains of Caenorhabditis elegans commonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and human α-synuclein), a model for Parkinson's research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in the C. elegans reference and 99.5% of the annotated C. elegans reference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenic C. elegans genomes presented here will be a valuable resource for Parkinson's research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains.
Collapse
Affiliation(s)
- Paula E Adams
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Jennifer L Thies
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - John M Sutton
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Absci, Vancouver, WA, United States of America
| | - Joshua D Millwood
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Department of Biological and Environmental Sciences, University of West Alabama, Livingston, AL, United States of America
| | - Guy A Caldwell
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Kim A Caldwell
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Janna L Fierst
- Department of Biological Sciences, Florida International University, Miami, FL, United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| |
Collapse
|
14
|
Subhashini N, Kerler Y, Menger MM, Böhm O, Witte J, Stadler C, Griberman A. Enhancing Colorimetric Detection of Nucleic Acids on Nitrocellulose Membranes: Cutting-Edge Applications in Diagnostics and Forensics. BIOSENSORS 2024; 14:430. [PMID: 39329805 PMCID: PMC11429540 DOI: 10.3390/bios14090430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
This study re-introduces a protein-free rapid test method for nucleic acids on paper based lateral flow assays utilizing special multichannel nitrocellulose membranes and DNA-Gold conjugates, achieving significantly enhanced sensitivity, easier protocols, reduced time of detection, reduced costs of production and advanced multiplexing possibilities. A protein-free nucleic acid-based lateral flow assay (NALFA) with a limit of detection of 1 pmol of DNA is shown for the first time. The total production duration of such an assay was successfully reduced from the currently known several days to just a few hours. The simplification and acceleration of the protocol make the method more accessible and practical for various applications. The developed method supports multiplexing, enabling the simultaneous detection of up to six DNA targets. This multiplexing capability is a significant improvement over traditional line tests and offers more comprehensive diagnostic potential in a single assay. The approach significantly reduces the run time compared to traditional line tests, which enhances the efficiency of diagnostic procedures. The protein-free aspect of this assay minimizes the prevalent complications of cross-reactivity in immunoassays especially in cases of multiplexing. It is also demonstrated that the NALFA developed in this study is amplification-free and hence does not rely on specialized technicians, nor does it involve labour-intensive steps like DNA extraction and PCR processes. Overall, this study presents a robust, efficient, and highly sensitive platform for DNA or RNA detection, addressing several limitations of current methods documented in the literature. The advancements in sensitivity, cost reduction, production time, and multiplexing capabilities mark a substantial improvement, holding great potential for various applications in diagnostics, forensics, and molecular biology.
Collapse
Affiliation(s)
- Nidhi Subhashini
- SERATEC Gesellschaft für Biotechnologie mbH, Ernst-Ruhstrat-Str. 5, 37079 Goettingen, Germany
| | - Yannick Kerler
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, D-14476 Potsdam, Germany
| | - Marcus M. Menger
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Olga Böhm
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079 Goettingen, Germany
| | - Judith Witte
- Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079 Goettingen, Germany
| | - Christian Stadler
- SERATEC Gesellschaft für Biotechnologie mbH, Ernst-Ruhstrat-Str. 5, 37079 Goettingen, Germany
| | - Alexander Griberman
- SERATEC Gesellschaft für Biotechnologie mbH, Ernst-Ruhstrat-Str. 5, 37079 Goettingen, Germany
| |
Collapse
|
15
|
Grüttner S, Kempken F. A user-friendly CRISPR/Cas9 system for mutagenesis of Neurospora crassa. Sci Rep 2024; 14:20469. [PMID: 39227671 PMCID: PMC11372047 DOI: 10.1038/s41598-024-71540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
As a widely used eukaryotic model organism, Neurospora crassa offers advantages in genetic studies due to its diverse biology and rapid growth. Traditional genetic manipulation methods, such as homologous recombination, require a considerable amount of time and effort. In this study, we present an easy-to-use CRIPSR/Cas9 system for N. crassa, in which the cas9 sequence is incorporated into the fungal genome and naked guide RNA is introduced via electroporation. Our approach eliminates the need for constructing multiple vectors, speeding up the mutagenesis process. Using cyclosporin-resistant-1 (csr-1) as a selectable marker gene, we achieved 100% editing efficiency under selection conditions. Furthermore, we successfully edited the non-selectable gene N-acylethanolamine amidohydrolase-2 (naa-2), demonstrating the versatility of the system. Combining gRNAs targeting csr-1 and naa-2 simultaneously increased the probability of finding mutants carrying the non-selectable mutation. The system is not only user-friendly but also effective, providing a rapid and efficient method for generating loss-of-function mutants in N. crassa compared to traditional methods.
Collapse
Affiliation(s)
- Stefanie Grüttner
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098, Kiel, Germany.
| | - Frank Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098, Kiel, Germany
| |
Collapse
|
16
|
Phillips-Rose LS, Yu CK, West NP, Fraser JA. A Chimeric ORF Fusion Phenotypic Reporter for Cryptococcus neoformans. J Fungi (Basel) 2024; 10:567. [PMID: 39194893 DOI: 10.3390/jof10080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The plethora of genome sequences produced in the postgenomic age has not resolved many of our most pressing biological questions. Correlating gene expression with an interrogatable and easily observable characteristic such as the surrogate phenotype conferred by a reporter gene is a valuable approach to gaining insight into gene function. Many reporters including lacZ, amdS, and the fluorescent proteins mRuby3 and mNeonGreen have been used across all manners of organisms. Described here is an investigation into the creation of a robust, synthetic, fusion reporter system for Cryptococcus neoformans that combines some of the most useful fluorophores available in this system with the versatility of the counter-selectable nature of amdS. The reporters generated include multiple composition and orientation variants, all of which were investigated for differences in expression. Evaluation of known promoters from the TEF1 and GAL7 genes was undertaken, elucidating novel expression tendencies of these biologically relevant C. neoformans regulators of transcription. Smaller than lacZ but providing multiple useful surrogate phenotypes for interrogation, the fusion ORF serves as a superior whole-cell assay compared to traditional systems. Ultimately, the work described here bolsters the array of relevant genetic tools that may be employed in furthering manipulation and understanding of the WHO fungal priority group pathogen C. neoformans.
Collapse
Affiliation(s)
- Louis S Phillips-Rose
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chendi K Yu
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas P West
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Azameti MK, Tanuja N, Kumar S, Rathinam M, Imoro AWM, Singh PK, Gaikwad K, Sreevathsa R, Dalal M, Arora A, Rai V, Padaria JC. Transgenic tobacco plants overexpressing a wheat salt stress root protein (TaSSRP) exhibit enhanced tolerance to heat stress. Mol Biol Rep 2024; 51:791. [PMID: 38990430 DOI: 10.1007/s11033-024-09755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Heat stress is a detrimental abiotic stress that limits the development of many plant species and is linked to a variety of cellular and physiological problems. Heat stress affects membrane fluidity, which leads to negative effects on cell permeability and ion transport. Research reveals that heat stress causes severe damage to cells and leads to rapid accumulation of reactive oxygen species (ROS), which could cause programmed cell death. METHODS AND RESULTS This current study aimed to validate the role of Triticum aestivum Salt Stress Root Protein (TaSSRP) in plants' tolerance to heat stress by modulating its expression in tobacco plants. The Relative Water Content (RWC), total chlorophyll content, and Membrane Stability Index (MSI) of the seven distinct transgenic lines (T0 - 2, T0 - 3, T0 - 6, T0 - 8, T0 - 9, T0 - 11, and T0 - 13), increased in response to heat stress. Despite the fact that the same tendency was detected in wild-type (WT) plants, changes in physio-biochemical parameters were greater in transgenic lines than in WT plants. The expression analysis revealed that the transgene TaSSRP expressed from 1.00 to 1.809 folds in different lines in the transgenic tobacco plants. The gene TaSSRP offered resistance to heat stress in Nicotiana tabacum, according to the results of the study. CONCLUSION These findings could help to improve our knowledge and understanding of the mechanism underlying thermotolerance in wheat, and the novel identified gene TaSSRP could be used in generating wheat varieties with enhanced tolerance to heat stress.
