1
|
Liang L, Yin Y, Guo Z, Liu T, Ouyang Z, Zhou J, Xiao J, Zhao L, Wu H. Sequentially activating macrophages M1 and M2 phenotypes by lipopolysaccharide-containing Mg-Fe layered double hydroxides coating on the Ti substrate. Colloids Surf B Biointerfaces 2023; 222:113066. [PMID: 36525754 DOI: 10.1016/j.colsurfb.2022.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
As cells of innate immunity, macrophages are a class of innate immune cells existing in almost all tissues and play a crucial role in bone repair. However, it remains a challenge to modulate the sequential activation of the deferent phenotypes in macrophage when designing the titanium (Ti) implants. In this study, the Mg-Fe layered double hydroxides (LDHs) was coated on Ti substrate through hydrothermal treatment. Further on lipopolysaccharide (LPS) was introduced onto the LDHs through adsorption and ions exchange. The adsorption efficiency of the coating on LPS reached 72.8% in 24 h due to the anion exchange and electrostatic interactions between the LPS and the LDH layers in deionized water. The LDHs-LPS coating released a large amount of LPS in the early stage, which induced macrophages into M1 phenotype via activating TLR-4 → MyD88 and TLR-4 → Ticam-1/2 signal pathways. Subsequently, the M1 macrophages were transformed into M2 phenotype by regulating the integrin α5β1 of cells by the nanostructures, wetting angle and Mg2+ of the coating. The LDHs-LPS coating endows Ti with the ability of stage immunomodulation, indicating the positive osteoimmunomodulatory property.
Collapse
Affiliation(s)
- Luxin Liang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Yong Yin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Zhenhu Guo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Jixiang Zhou
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| |
Collapse
|
2
|
Lee J, Hestrin R, Nuccio EE, Morrison KD, Ramon CE, Samo TJ, Pett-Ridge J, Ly SS, Laurence TA, Weber PK. Label-Free Multiphoton Imaging of Microbes in Root, Mineral, and Soil Matrices with Time-Gated Coherent Raman and Fluorescence Lifetime Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1994-2008. [PMID: 35029104 DOI: 10.1021/acs.est.1c05818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Imaging biogeochemical interactions in complex microbial systems─such as those at the soil-root interface─is crucial to studies of climate, agriculture, and environmental health but complicated by the three-dimensional (3D) juxtaposition of materials with a wide range of optical properties. We developed a label-free multiphoton nonlinear imaging approach to provide contrast and chemical information for soil microorganisms in roots and minerals with epi-illumination by simultaneously imaging two-photon excitation fluorescence (TPEF), coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and sum-frequency mixing (SFM). We used fluorescence lifetime imaging (FLIM) and time gating to correct CARS for the autofluorescence background native to soil particles and fungal hyphae (TG-CARS) using time-correlated single-photon counting (TCSPC). We combined TPEF, TG-CARS, and FLIM to maximize image contrast for live fungi and bacteria in roots and soil matrices without fluorescence labeling. Using this instrument, we imaged symbiotic arbuscular mycorrhizal fungi (AMF) structures within unstained plant roots in 3D to 60 μm depth. High-quality imaging was possible at up to 30 μm depth in a clay particle matrix and at 15 μm in complex soil preparation. TG-CARS allowed us to identify previously unknown lipid droplets in the symbiotic fungus, Serendipita bescii. We also visualized unstained putative bacteria associated with the roots of Brachypodium distachyon in a soil microcosm. Our results show that this multimodal approach holds significant promise for rhizosphere and soil science research.