Collapse
Affiliation(s)
- Mawuli K Azameti
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - N Tanuja
- Directorate of Plant Protection, Quarantine and Storage, Faridabad, Haryana, India
| | - Satish Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Abdul-Wahab M Imoro
- Department of Forestry and Forest Resources Management, University for Development Studies, Tamale, Ghana
| | - P K Singh
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ajay Arora
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jasdeep C Padaria
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
18
|
Xiao R, Hu S, Du X, Wang Y, Fang K, Zhu Y, Lou N, Yuan C, Yang J. Revolutionizing Senescence Detection: Advancements from Traditional Methods to Cutting-Edge Techniques. Aging Dis 2024:AD.202.0565. [PMID: 39012669 DOI: 10.14336/ad.202.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The accumulation of senescent cells is an important factor in the complex progression of aging, with significant implications for the development of numerous diseases. Thus, understanding the fundamental mechanisms of senescence is paramount for advancing preventive and therapeutic approaches to age-related conditions. Important to this pursuit is the precise identification and examination of senescent cells, contingent upon the recognition of specific biomarkers. Historically, detection methods relied on assessing molecular protein and mRNA levels and various staining techniques. While these conventional approaches have contributed substantially to the field, they possess limitations in capturing the dynamic evolution of cellular aging in real time. The emergence of novel technologies has led to a paradigm shift in senescence research. Gene-edited mouse models and the application of advanced probes have revolutionized our ability to detect senescent cells. These cutting-edge methodologies provide a more detailed and accurate means of dynamically monitoring, characterizing and potentially eliminating senescent cells, thus enhancing our understanding of the complex mechanisms of aging. This review comprehensively explores both traditional and innovative senescent cell detection methods, elucidating their advantages, limitations and implications for future investigations and could serve as a comprehensive guide and catalyst for further advancements in the understanding of aging and associated pathologies.
Collapse
|
19
|
Tanudisastro HA, Deveson IW, Dashnow H, MacArthur DG. Sequencing and characterizing short tandem repeats in the human genome. Nat Rev Genet 2024; 25:460-475. [PMID: 38366034 DOI: 10.1038/s41576-024-00692-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
Short tandem repeats (STRs) are highly polymorphic sequences throughout the human genome that are composed of repeated copies of a 1-6-bp motif. Over 1 million variable STR loci are known, some of which regulate gene expression and influence complex traits, such as height. Moreover, variants in at least 60 STR loci cause genetic disorders, including Huntington disease and fragile X syndrome. Accurately identifying and genotyping STR variants is challenging, in particular mapping short reads to repetitive regions and inferring expanded repeat lengths. Recent advances in sequencing technology and computational tools for STR genotyping from sequencing data promise to help overcome this challenge and solve genetically unresolved cases and the 'missing heritability' of polygenic traits. Here, we compare STR genotyping methods, analytical tools and their applications to understand the effect of STR variation on health and disease. We identify emergent opportunities to refine genotyping and quality-control approaches as well as to integrate STRs into variant-calling workflows and large cohort analyses.
Collapse
Affiliation(s)
- Hope A Tanudisastro
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
20
|
Wang X, Kotta-Loizou I, Coutts RHA, Deng H, Han Z, Hong N, Shafik K, Wang L, Guo Y, Yang M, Xu W, Wang G. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. MOLECULAR PLANT 2024; 17:955-971. [PMID: 38745413 DOI: 10.1016/j.molp.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.
Collapse
Affiliation(s)
- Xianhong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Huifang Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Karim Shafik
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China; Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Liping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Yashuang Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Mengmeng Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| | - Guoping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
21
|
Grondin A, Natividad MA, Ogata T, Jan A, Gaudin ACM, Trijatmiko KR, Liwanag E, Maruyama K, Fujita Y, Yamaguchi-Shinozaki K, Nakashima K, Slamet-Loedin IH, Henry A. A Case Study from the Overexpression of OsTZF5, Encoding a CCCH Tandem Zinc Finger Protein, in Rice Plants Across Nineteen Yield Trials. RICE (NEW YORK, N.Y.) 2024; 17:25. [PMID: 38592643 PMCID: PMC11003944 DOI: 10.1186/s12284-024-00705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.
Collapse
Affiliation(s)
- Alexandre Grondin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
- Institut de Recherche Pour Le Développement, Université de Montpellier, UMR DIADE, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Mignon A Natividad
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Takuya Ogata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Asad Jan
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Institute of Biotechnology and Genetics Engineering, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
| | - Amélie C M Gaudin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Kurniawan R Trijatmiko
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Evelyn Liwanag
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Kyonoshin Maruyama
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Yasunari Fujita
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Laboratory of Plant Molecular Physiology, The University of Tokyo, Tokyo, 113-8657, Japan
- Tokyo University of Agriculture, Research Institute for Agricultural and Life Sciences, Tokyo, Japan
| | - Kazuo Nakashima
- Food Program, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Inez H Slamet-Loedin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Amelia Henry
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines.
| |
Collapse
|
22
|
Flores-Mena JE, García-Sánchez P, Ramos A. Induced-charge electrophoresis of a tilted metal nanowire near an insulating wall. Phys Rev E 2024; 109:045109. [PMID: 38755876 DOI: 10.1103/physreve.109.045109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Electric fields are commonly used to control the orientation and motion of microscopic metal particles in aqueous suspensions. For example, metallodielectric Janus spheres are propelled by the induced-charge electro-osmotic flow occurring on their metallic side, the most common case in electrokinetics of exploiting symmetry breaking of surface properties for achieving net particle motion. In this work, we demonstrate that a homogeneous metal rod can translate parallel to a dielectric wall as a result of the hydrodynamic wall-particle interaction arising from the induced-charge electro-osmosis on the rod surface. The applied electric field could be either dc or low-frequency ac. The only requirement for a nonvanishing particle velocity is that the axis of the rod be inclined with respect to the wall, i.e., it cannot be neither parallel nor perpendicular. We show numerical results of the rod velocity as a function of rod orientation and distance to the wall. The maximum particle velocity is found for an orientation of between ∼30^{∘} and ∼50^{∘}, depending on the position and aspect ratio of the cylinder. Particle velocities of up to tens of µm/s are predicted for typical conditions in electrokinetic experiments.
Collapse
Affiliation(s)
- Jose Eladio Flores-Mena
- Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, San Manuel, CU. FCE2, 72570 Puebla, Mexico
| | - Pablo García-Sánchez
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Antonio Ramos
- Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| |
Collapse
|
23
|
Bartle L, Wellinger RJ. Methods that shaped telomerase research. Biogerontology 2024; 25:249-263. [PMID: 37903970 PMCID: PMC10998806 DOI: 10.1007/s10522-023-10073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023]
Abstract
Telomerase, the ribonucleoprotein (RNP) responsible for telomere maintenance, has a complex life. Complex in that it is made of multiple proteins and an RNA, and complex because it undergoes many changes, and passes through different cell compartments. As such, many methods have been developed to discover telomerase components, delve deep into understanding its structure and function and to figure out how telomerase biology ultimately relates to human health and disease. While some old gold-standard methods are still key for determining telomere length and measuring telomerase activity, new technologies are providing promising new ways to gain detailed information that we have never had access to before. Therefore, we thought it timely to briefly review the methods that have revealed information about the telomerase RNP and outline some of the remaining questions that could be answered using new methodology.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavilion, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavilion, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
24
|
Wang Z, Cheng W, Dong Z, Yao X, Deng X, Ou C. A CRISPR/LbCas12a-based method for detection of bacterial fruit blotch pathogens in watermelon. Microbiol Spectr 2024; 12:e0384623. [PMID: 38299831 PMCID: PMC10913525 DOI: 10.1128/spectrum.03846-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acidovorax citrulli is the main pathogen causing bacterial fruit blotch, which seriously threatens the global watermelon industry. At present, rapid, sensitive, and low-cost detection methods are urgently needed. The established CRISPR/LbCas12a visual detection method can specifically detect A. citrulli and does not cross-react with other pathogenic bacteria such as Erwinia tracheiphila, Pseudomonas syringae, and Xanthomonas campestris. The sensitivity of this method for genomic DNA detection is as low as 0.7 copies/μL, which is higher than conventional PCR and real-time PCR. In addition, this method only takes 2.5 h from DNA extraction to quantitative detection and does not require complex operation and sample treatment. Additionally, the technique was applied to test real watermelon seed samples for A. citrulli, and the results were contrasted with those of real-time fluorescence quantitative PCR and conventional PCR. The high sensitivity and specificity have broad application prospects in the rapid detection of bacterial fruit blotch bacterial pathogens of watermelon.IMPORTANCEBacterial fruit blotch, Acidovorax citrulli, is an important seed-borne bacterial disease of watermelon, melon, and other cucurbits. The lack of rapid, sensitive, and reliable pathogen detection methods has hampered research on fruit spot disease prevention and control. Here, we demonstrate the CRISPR/Cas12a system to analyze aspects of the specificity and sensitivity of A. citrulli and to test actual watermelon seed samples. The results showed that the CRISPR/Cas12a-based free-amplification method for detecting bacterial fruit blotch pathogens of watermelons was specific for A. citrulli target genes and 100-fold more sensitive than conventional PCR with quantitative real-time PCR. This method provides a new technical tool for the detection of A. citrulli.
Collapse
Affiliation(s)
- Zelu Wang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Wenhui Cheng
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Zhiyu Dong
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Xiamei Yao
- School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei, Anhui, China
| | - Xu Deng
- Southern Subtropicals Grops Research Institute, Zhanjiang, Guangdong, China
| | - Chun Ou
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| |
Collapse
|
25
|
Broeckel U, Iqbal MA, Levy B, Sahajpal N, Nagy PL, Scharer G, Rodriguez V, Bossler A, Stence A, Skinner C, Skinner SA, Kolhe R, Stevenson R. Detection of Constitutional Structural Variants by Optical Genome Mapping: A Multisite Study of Postnatal Samples. J Mol Diagn 2024; 26:213-226. [PMID: 38211722 DOI: 10.1016/j.jmoldx.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
Optical genome mapping is a high-resolution technology that can detect all types of structural variations in the genome. This second phase of a multisite study compares the performance of optical genome mapping and current standard-of-care methods for diagnostic testing of individuals with constitutional disorders, including neurodevelopmental impairments and congenital anomalies. Among the 627 analyses in phase 2, 405 were of retrospective samples supplied by five diagnostic centers in the United States and 94 were prospective samples collected over 18 months by two diagnostic centers (June 2021 to October 2022). Additional samples represented a family cohort to determine inheritance (n = 119) and controls (n = 9). Full concordance of results between optical genome mapping and one or more standard-of-care diagnostic tests was 98.6% (618/627), with partial concordance in an additional 1.1% (7/627).
Collapse
Affiliation(s)
- Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M Anwar Iqbal
- DNA Microarray CGH Laboratory, Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Brynn Levy
- Columbia University Medical Center, New York, New York
| | | | - Peter L Nagy
- Columbia University Medical Center, New York, New York
| | - Gunter Scharer
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | - Aaron Stence
- University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | | |
Collapse
|
26
|
Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y, Le T. Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 2024; 257:128677. [PMID: 38072350 DOI: 10.1016/j.ijbiomac.2023.128677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Animal diseases often have significant consequences due to the unclear and time-consuming diagnosis process. Furthermore, the emergence of new viral infections and drug-resistant pathogens has further complicated the diagnosis and treatment of viral diseases. Aptamers, which are obtained through systematic evolution of ligands by exponential enrichment (SELEX) technology, provide a promising solution as they enable specific identification and binding to targets, facilitating pathogen detection and the development of novel therapeutics. This review presented an overview of aptasensors for animal virus detection, discussed the antiviral activity and mechanisms of aptamers, and highlighted advancements in aptamer-based antiviral research following the COVID-19 pandemic. Additionally, the challenges and prospects of aptamer-based virus diagnosis and treatment research were explored. Although this review was not exhaustive, it offered valuable insights into the progress of aptamer-based antiviral drug research, target mechanisms, as well as the development of novel antiviral drugs and biosensors.
Collapse
Affiliation(s)
- Zhuoer Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Ying Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenyu Xiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yueyang Ren
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
27
|
Kurien BT, Scofield RH. Current Trends in Validating Antibody Specificities for ELISpot by Western Blotting. Methods Mol Biol 2024; 2768:15-27. [PMID: 38502385 DOI: 10.1007/978-1-0716-3690-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The enzyme-linked immunospot (ELISpot) assay is a highly useful and sensitive method to detect total immunoglobulin and antigen-specific antibody-secreting cells. In addition, this method can measure biological activity and immunological secretions from immune cells. In general, membrane-bound antigen allows binding of antibody secreted by B cells, or a membrane-bound analyte-specific antibody binds to the specific analyte (e.g., cytokines) elicited from cells added to the well containing the bound antibody. The response from added cells is then detected by using an anti-Ig antibody and a colorimetric substrate, while in the case of non-B cells, the elicited antigen is detected with appropriate antibodies and enzyme-conjugated antibodies. Specificity of antibodies binding the protein of interest is necessary to achieve correct results. Western blotting can be used for this with/without siRNA knockdown of proteins of interest or with the use of peptide inhibitors to inhibit the binding of specific antibodies to the target protein. Despite its general simplicity, western blotting is a powerful technique for immunodetection of proteins (notably low abundance proteins) as it provides simultaneous resolution of multiple immunogenic antigens within a sample for detection by specific antibodies. Now, we have plethora of immunoblotting methods to validate antibodies for ELISpot.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA.
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, OK, USA.
| | - R Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| |
Collapse
|
28
|
Parveen N, Mondal P, Vanapalli KR, Das A, Goel S. Phytotoxicity of trihalomethanes and trichloroacetic acid on Vigna radiata and Allium cepa plant models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5100-5115. [PMID: 38110686 DOI: 10.1007/s11356-023-31419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Disinfection by-products (DBPs) are a concern due to their presence in chlorinated wastewater, sewage treatment plant discharge, and surface water, and their potential for environmental toxicity. Despite some attention to their ecotoxicity, little is known about the phytotoxicity of DBPs. This study aimed to evaluate the individual and combined phytotoxicity of four trihalomethanes (THMs: trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) and their mixture (THM4)), and trichloroacetic acid (TCAA) using genotoxic and cytotoxic assays. The analysis included seed germination tests using Vigna radiata and root growth tests, mitosis studies, oxidative stress response, chromosomal aberrations (CA), and DNA laddering using Allium cepa. The results showed a progressive increase in root growth inhibition for both plant species as the concentration of DBPs increased. High concentrations of mixtures of four THMs resulted in significant (p < 0.05) antagonistic interactions. The effective concentration (EC50) value for V. radiata was 5655, 3145, 2690, 1465, 3570, and 725 mg/L for TCM, BDCM, DBCM, TBM, THM4, and TCAA, respectively. For A. cepa, the EC50 for the same contaminants was 700, 400, 350, 250, 450, and 105 mg/L, respectively. DBP cytotoxicity was observed through CAs, including C-metaphase, unseparated anaphase, lagging chromosome, sticky metaphase, and bridging. Mitotic depression (MD) increased with dose, reaching up to 54.4% for TCAA (50-500 mg/L). The electrophoresis assay showed DNA fragmentation and shearing, suggesting genotoxicity for some DBPs. The order of phytotoxicity for the tested DBPs was TCAA > TBM > DBCM > BDCM > THM4 > TCM. These findings underscore the need for further research on the phytotoxicity of DBPs, especially given their common use in agricultural practices such as irrigation and the use of sludge as manure.
Collapse
Affiliation(s)
- Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India
| | - Papiya Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kumar Raja Vanapalli
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Abhijit Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
29
|
Liharska L, Charney A. Transcriptomics : Approaches to Quantifying Gene Expression and Their Application to Studying the Human Brain. Curr Top Behav Neurosci 2024; 68:129-176. [PMID: 38972894 DOI: 10.1007/7854_2024_466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
To date, the field of transcriptomics has been characterized by rapid methods development and technological advancement, with new technologies continuously rendering older ones obsolete.This chapter traces the evolution of approaches to quantifying gene expression and provides an overall view of the current state of the field of transcriptomics, its applications to the study of the human brain, and its place in the broader emerging multiomics landscape.