Collapse
Affiliation(s)
- Janghyuk Lee
- Materials Science Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rachel Hestrin
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Erin E Nuccio
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Keith D Morrison
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Christina E Ramon
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ty J Samo
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jennifer Pett-Ridge
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Life and Environmental Sciences Department, University of California Merced, Merced, California 95343, United States
| | - Sonny S Ly
- Materials Science Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ted A Laurence
- Materials Science Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Peter K Weber
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
3
|
Hu X, Wei X, Ling J, Chen J. Cobalt: An Essential Micronutrient for Plant Growth? FRONTIERS IN PLANT SCIENCE 2021; 12:768523. [PMID: 34868165 PMCID: PMC8635114 DOI: 10.3389/fpls.2021.768523] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 05/19/2023]
Abstract
Cobalt is a transition metal located in the fourth row of the periodic table and is a neighbor of iron and nickel. It has been considered an essential element for prokaryotes, human beings, and other mammals, but its essentiality for plants remains obscure. In this article, we proposed that cobalt (Co) is a potentially essential micronutrient of plants. Co is essential for the growth of many lower plants, such as marine algal species including diatoms, chrysophytes, and dinoflagellates, as well as for higher plants in the family Fabaceae or Leguminosae. The essentiality to leguminous plants is attributed to its role in nitrogen (N) fixation by symbiotic microbes, primarily rhizobia. Co is an integral component of cobalamin or vitamin B12, which is required by several enzymes involved in N2 fixation. In addition to symbiosis, a group of N2 fixing bacteria known as diazotrophs is able to situate in plant tissue as endophytes or closely associated with roots of plants including economically important crops, such as barley, corn, rice, sugarcane, and wheat. Their action in N2 fixation provides crops with the macronutrient of N. Co is a component of several enzymes and proteins, participating in plant metabolism. Plants may exhibit Co deficiency if there is a severe limitation in Co supply. Conversely, Co is toxic to plants at higher concentrations. High levels of Co result in pale-colored leaves, discolored veins, and the loss of leaves and can also cause iron deficiency in plants. It is anticipated that with the advance of omics, Co as a constitute of enzymes and proteins and its specific role in plant metabolism will be exclusively revealed. The confirmation of Co as an essential micronutrient will enrich our understanding of plant mineral nutrition and improve our practice in crop production.
Collapse
Affiliation(s)
- Xiu Hu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiangying Wei
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jie Ling
- He Xiangning College of Art and Design, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
- *Correspondence: Jianjun Chen
| |
Collapse
|
4
|
Turkovskaya OV, Golubev SN. The Collection of Rhizosphere Microorganisms: its importance for the study of associative plant-bacterium interactions. Vavilovskii Zhurnal Genet Selektsii 2020; 24:315-324. [PMID: 33659814 PMCID: PMC7716537 DOI: 10.18699/vj20.623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microbial culture collections are very important components of biological science. They provide researchers with material for studies and preserve biological resources. One such collection is the Collection of Rhizosphere Microorganisms, kept at the Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov (IBPPM). Its activity is primarily directed toward the isolation and preservation of microorganisms from the plant root zone. The international research interest in microorganisms from this ecological niche is not waning, because they are very important for plant growth and development and, consequently, for plant breeding. The group of bacteria with properties of significance for plants has been given the name "plant-growth-promoting rhizobacteria" (PGPR). This group includes nitrogen-fixing soil alpha-proteobacteria of the genus Azospirillum, which form the core of the IBPPM collection. First discovered by Brazilian scientists in the 1970s, azospirilla are now a universally recognized model object for studying the molecular mechanisms underlying plant-bacterium interactions. The broad range of useful properties found in these microorganisms, including the fixation of atmospheric nitrogen, production of phytohormones, solubilization of phosphates, control of pathogens, and formation of induced systemic resistance in the colonized plants, make these bacteria an all-purpose tool that has been used for several decades in basic and applied research. This article reviews the current state of Azospirillum research, with emphasis on the results obtained at the IBPPM. Scientific expeditions across the Saratov region undertaken by IBPPM microbiologists in the early 1980s formed the basis for the unique collection of members of this bacterial taxon. Currently, the collection has more than 160 Azospirillum strains and is one of the largest collections in Europe. The research conducted at the IBPPM is centered mostly on the Azospirillum structures involved in associative symbiosis with plants, primarily extracellular polysaccharide-containing complexes and lectins. The development of immunochemical methods contributed much to our understanding of the overall organization of the surface of rhizosphere bacteria. The extensive studies of the Azospirillum genome largely deepened our understanding of the role of the aforesaid bacterial structures, motility, and biofilms in the colonization of host plant roots. Of interest are also applied studies focusing on agricultural and environmental technologies and on the "green" synthesis of Au, Ag, and Se nanoparticles. The Collection of Rhizosphere Microorganisms continues to grow, being continually supplemented with newly isolated strains. The data presented in this article show the great importance of specialized microbial culture repositories, such as the IBPPM collection, for the development and maintenance of the microbial research base and for the effective solution of basic and applied tasks in microbiology.