Collapse
Affiliation(s)
- Lora Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | |
Collapse
|
30
|
Zhao S, Luo J, Tang M, Zhang C, Song M, Wu G, Yan X. Analysis of the Candidate Genes and Underlying Molecular Mechanism of P198, an RNAi-Related Dwarf and Sterile Line. Int J Mol Sci 2023; 25:174. [PMID: 38203344 PMCID: PMC10778984 DOI: 10.3390/ijms25010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The genome-wide long hairpin RNA interference (lhRNAi) library is an important resource for plant gene function research. Molecularly characterizing lhRNAi mutant lines is crucial for identifying candidate genes associated with corresponding phenotypes. In this study, a dwarf and sterile line named P198 was screened from the Brassica napus (B. napus) RNAi library. Three different methods confirmed that eight copies of T-DNA are present in the P198 genome. However, only four insertion positions were identified in three chromosomes using fusion primer and nested integrated polymerase chain reaction. Therefore, the T-DNA insertion sites and copy number were further investigated using Oxford Nanopore Technologies (ONT) sequencing, and it was found that at least seven copies of T-DNA were inserted into three insertion sites. Based on the obtained T-DNA insertion sites and hairpin RNA (hpRNA) cassette sequences, three candidate genes related to the P198 phenotype were identified. Furthermore, the potential differentially expressed genes and pathways involved in the dwarfism and sterility phenotype of P198 were investigated by RNA-seq. These results demonstrate the advantage of applying ONT sequencing to investigate the molecular characteristics of transgenic lines and expand our understanding of the complex molecular mechanism of dwarfism and male sterility in B. napus.
Collapse
Affiliation(s)
- Shengbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Min Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Chi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Miaoying Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaohong Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
31
|
Sasse C, Bastakis E, Bakti F, Höfer AM, Zangl I, Schüller C, Köhler AM, Gerke J, Krappmann S, Finkernagel F, Harting R, Strauss J, Heimel K, Braus GH. Induction of Aspergillus fumigatus zinc cluster transcription factor OdrA/Mdu2 provides combined cellular responses for oxidative stress protection and multiple antifungal drug resistance. mBio 2023; 14:e0262823. [PMID: 37982619 PMCID: PMC10746196 DOI: 10.1128/mbio.02628-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.
Collapse
Affiliation(s)
- Christoph Sasse
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Annalena M. Höfer
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabella Zangl
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Sven Krappmann
- Institute of Microbiology–Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Center for Infection Research (ECI) and Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Core Facility Bioinformatics, Philipps University, Marburg, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Panneerchelvam S, Norazmi MN. DNA Profiling in Human Identification: From Past to Present. Malays J Med Sci 2023; 30:5-21. [PMID: 38239252 PMCID: PMC10793127 DOI: 10.21315/mjms2023.30.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/02/2022] [Indexed: 01/22/2024] Open
Abstract
Forensic DNA typing has been widely accepted in the courts all over the world. This is because DNA profiling is a very powerful tool to identify individuals on the basis of their unique genetic makeup. DNA evidence is capable of not only identifying the presence of specific biospecimens in a crime scene, but it is also used to exonerate suspects who are innocent of a crime. Technological advancements in DNA profiling, including the development of validated kits and statistical methods have made this tool to be more precise in forensic investigations. Therefore, validated combined DNA index system (CODIS) short tandem repeats (STRs) kits which require very small amount of DNA, coupled with real-time polymerase chain reaction (PCR) and the statistical strengths are used routinely to identify human remains, establish paternity or to match suspected crime scene biospecimens. The road to modern DNA profiling has been long, and it has taken scientists decades of work and fine tuning to develop highly accurate testing and analyses that are used today. This review will discuss the various DNA polymorphisms and their utility in human identity testing.
Collapse
Affiliation(s)
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| |
Collapse
|
33
|
Hossain MJ, Bakhsh A, Joyia FA, Aksoy E, Gökçe NZÖ, Khan MS. Engineering of insecticidal hybrid gene into potato chloroplast genome exhibits promising control of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Transgenic Res 2023; 32:497-512. [PMID: 37707659 DOI: 10.1007/s11248-023-00366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The potato chloroplast was transformed with codon optimized synthetic hybrid cry gene (SN19) to mitigate crop losses by Colorado potato beetle (CPB). The bombarded explants (leaves and internode) were cultured on MS medium supplemented with BAP (2.0 mg/l), NAA (0.2 mg/l), TDZ (2.0 mg/l) and GA3 (0.1 mg/l); spectinomycin 50 mg/l was used as a selection agent in the medium. Leaf explants of cultivar Kuroda induced highest percentage (92%) of callus where cultivar Santae produced the highest percentage (85.7%) of transplastomic shoots. Sante and Challenger showed 9.6% shoot regeneration efficiency followed by cultivar Simply Red (8.8%). PCR amplification yielded 16 postive transplastomic plantlets out of 21 spectinomycin resistant ones. Target gene integration was confirmed by PCR and Southern blot, whereas RT-qPCR was used to assess the expression level of transgene. The localization of visual marker gene gfp was tracked by laser scanning confocal microscopy which confirmed its expression in chloroplasts of leaf cells. The transplastomic plants ensured high mortality to both larvae and adult CPB. Foliage consumption and weight gain of CPB fed on transplastomic leaves were lower compared to the control plants. Sucessful implementation of current research findings can lead to a viable solution to CPB mediated potato losses globally.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka, 1207, Bangladesh
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey.
- Center of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan.
| | - Faiz Ahmad Joyia
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Emre Aksoy
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Neslihan Zahide Özturk Gökçe
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Muhammad Sarwar Khan
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
34
|
Al-Shuhaib MBS, Hashim HO. Mastering DNA chromatogram analysis in Sanger sequencing for reliable clinical analysis. J Genet Eng Biotechnol 2023; 21:115. [PMID: 37955813 PMCID: PMC10643650 DOI: 10.1186/s43141-023-00587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Sanger dideoxy sequencing is vital in clinical analysis due to its accuracy, ability to analyze genetic markers like SNPs and STRs, capability to generate reliable DNA profiles, and its role in resolving complex clinical cases. The precision and robustness of Sanger sequencing contribute significantly to the scientific basis of clinical investigations. Though the reading of chromatograms seems to be a routine step, many errors conducted in PCR may lead to consequent limitations in the readings of AGCT peaks. These errors are possibly associated with improper DNA amplification and its subsequent interpretation of DNA sequencing files, such as noisy peaks, artifacts, and confusion between double-peak technical errors, heterozygosity, and double infection potentials. Thus, it is not feasible to read nucleic acid sequences without giving serious attention to these technical problems. To ensure the accuracy of DNA sequencing outcomes, it is also imperative to detect and rectify technical challenges that may lead to misinterpretation of the DNA sequence, resulting in errors and incongruities in subsequent analyses. SHORT CONCLUSION This overview sheds light on prominent technical concerns that can emerge prior to and during the interpretation of DNA chromatograms in Sanger sequencing, along with offering strategies to address them effectively. The significance of identifying and tackling these technical limitations during the chromatogram analysis is underscored in this review. Recognizing these concerns can aid in enhancing the quality of downstream analyses for Sanger sequencing results, which holds notable improvement in accuracy, reliability, and ability to provide crucial genetic information in clinical analysis.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim 8, Babil, 51001, Iraq.