Collapse
Affiliation(s)
- O V Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov, Russia
| | - S N Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
5
|
Tugarova AV, Mamchenkova PV, Dyatlova YA, Kamnev AA. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:458-463. [PMID: 29220816 DOI: 10.1016/j.saa.2017.11.050] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250nm; their zeta potential was measured to be minus 18.5mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500cm-1 down to 150cm-1) showed a single very strong band with a maximum at 250cm-1 which, in line with its increased width (ca. 30cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.
Collapse
Affiliation(s)
- Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Polina V Mamchenkova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Yulia A Dyatlova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| |
Collapse
|
6
|
Xuan Nguyen NT, Sarter S, Hai Nguyen N, Daniel P. Detection of molecular changes induced by antibiotics in Escherichia coli using vibrational spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:395-401. [PMID: 28463778 DOI: 10.1016/j.saa.2017.04.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/02/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to test Raman (400-1800cm-1) and Infra-red (1900-500cm-1) spectroscopies followed by statistical analysis (principal component analysis) to detect molecular changes induced by antibiotics (ampicillin, cefotaxime - cell wall synthesis inhibitors, tetracycline - protein synthesis inhibitor, ciprofloxacin - DNA synthesis inhibitor) against Escherichia coli TOP10. In case of ampicillin and cefotaxime, a decrease in protein bands in both Raman (1240, 1660cm-1), and IR spectra (1230, 1530, 1630cm-1), and an increase in carbohydrate bands (1150, 1020cm-1) in IR spectra were observed. Tetracycline addition caused an increase in nucleic acid bands (775, 1478, 1578cm-1), a sharp decrease in phenylalanine (995cm-1) in Raman spectra and the amide I and amide II bands (1630, 1530cm-1) in IR spectra, an increase in DNA in both Raman (1083cm-1) and IR spectra (1080cm-1). Regarding ciprofloxacin, an increase in nucleic acids (775, 1478, 1578cm-1) in Raman spectra and in protein bands (1230, 1520, 1630cm-1), in DNA (1080cm-1) in IR spectra were detected. Clear discrimination of antibiotic-treated samples compared to the control was recorded, showing that Raman and IR spectroscopies, coupled to principal component analysis for data, could be used to detect molecular modifications in bacteria exposed to different classes of antibiotics. These findings contribute to the understanding of the mechanisms of action of antibiotics in bacteria.
Collapse
Affiliation(s)
- N T Xuan Nguyen
- Institute of Molecules and Materials of Le Mans - IMMM UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France; Faculty of Veterinary Medicine and Animal Science, NongLam University, Ho Chi Minh City, Vietnam
| | - Samira Sarter
- CIRAD, UMR ISEM116, 73 rue Jean-François Breton, Montpellier cedex 05, France
| | - N Hai Nguyen
- Faculty of Veterinary Medicine and Animal Science, NongLam University, Ho Chi Minh City, Vietnam
| | - Philippe Daniel
- Institute of Molecules and Materials of Le Mans - IMMM UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France.
| |
Collapse
|
7
|
Henry VA, Jessop JLP, Peeples TL. Differentiating Pseudomonas sp. strain ADP cells in suspensions and biofilms using Raman spectroscopy and scanning electron microscopy. Anal Bioanal Chem 2016; 409:1441-1449. [PMID: 27942801 DOI: 10.1007/s00216-016-0077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
High quality spectra of Pseudomonas sp. strain ADP in the planktonic and biofilm state were obtained using Raman microspectroscopy. These spectra enabled the identification of key differences between free and biofilm cells in the fingerprint region of Raman spectra in the nucleic acid, carbohydrate, and protein regions. Scanning electron microscopy (SEM) enabled detailed visualization of ADP biofilm with confirmation of associated extracellular matrix structure. Following extraction and Raman analysis of extracellular polymeric substances, Raman spectral differences between free and biofilm cells were largely attributed to the contribution of extracellular matrix components produced in mature biofilms. Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species. Graphical Abstract Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species.
Collapse
Affiliation(s)
- Victoria A Henry
- Department of Chemical and Biochemical Engineering, University of Iowa, 4133 Seamans Center, Iowa City, IA, 52242, USA
| | - Julie L P Jessop
- Department of Chemical and Biochemical Engineering, University of Iowa, 4133 Seamans Center, Iowa City, IA, 52242, USA
| | - Tonya L Peeples
- Department of Chemical and Biochemical Engineering, University of Iowa, 4133 Seamans Center, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS One 2013; 8:e78369. [PMID: 24205213 PMCID: PMC3813511 DOI: 10.1371/journal.pone.0078369] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/19/2013] [Indexed: 01/07/2023] Open
Abstract
The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs). We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430). There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE), compared to those exposed to groundnut-root exudates (GRE). In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2), in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.
Collapse
|
9
|
Paret ML, Sharma SK, Green LM, Alvarez AM. Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy. APPLIED SPECTROSCOPY 2010; 64:433-441. [PMID: 20412629 DOI: 10.1366/000370210791114293] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Raman spectra of Gram-positive and Gram-negative plant bacteria have been measured with micro-Raman spectrometers equipped with 785 and 514.5 nm lasers. The Gram-positive bacteria Microbacterium testaceum, Paenibacillus validus, and Clavibacter michiganensis subsp. michiganensis have strong carotenoid bands in the regions 1155-1157 cm(-1) and 1516-1522 cm(-1) that differentiate them from other tested Gram-negative bacteria. In the Raman spectrum of Gram-positive bacteria Bacillus megaterium excited with 785 nm laser, the Raman bands at 1157 and 1521 cm(-1) are weak in intensity compared to other Gram-positive bacteria, and these bands did not show significant resonance Raman enhancement in the spectrum recorded with 514.5 nm laser excitation. The Gram-positive bacteria could be separated from each other based on the bands associated with the in-phase C=C (v(1)) vibrations of the polyene chain of carotenoids. None of the Gram-negative bacteria tested had carotenoid bands. The bacteria in the genus Xanthomonas have a carotenoid-like pigment, xanthomonadin, identified in Xanthomonas axonopodis pv. dieffenbachiae, and it is a unique Raman marker for the bacteria. The representative bands for xanthomonadin were the C-C stretching (v(2)) vibrations of the polyene chain at 1135-1136 cm(-1) and the in-phase C=C (v(1)) vibrations of the polyene chain at 1529-1531 cm(-1), which were distinct from the carotenoid bands of other tested bacteria. The tyrosine peak in the region 1170-1175 cm(-1) was the only other marker present in Gram-negative bacteria that was absent in all tested Gram-positives. A strong-intensity exopolysaccharide-associated marker at 1551 cm(-1) is a distinguishable feature of Enterobacter cloacae. The Gram-negative Agrobacterium rhizogenes and Ralstonia solanacearum were differentiated from each other and other tested bacteria on the basis of presence or absence and relative intensities of peaks. The principal components analysis (PCA) of the spectra excited with 785 nm laser differentiated the various strains of bacteria based on the unique pigments these bacteria do or do not possess. Raman spectroscopy of diverse plant bacteria that are pathogenic and non-pathogenic to plants, and isolated from plants and soil, indicates the possibilities of using the method in understanding plant-bacterial interactions at the cellular level.