| | - Hayder O Hashim
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, Babil, 51001, Iraq
| |
Collapse
|
35
|
Muniz-Santos R, Magno-França A, Jurisica I, Cameron LC. From Microcosm to Macrocosm: The -Omics, Multiomics, and Sportomics Approaches in Exercise and Sports. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:499-518. [PMID: 37943554 DOI: 10.1089/omi.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
This article explores the progressive integration of -omics methods, including genomics, metabolomics, and proteomics, into sports research, highlighting the development of the concept of "sportomics." We discuss how sportomics can be used to comprehend the multilevel metabolism during exercise in real-life conditions faced by athletes, enabling potential personalized interventions to improve performance and recovery and reduce injuries, all with a minimally invasive approach and reduced time. Sportomics may also support highly personalized investigations, including the implementation of n-of-1 clinical trials and the curation of extensive datasets through long-term follow-up of athletes, enabling tailored interventions for athletes based on their unique physiological responses to different conditions. Beyond its immediate sport-related applications, we delve into the potential of utilizing the sportomics approach to translate Big Data regarding top-level athletes into studying different human diseases, especially with nontargeted analysis. Furthermore, we present how the amalgamation of bioinformatics, artificial intelligence, and integrative computational analysis aids in investigating biochemical pathways, and facilitates the search for various biomarkers. We also highlight how sportomics can offer relevant information about doping control analysis. Overall, sportomics offers a comprehensive approach providing novel insights into human metabolism during metabolic stress, leveraging cutting-edge systems science techniques and technologies.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Magno-França
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L C Cameron
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Tran HT, Schramm C, Huynh MM, Shavrukov Y, Stangoulis JCR, Jenkins CLD, Anderson PA. An accurate, reliable, and universal qPCR method to identify homozygous single insert T-DNA with the example of transgenic rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1221790. [PMID: 37900763 PMCID: PMC10600460 DOI: 10.3389/fpls.2023.1221790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
Early determination of transgenic plants that are homozygous for a single locus T-DNA insert is highly desirable in most fundamental and applied transgenic research. This study aimed to build on an accurate, rapid, and reliable quantitative real-time PCR (qPCR) method to fast-track the development of multiple homozygous transgenic rice lines in the T1 generation, with low copy number to single T-DNA insert for further analyses. Here, a well-established qPCR protocol, based on the OsSBE4 reference gene and the nos terminator, was optimized in the transgenic Japonica rice cultivar Nipponbare, to distinguish homozygous single-insert plants with 100% accuracy. This method was successfully adapted to transgenic Indica rice plants carrying three different T-DNAs, without any modifications to quickly develop homozygous rice plants in the T1 generation. The accuracy of this qPCR method when applied to transgenic Indica rice approached 100% in 12 putative transgenic lines. Moreover, this protocol also successfully detected homozygous single-locus T-DNA transgenic rice plants with two-transgene T-DNAs, a feature likely to become more popular in future transgenic research. The assay was developed utilizing universal primers targeting common sequence elements of gene cassettes (the nos terminator). This assay could therefore be applied to other transgenic plants carrying the nos terminator. All procedures described here use standardized qPCR reaction conditions and relatively inexpensive dyes, such as SYBR Green, thus the qPCR method could be cost-effective and suitable for lower budget laboratories that are involved in rice transgenic research.
Collapse
Affiliation(s)
- Hai Thanh Tran
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | | | | | | | | | - Peter A. Anderson
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
37
|
Sunitha N, Isac Sobana Raj C, Sindhu Kumari B. Development of nanofunctionalized oxovanadium(IV) complex and its anticancer, antidiabetic, DNA cleavage and cell imaging studies. Int J Pharm 2023; 644:123339. [PMID: 37611853 DOI: 10.1016/j.ijpharm.2023.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
VO(IV) complex is little toxic and highly effective than vanadium salts. A vanadyl metal complex from 8-formyl-7-hydroxy-4-methyl coumarin derivative has been synthesized and functionalized with copper nanoparticles. The Spectrochemical studies such as UV, FTIR, 1NMR and ESR spectra were recorded to characterize the ligand(CUAP), Vanadyl complex[VO(CUAP)SO4] and nano Cu-VO(IV)complex efficiently. The structural studies of vanadyl complex confirmed that the ligand coordinate with metal through nitrogen atom of azomethine, carbonyl oxygen and phenolic oxygen. ESR spectrum of vanadyl complex revealed the covalent nature. XRD pattern of nano Cu-VO(IV) complex indicated the crystalline nature and the average particle size was 20.91 nm. SEM image of nano Cu-VO(IV) complex showed that the nano particles accumulated to form spherical shaped particles. The particle size obtained from Transmission Electron Microscopy of nano functionalized metal complex is ∼ 20 nm. It is closely matched to the particle size calculated from XRD results. Fluorescence of vanadyl complex and nano Cu-VO(IV) complex exhibit the emission from 270 to 900 nm range with significant fluorescence at ∼ 750 nm. The DNA cleavage of all the compounds was evaluated using Agarose gel electrophoresis technique and showed greater cleavage of vanadyl complex. The anticancer activity of compounds was carried out against two cancer cell lines viz Human Breast Cancer Cell line (MCF-7) and Human Leukemia Cancer Cell Line(K-562). Oxovanadium complex exhibited good anticancer activities than ligand and nano-functionalized complex. The antidiabetic activities of vanadyl and nano functionalized complexes were studied against α-Amylase and β-Glucosidase inhibition assay. In this study vanadyl complex showed higher inhibition activity on α-Amylase compared with standard Acarbose. The bioimaging of nano-functionalized metal complex showed high fluorescent properties. The molecular docking study of ligand and vanadyl complex showed greater docking results with CDK2 receptor.
Collapse
Affiliation(s)
- N Sunitha
- Department of Chemistry & Research Centre, Nesamony Memorial Christian College, Marthandam 629157, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), India
| | - C Isac Sobana Raj
- Department of Chemistry & Research Centre, Nesamony Memorial Christian College, Marthandam 629157, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), India
| | - B Sindhu Kumari
- Department of Chemistry, Sree Devi Kumari Women's College, Kuzhithurai 629163, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), India.
| |
Collapse
|
38
|
Wen WC, Lin YH, Duh TH, Chen CH, Feng CH, Chen YL. Fluorescence detection of apolipoprotein E gene polymorphisms based on oligonucleotide ligation and magnetic separation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4710-4717. [PMID: 37680175 DOI: 10.1039/d3ay01245j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative condition that causes brain cell death and is the leading cause of dementia. Most patients with Alzheimer's disease are diagnosed with late-onset Alzheimer's disease (LOAD), with apolipoprotein E (APOE) genotypes being highly associated with the frequency of LOAD risk. A fluorescence detection system coupled with oligonucleotide ligation and magnetic separation was developed to identify two single-nucleotide polymorphisms (SNPs) for the APOE gene and recognize APOE alleles for LOAD. The system utilized a fluorescence probe with one base-discriminating nucleoside for SNP (F probe) and a perfectly complementary biotin-modified sequence against the target DNA (P probe). When the F and P probes matched the target DNA sequences, DNA ligation occurred, and ligation products were produced. Streptavidin magnetic beads were subsequently employed to remove the ligation products, and a decrease in fluorescence intensity was observed in the supernatant compared to when there was no target DNA. This system detected two SNPs of APOE alleles, namely rs429358 and rs7412. The results indicated that the R-values ((F0 - F1)/F0) for rs429358 were 0.92 ± 0.002 for the T/T target, 0.47 ± 0.004 for the T/C target and 0.11 ± 0.004 for the C/C target, respectively. The R-values for rs7412 were 0.73 ± 0.009 for the C/C target, 0.42 ± 0.001 for the C/T target and 0.16 ± 0.007 for the T/T target, respectively. F0 and F1 represent the fluorescence intensity of the F probe without and with target DNA, respectively. Based on fluorescence intensity, the fluorescence detection system was able to identify the genotypes of the APOE gene accurately to evaluate the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Wan-Chen Wen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Hui Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yen-Ling Chen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621301, Taiwan
| |
Collapse
|
39
|
Bibi S, Weis K, Kaur A, Bhandari R, Goss E, Jones JB, Potnis N. A Brief Evaluation of a Copper Resistance Mobile Genetic Island in the Bacterial Leaf Spot Pathogen Xanthomonas euvesicatoria pv. perforans. PHYTOPATHOLOGY 2023; 113:1394-1398. [PMID: 37097444 DOI: 10.1094/phyto-02-23-0077-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Due to the continuous use of copper containing bactericides without effective alternative bactericides, copper resistance has become more prevalent in plant pathogens, including Xanthomonas euvesicatoria pv. perforans (formerly Xanthomonas perforans), a predominant cause of bacterial leaf spot disease of tomato and pepper in the Southeastern United States. Previously, reports of copper resistance have been associated with a large conjugative plasmid. However, we have characterized a copper resistance genomic island located within the chromosome of multiple X. euvesicatoria pv. perforans strains. The island is distinct from a previously described chromosomally encoded copper resistance island in X. vesicatoria strain XVP26. Computational analysis revealed the genomic island to contain multiple genes associated with genetic mobility, including both phage-related genes and transposase. Among copper-tolerant strains of X. euvesicatoria pv. perforans isolated from Florida, the majority of strains were found to have the copper resistance chromosomally encoded rather than plasmid borne. Our results suggest that this copper resistance island may have two modes of horizontal gene transfer and that chromosomally encoded copper resistance genes may provide a fitness advantage over plasmid-borne resistance.
Collapse
Affiliation(s)
- Shaheen Bibi
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Kylie Weis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
40
|
Gebhardt C. A physical map of traits of agronomic importance based on potato and tomato genome sequences. Front Genet 2023; 14:1197206. [PMID: 37564870 PMCID: PMC10411547 DOI: 10.3389/fgene.2023.1197206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 08/12/2023] Open
Abstract
Potato, tomato, pepper, and eggplant are worldwide important crop and vegetable species of the Solanaceae family. Molecular linkage maps of these plants have been constructed and used to map qualitative and quantitative traits of agronomic importance. This research has been undertaken with the vision to identify the molecular basis of agronomic characters on the one hand, and on the other hand, to assist the selection of improved varieties in breeding programs by providing DNA-based markers that are diagnostic for specific agronomic characters. Since 2011, whole genome sequences of tomato and potato became available in public databases. They were used to combine the results of several hundred mapping and map-based cloning studies of phenotypic characters between 1988 and 2022 in physical maps of the twelve tomato and potato chromosomes. The traits evaluated were qualitative and quantitative resistance to pathogenic oomycetes, fungi, bacteria, viruses, nematodes, and insects. Furthermore, quantitative trait loci for yield and sugar content of tomato fruits and potato tubers and maturity or earliness were physically mapped. Cloned genes for pathogen resistance, a few genes underlying quantitative trait loci for yield, sugar content, and maturity, and several hundred candidate genes for these traits were included in the physical maps. The comparison between the physical chromosome maps revealed, in addition to known intrachromosomal inversions, several additional inversions and translocations between the otherwise highly collinear tomato and potato genomes. The integration of the positional information from independent mapping studies revealed the colocalization of qualitative and quantitative loci for resistance to different types of pathogens, called resistance hotspots, suggesting a similar molecular basis. Synteny between potato and tomato with respect to genomic positions of quantitative trait loci was frequently observed, indicating eventual similarity between the underlying genes.
Collapse
|
41
|
Dardik R, Janczar S, Lalezari S, Avishai E, Levy-Mendelovich S, Barg AA, Martinowitz U, Babol-Pokora K, Mlynarski W, Kenet G. Four Decades of Carrier Detection and Prenatal Diagnosis in Hemophilia A: Historical Overview, State of the Art and Future Directions. Int J Mol Sci 2023; 24:11846. [PMID: 37511607 PMCID: PMC10380558 DOI: 10.3390/ijms241411846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hemophilia A (HA), a rare recessive X-linked bleeding disorder, is caused by either deficiency or dysfunction of coagulation factor VIII (FVIII) resulting from deleterious mutations in the F8 gene encoding FVIII. Over the last 4 decades, the methods aimed at determining the HA carrier status in female relatives of HA patients have evolved from phenotypic studies based on coagulation tests providing merely probabilistic results, via genetic linkage studies based on polymorphic markers providing more accurate results, to next generation sequencing studies enabling highly precise identification of the causative F8 mutation. In parallel, the options for prenatal diagnosis of HA have progressed from examination of FVIII levels in fetal blood samples at weeks 20-22 of pregnancy to genetic analysis of fetal DNA extracted from chorionic villus tissue at weeks 11-14 of pregnancy. In some countries, in vitro fertilization (IVF) combined with preimplantation genetic diagnosis (PGD) has gradually become the procedure of choice for HA carriers who wish to prevent further transmission of HA without the need to undergo termination of pregnancies diagnosed with affected fetuses. In rare cases, genetic analysis of a HA carrier might be complicated by skewed X chromosome inactivation (XCI) of her non-hemophilic X chromosome, thus leading to the phenotypic manifestation of moderate to severe HA. Such skewed XCI may be associated with deleterious mutations in X-linked genes located on the non-hemophilic X chromosome, which should be considered in the process of genetic counseling and PGD planning for the symptomatic HA carrier. Therefore, whole exome sequencing, combined with X-chromosome targeted bioinformatic analysis, is highly recommended for symptomatic HA carriers diagnosed with skewed XCI in order to identify additional deleterious mutations potentially involved in XCI skewing. Identification of such mutations, which may profoundly impact the reproductive choices of HA carriers with skewed XCI, is extremely important.
Collapse
Affiliation(s)
- Rima Dardik
- National Hemophilia Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Sackler School of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Shadan Lalezari
- National Hemophilia Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Sackler School of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Einat Avishai
- National Hemophilia Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Sackler School of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Sarina Levy-Mendelovich
- National Hemophilia Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Sackler School of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Assaf Arie Barg
- National Hemophilia Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Sackler School of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| | - Uri Martinowitz
- National Hemophilia Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Katarzyna Babol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Gili Kenet
- National Hemophilia Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Sackler School of Medicine, Tel Aviv University, Tel Aviv 52621, Israel
| |
Collapse
|
42
|
Krespach MKC, Stroe MC, Netzker T, Rosin M, Zehner LM, Komor AJ, Beilmann JM, Krüger T, Scherlach K, Kniemeyer O, Schroeckh V, Hertweck C, Brakhage AA. Streptomyces polyketides mediate bacteria-fungi interactions across soil environments. Nat Microbiol 2023:10.1038/s41564-023-01382-2. [PMID: 37322111 DOI: 10.1038/s41564-023-01382-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/13/2023] [Indexed: 06/17/2023]
Abstract
Although the interaction between prokaryotic and eukaryotic microorganisms is crucial for the functioning of ecosystems, information about the processes driving microbial interactions within communities remains scarce. Here we show that arginine-derived polyketides (arginoketides) produced by Streptomyces species mediate cross-kingdom microbial interactions with fungi of the genera Aspergillus and Penicillium, and trigger the production of natural products. Arginoketides can be cyclic or linear, and a prominent example is azalomycin F produced by Streptomyces iranensis, which induces the cryptic orsellinic acid gene cluster in Aspergillus nidulans. Bacteria that synthesize arginoketides and fungi that decode and respond to this signal were co-isolated from the same soil sample. Genome analyses and a literature search indicate that arginoketide producers are found worldwide. Because, in addition to their direct impact, arginoketides induce a secondary wave of fungal natural products, they probably contribute to the wider structure and functioning of entire soil microbial communities.
Collapse
Affiliation(s)
- Mario K C Krespach
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Maira Rosin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Lukas M Zehner
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Anna J Komor
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Johanna M Beilmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Christian Hertweck
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
43
|
Wax N, La-Rostami F, Albert C, Fischer M. Variety Differentiation: Development of a CRISPR DETECTR Method for the Detection of Single Nucleotide Polymorphisms (SNPs) in Cacao ( Theobroma cacao) and Almonds ( Prunus dulcis). FOOD ANAL METHOD 2023; 16:1-11. [PMID: 37359895 PMCID: PMC10251332 DOI: 10.1007/s12161-023-02500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
To prevent food fraud, products can be monitored by various chemical-analytical techniques. In this study, we present a CRISPR-Cpf1 DETECTR-based assay for the differentiation of plant ingredients in sweet confectionary like fine and bulk-cocoa, or bitter and sweet almonds. To enable rapid in-field analysis, the trans-cleavage activity of the Cpf1 enzyme was used to develop a DETECTR (DNA endonuclease-targeted CRISPR trans reporter) assay for simple, highly specific fluorometric detection of single nucleotide polymorphisms (SNPs). The endonuclease Cpf1 requires the protospacer adjacent motif (PAM) 5'-TTTV-3' for activation, but the recognition sequence is freely programmable. The SNPs were selected to alter the Cpf1 specific PAM sequence. As a result, sequences that do not carry the canonical PAM sequence are not detected and thus not cut. The optimized system was used for both raw material and processed products such as cocoa masses or marzipan with a limit of detection of 3 ng template DNA. In addition, we were able to implement the system in the context of an LFA (lateral flow assay) to serve as a basis for the development of rapid test systems. Supplementary Information The online version contains supplementary material available at 10.1007/s12161-023-02500-w.