Collapse
Affiliation(s)
- Mathews L Paret
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3190 Maile Way, St. John Plant Sciences Building 315, Honolulu, Hawaii 96822, USA
| | | | | | | |
Collapse
|
10
|
Kamnev AA, Sadovnikova JN, Tarantilis PA, Polissiou MG, Antonyuk LP. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: a diffuse reflectance infrared fourier transform (DRIFT) spectroscopic study. MICROBIAL ECOLOGY 2008; 56:615-624. [PMID: 18437449 DOI: 10.1007/s00248-008-9381-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 03/05/2008] [Accepted: 03/18/2008] [Indexed: 05/26/2023]
Abstract
For the rhizobacterium Azospirillum brasilense, the optimal nutritional range of C:N ratios corresponds to the presence of malate (ca. 3 to 5 g l(-1) of its sodium salt) and ammonium (ca. 0.5 to 3 g l(-1) of NH4Cl) as preferred carbon and nitrogen sources, respectively. This microaerophilic aerotactic bacterium is known to have a narrow optimal oxygen concentration range of ca. 3 to 5 microM, which is 1.2% to 2% of oxygen solubility in air-saturated water under normal conditions. In this work, the effects of stress conditions (bound-nitrogen deficiency related to a high C:N ratio in the medium; excess of oxygen) on aerobically grown A. brasilense Sp245, a native wheat-associated endophyte, were investigated in the absence and presence of wheat germ agglutinin (WGA, plant stress protein and a molecular host-plant signal for the bacterium) using FTIR spectroscopy of whole cells in the diffuse reflectance mode (DRIFT). The nutritional stress resulted in the appearance of prominent spectroscopic signs of poly-3-hydroxybutyrate (PHB) accumulation in the bacterial cells; in addition, splitting of the amide I band related to bacterial cellular proteins indicated some stress-induced alterations in their secondary structure components. Similar structural changes were observed in the presence of nanomolar WGA both in stressed A. brasilense cells and under normal nutritional conditions. Comparative analysis of the data obtained and the relevant literature data indicated that the stress conditions applied (which resulted in the accumulation of PHB involved in stress tolerance) and/or the presence of nanomolar concentrations of WGA induced synthesis of bacterial cell-surface (glyco)proteins rich in beta-structures, that could be represented by hemagglutinin and/or porin.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| | | | | | | | | |
Collapse
|
11
|
Kamnev AA, Tugarova AV, Antonyuk LP. Endophytic and epiphytic strains of Azospirillum brasilense respond differently to heavy metal stress. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707060239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Kulikov LA, Perfiliev YD, Polissiou MG, Gardiner PHE. Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. Anal Chim Acta 2006; 573-574:445-52. [PMID: 17723559 DOI: 10.1016/j.aca.2006.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/19/2006] [Accepted: 04/20/2006] [Indexed: 11/20/2022]
Abstract
In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with 57Co emission Mössbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cappitelli F, Vicini S, Piaggio P, Abbruscato P, Princi E, Casadevall A, Nosanchuk JD, Zanardini E. Investigation of Fungal Deterioration of Synthetic Paint Binders Using Vibrational Spectroscopic Techniques. Macromol Biosci 2005; 5:49-57. [PMID: 15635715 DOI: 10.1002/mabi.200400134] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The deterioration of synthetic polymers caused by biological process is usually evaluated by visual inspection and measuring physical effects. In contrast to this approach, we have applied vibrational spectroscopies to study the biodegradation of the synthetic resins. 29 synthetic resins used as paint binding media, including acrylic, alkyd and poly(vinyl acetate) polymers, were examined for potential susceptibility to fungal degradation using the standard method ASTM G21-96(2002). In addition, the degraded resins were analysed by Raman spectroscopy, FT-IR and FT-IR photoacoustic spectroscopy. Almost all the acrylic resins studied proved to be resistant to microbial attack, while all alkyd resins and some poly(vinyl acetates) turned out to be biodegradable. Within a few days of inoculation Aspergillus niger was the most copious fungus on the biodegraded resins. A comparison of the IR and Raman spectra of control and biodegraded resins did not show any differences, but photoacoustic spectroscopy revealed additional bands for the fungal-degraded resins, consistent with the presence of fungal-derived substances. The additional bands in the photoacoustic spectra were due to the presence of Aspergillus niger and melanin, a fungal pigment. Since IR photoacoustic spectroscopy can be also a suitable technique for the chemical characterisation of binding media, the same spectroscopic analysis can be employed to both characterise the material and obtain evidence for fungal colonization. Microbial growth on Sobral 1241ML (alkyd resin) after 28 d (growth rating 4) compared with the non-inoculated resin.