Collapse
Affiliation(s)
- Nils Wax
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Farshad La-Rostami
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Chenyang Albert
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
44
|
Ruf WP, Boros M, Freischmidt A, Brenner D, Grozdanov V, de Meirelles J, Meyer T, Grehl T, Petri S, Grosskreutz J, Weyen U, Guenther R, Regensburger M, Hagenacker T, Koch JC, Emmer A, Roediger A, Steinbach R, Wolf J, Weishaupt JH, Lingor P, Deschauer M, Cordts I, Klopstock T, Reilich P, Schoeberl F, Schrank B, Zeller D, Hermann A, Knehr A, Günther K, Dorst J, Schuster J, Siebert R, Ludolph AC, Müller K. Spectrum and frequency of genetic variants in sporadic amyotrophic lateral sclerosis. Brain Commun 2023; 5:fcad152. [PMID: 37223130 PMCID: PMC10202555 DOI: 10.1093/braincomms/fcad152] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Therapy of motoneuron diseases entered a new phase with the use of intrathecal antisense oligonucleotide therapies treating patients with specific gene mutations predominantly in the context of familial amyotrophic lateral sclerosis. With the majority of cases being sporadic, we conducted a cohort study to describe the mutational landscape of sporadic amyotrophic lateral sclerosis. We analysed genetic variants in amyotrophic lateral sclerosis-associated genes to assess and potentially increase the number of patients eligible for gene-specific therapies. We screened 2340 sporadic amyotrophic lateral sclerosis patients from the German Network for motor neuron diseases for variants in 36 amyotrophic lateral sclerosis-associated genes using targeted next-generation sequencing and for the C9orf72 hexanucleotide repeat expansion. The genetic analysis could be completed on 2267 patients. Clinical data included age at onset, disease progression rate and survival. In this study, we found 79 likely pathogenic Class 4 variants and 10 pathogenic Class 5 variants (without the C9orf72 hexanucleotide repeat expansion) according to the American College of Medical Genetics and Genomics guidelines, of which 31 variants are novel. Thus, including C9orf72 hexanucleotide repeat expansion, Class 4, and Class 5 variants, 296 patients, corresponding to ∼13% of our cohort, could be genetically resolved. We detected 437 variants of unknown significance of which 103 are novel. Corroborating the theory of oligogenic causation in amyotrophic lateral sclerosis, we found a co-occurrence of pathogenic variants in 10 patients (0.4%) with 7 being C9orf72 hexanucleotide repeat expansion carriers. In a gene-wise survival analysis, we found a higher hazard ratio of 1.47 (95% confidence interval 1.02-2.1) for death from any cause for patients with the C9orf72 hexanucleotide repeat expansion and a lower hazard ratio of 0.33 (95% confidence interval 0.12-0.9) for patients with pathogenic SOD1 variants than for patients without a causal gene mutation. In summary, the high yield of 296 patients (∼13%) harbouring a pathogenic variant and oncoming gene-specific therapies for SOD1/FUS/C9orf72, which would apply to 227 patients (∼10%) in this cohort, corroborates that genetic testing should be made available to all sporadic amyotrophic lateral sclerosis patients after respective counselling.
Collapse
Affiliation(s)
- Wolfgang P Ruf
- Correspondence to: Dr Wolfgang P. Ruf Department of Neurology Medical Faculty, Ulm University Albert-Einstein-Allee 23, Ulm 89081, Germany E-mail:
| | - Matej Boros
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm 89081, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | | | - Joao de Meirelles
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Thomas Meyer
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 13353, Germany
| | - Torsten Grehl
- Department of Neurology, Alfried Krupp Hospital, Essen 45131, Germany
| | - Susanne Petri
- Department of Neurology, Medizinische Hochschule Hannover, Hannover 30625, Germany
| | | | - Ute Weyen
- Department of Neurology, University Hospital Bochum, Bochum 44789, Germany
| | - Rene Guenther
- Department of Neurology, Technische Universität Dresden, Dresden 01307, Germany
| | - Martin Regensburger
- Department of Neurology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Tim Hagenacker
- Department of Neurology Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Essen 45147, Germany
| | - Jan C Koch
- Department of Neurology, University Medical Center Goettingen, Goettingen 37075, Germany
| | - Alexander Emmer
- University Clinic and Polyclinic for Neurology, University Hospital Halle, Halle 06120, Germany
| | | | - Robert Steinbach
- Department of Neurology, University Hospital Jena, Jena 07747, Germany
| | - Joachim Wolf
- Department of Neurology, Diako Mannheim, Mannheim 68163, Germany
| | - Jochen H Weishaupt
- Department of Neurology, University Hospital Mannheim, Mannheim 68167, Germany
| | - Paul Lingor
- Department of Neurology, Technical University Munich, Munich 80333, Germany
| | - Marcus Deschauer
- Department of Neurology, Technical University Munich, Munich 80333, Germany
| | - Isabell Cordts
- Department of Neurology, Technical University Munich, Munich 80333, Germany
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, University Hospital of Ludwig-Maximilians-University, München 80336, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Munich 81377, Germany
| | - Peter Reilich
- Department of Neurology with Friedrich-Baur-Institute, University Hospital of Ludwig-Maximilians-University, München 80336, Germany
| | - Florian Schoeberl
- Department of Neurology with Friedrich-Baur-Institute, University Hospital of Ludwig-Maximilians-University, München 80336, Germany
| | - Berthold Schrank
- Department of Neurology, DKD Helios Clinics, Wiesbaden 65191, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section ‘Albrecht Kossel’, University Medical Center Rostock, Rostock 18146, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Rostock/Greifswald 17489, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | | | - Johannes Dorst
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Joachim Schuster
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm 89081, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Kathrin Müller
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm 89081, Germany
| |
Collapse
|
45
|
Chang X, Yang M, Li H, Wu J, Zhang J, Yin C, Ma W, Chen H, Zhou F, Lin Y. Cloning of the promoter of rice brown planthopper feeding-inducible gene OsTPS31 and identification of related cis-regulatory elements. PEST MANAGEMENT SCIENCE 2023; 79:1809-1819. [PMID: 36637212 DOI: 10.1002/ps.7356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Brown planthopper (BPH; Nilaparvata lugens) is one of the most serious pests of rice in the world. Insect-resistant genetic engineering is a very effective technology to control BPH. The promoters and cis-regulatory elements inducible by plant-feeding insects are critical for genetic engineering of insect-resistant crops. RESULTS In this study, we cloned a promoter Ptps31 and a 7 bp cis-regulatory sequence that up-regulated downstream genes induced by BPH feeding. The promoter of OsTPS31 (Ptps31) unresponsive to physical damage but responsive to BPH feeding was cloned and functionally verified. The results showed that expression of the OsBPH14 gene driven by the promoter region from -510 to -246 bp in rice could significantly improve the resistance to BPH. The promoter region from -376 to -370 bp (TAGTGTC) was identified as a cis-regulatory sequence related to BPH feeding induction of downstream gene expression. CONCLUSION The findings provide a new promoter and a new cis-regulatory sequence tool for the research on and application of rice BPH resistance genes, as well as a new perspective for functional analysis of the OsTPS31 gene. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinlei Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mei Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiemin Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changxi Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Chen T, Hojka M, Davey P, Sun Y, Dykes GF, Zhou F, Lawson T, Nixon PJ, Lin Y, Liu LN. Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis. Nat Commun 2023; 14:2118. [PMID: 37185249 PMCID: PMC10130085 DOI: 10.1038/s41467-023-37490-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The growth in world population, climate change, and resource scarcity necessitate a sustainable increase in crop productivity. Photosynthesis in major crops is limited by the inefficiency of the key CO2-fixing enzyme Rubisco, owing to its low carboxylation rate and poor ability to discriminate between CO2 and O2. In cyanobacteria and proteobacteria, carboxysomes function as the central CO2-fixing organelles that elevate CO2 levels around encapsulated Rubisco to enhance carboxylation. There is growing interest in engineering carboxysomes into crop chloroplasts as a potential route for improving photosynthesis and crop yields. Here, we generate morphologically correct carboxysomes in tobacco chloroplasts by transforming nine carboxysome genetic components derived from a proteobacterium. The chloroplast-expressed carboxysomes display a structural and functional integrity comparable to native carboxysomes and support autotrophic growth and photosynthesis of the transplastomic plants at elevated CO2. Our study provides proof-of-concept for a route to engineering fully functional CO2-fixing modules and entire CO2-concentrating mechanisms into chloroplasts to improve crop photosynthesis and productivity.
Collapse
Affiliation(s)
- Taiyu Chen
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Marta Hojka
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Philip Davey
- School of Life Sciences, University of Essex, Colchester, CO4 4SQ, UK
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, CO4 4SQ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 266003, Qingdao, China.
| |
Collapse
|
47
|
Sumi M, Nevaditha NT, Sindhu Kumari B. Nano zinc Oxide-Ruthenium (III) complex of novel coumarin derivative: Synthesis, Characterization, DNA Cleavage, anticancer and bioimaging activities. Bioorg Chem 2023; 136:106555. [PMID: 37126900 DOI: 10.1016/j.bioorg.2023.106555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The uniqueness of nanofunctionalized metal complexes would play a prominent role in medicinal chemistry, especially in cancer chemotherapy. Among the metal based chemotherapeutic drugs, ruthenium complexes exhibit different oxidation states, lower toxicity and remarkable antitumor activities than other anticancer drugs. In this investigation bioactive ruthenium(III) complex has been synthesized from novel coumarin derivative and it is functionalized with nanostructured zinc oxide (ZnO) under well defined condition. An octahedral geometry is proposed for the ruthenium complex based on analytical and spectrochemical characterization techniques (UV, FT-IR and NMR). The g|| and g⊥ values obtained from the ESR spectrum indicated high symmetry and octahedral field around ruthenium ion. The XRD patterns of all synthesized compounds explicit average particle sizes are nanometer range. The morphology and particle size of Nano ZnO-Ru(III) complex is also confirmed by using SEM and TEM analysis. The nanofunctionalized material exhibited enhanced fluorescence emissions at 674 nm and 681 nm. The evaluation of DNA cleavage study indicated compounds were effectively cleaved supercoiled pUC18 DNA by gel electrophoresis method. The examinations of in-vitro anticancer activities of compounds were studied against human breast (MCF-7) and leukemia (K-562) cancer cell lines. The ruthenium complex showed greater effect against MCF-7 with < 10 IC50 value. Nowadays, the cell imaging property of nanofunctionalized materials receive more attention. The fluorescence microscopic images of Nano ZnO-Ru(III) complex displayed higher luminescence at 100 μg/ mL against L6 rat skeletal muscle cell line.
Collapse
Affiliation(s)
- M Sumi
- Department of Chemistry & Research Centre, Nesamony Memorial Christian College, Marthandam-629165 (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tamil Nadu, India
| | - N T Nevaditha
- Department of Chemistry & Research Centre, Nesamony Memorial Christian College, Marthandam-629165 (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tamil Nadu, India
| | - B Sindhu Kumari
- Department of Chemistry, Sree Devi Kumari Women's College, Kuzhithurai-629163 (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tamil Nadu, India..
| |
Collapse
|
48
|
Hellen DJ, Bennett A, Malla S, Klindt C, Rao A, Dawson PA, Karpen SJ. Liver-restricted deletion of the biliary atresia candidate gene Pkd1l1 causes bile duct dysmorphogenesis and ciliopathy. Hepatology 2023; 77:1274-1286. [PMID: 36645229 DOI: 10.1097/hep.0000000000000029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS A recent multicenter genetic exploration of the biliary atresia splenic malformation syndrome identified mutations in the ciliary gene PKD1L1 as candidate etiologic contributors. We hypothesized that deletion of Pkd1l1 in developing hepatoblasts would lead to cholangiopathy in mice. APPROACH AND RESULTS CRISPR-based genome editing inserted loxP sites flanking exon 8 of the murine Pkd1l1 gene. Pkd1l1Fl/Fl cross-bred with alpha-fetoprotein-Cre expressing mice to generate a liver-specific intrahepatic Pkd1l1 -deficient model (LKO). From embryonic day 18 through week 30, control ( Fl/Fl ) and LKO mice were evaluated with standard serum chemistries and liver histology. At select ages, tissues were analyzed using RNA sequencing, immunofluorescence, and electron microscopy with a focus on biliary structures, peribiliary inflammation, and fibrosis. Bile duct ligation for 5 days of Fl/Fl and LKO mice was followed by standard serum and liver analytics. Histological analyses from perinatal ages revealed delayed biliary maturation and reduced primary cilia, with progressive cholangiocyte proliferation, peribiliary fibroinflammation, and arterial hypertrophy evident in 7- to 16-week-old LKO versus Fl/Fl livers. Following bile duct ligation, cholangiocyte proliferation, peribiliary fibroinflammation, and necrosis were increased in LKO compared with Fl/Fl livers. CONCLUSIONS Bile duct ligation of the Pkd1l1 -deficient mouse model mirrors several aspects of the intrahepatic pathophysiology of biliary atresia in humans including bile duct dysmorphogenesis, peribiliary fibroinflammation, hepatic arteriopathy, and ciliopathy. This first genetically linked model of biliary atresia, the Pkd1l1 LKO mouse, may allow researchers a means to develop a deeper understanding of the pathophysiology of this serious and perplexing disorder, including the opportunity to identify rational therapeutic targets.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Perez-Gianmarco L, Kurt B, Kukley M. Technical approaches and challenges to study AMPA receptors in oligodendrocyte lineage cells: Past, present, and future. Glia 2023; 71:819-847. [PMID: 36453615 DOI: 10.1002/glia.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022]
Abstract
Receptors for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPARs) are ligand-gated ionotropic receptors for glutamate that is a major excitatory neurotransmitter in the central nervous system. AMPARs are located at postsynaptic sites of neuronal synapses where they mediate fast synaptic signaling and synaptic plasticity. Remarkably, AMPARs are also expressed by glial cells. Their expression by the oligodendrocyte (OL) lineage cells is of special interest because AMPARs mediate fast synaptic communication between neurons and oligodendrocyte progenitor cells (OPCs), modulate proliferation and differentiation of OPCs, and may also be involved in regulation of myelination. On the other hand, during pathological conditions, AMPARs may mediate damage of the OL lineage cells. In the present review, we focus on the technical approaches that have been used to study AMPARs in the OL lineage cells, and discuss future perspectives of AMPAR research in these glial cells.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begüm Kurt
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Kukley
- Laboratory of Neuronal and Glial Physiology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
50
|
Schwartz AM, Marcotte HA, Johnson CN. Evaluation of Alternative Colony Hybridization Methods for Pathogenic Vibrios. Foods 2023; 12:foods12071472. [PMID: 37048292 PMCID: PMC10093671 DOI: 10.3390/foods12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Vibrios, such as Vibrio parahaemolyticus, are naturally occurring halophilic bacteria that are a major cause of foodborne illness. Because of their autochthonous nature, managing vibrio levels in marine and estuarine environments is impossible. Instead, it is crucial to reliably enumerate their abundance to minimize human exposure. One method of achieving this is the direct plating/colony hybridization (DP/CH) method, which has been used to efficiently quantify pathogenic vibrios in oysters and other seafood products. Although successful, the method relies on proprietary resources. We examined alternative approaches, assessed the influence of the reagent suppliers’ source on enumeration accuracy, and made experimental adjustments that maximized efficiency, sensitivity, and specificity. We report here that in-house conjugation via Cell Mosaic is a viable alternative to the previously available sole-source distributor of the alkaline phosphatase-conjugated probes used to enumerate vibrios in oysters. We also report that milk was a viable alternative as a blocking reagent, pH must be eight, an orbital shaker was a viable alternative to a water bath, and narrow polypropylene containers were a viable alternative to Whirl-Pak bags. These modifications will be crucial to scientists enumerating vibrios and other pathogens in food products.
Collapse
|