Collapse
Affiliation(s)
- Francesca Cappitelli
- Department of Food Science and Microbiology, Agricultural Faculty, University of Milan, Via Celoria 2, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PHE. Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J Trace Elem Med Biol 2005; 19:91-5. [PMID: 16240678 DOI: 10.1016/j.jtemb.2005.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The plant-associated nitrogen-fixing rhizobacterium Azospirillum brasilense attracts world-wide attention owing to its plant growth-promoting activities. Among hundreds of its strains known up to date, wild-type strain Sp245 has been proved to be capable of colonising both the plant-root interior and exterior (i.e. a facultative endophyte), whereas others are non-endophytes colonising the root surface only. Thus, the different ecological niches occupied by these strains in the rhizosphere suggest that their responses to environmental conditions might differ as well. In this study, responses of A. brasilense strains Sp245 and Sp7 to several heavy metals (Co2+, Cu2+, Zn2+), present in the medium at tolerable concentrations (up to 0.2 mmol/l) and taken up by the bacteria, were compared. Fourier transform infrared (FTIR) spectroscopy was used for controlling the compositional features of whole cells. The results obtained show that in strain Sp7 (non-endophyte) the heavy metals induced an enhanced accumulation of polyester compounds (poly-3-hydroxybutyrate; PHB). In contrast, the response of the endophytic strain Sp245 to heavy metal uptake was found to be much less pronounced. These dissimilarities in their behaviour may be caused by different adaptation abilities of these strains to stress conditions owing to their different ecological status. It was also found that adding 0.2 mmol/l Cu2+ or Cd2+ in the culture medium resulted in noticeably reducing the levels of indole-3-acetic acid (IAA, auxin) produced by both the strains of the bacterium. This can directly affect the efficiency of associative plant-bacterial symbioses involving A. brasilense in heavy-metal-contaminated soil.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 2004; 50:521-77. [PMID: 15467782 DOI: 10.1139/w04-035] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents a critical and comprehensive documentation and analysis of the developments in agricultural, environmental, molecular, and physiological studies related to Azospirillum cells, and to Azospirillum interactions with plants, based solely on information published between 1997 and 2003. It was designed as an update of previous reviews (Bashan and Levanony 1990; Bashan and Holguin 1997a), with a similar scope of interest. Apart from an update and critical analysis of the current knowledge, this review focuses on the central issues of Azospirillum research today, such as, (i) physiological and molecular studies as a general model for rhizosphere bacteria; (ii) co-inoculation with other microorganisms; (iii) hormonal studies and re-consideration of the nitrogen contribution by the bacteria under specific environmental conditions; (iv) proposed Azospirillum as a non-specific plant-growth-promoting bacterium; (v) re-introduction of the "Additive Hypothesis," which suggests involvement of multiple mechanisms employed by the bacteria to affect plant growth; (vi) comment on the less researched areas, such as inoculant and pesticide research; and (vii) proposes possible avenues for the exploitation of this bacterium in environmental areas other than agriculture.Key words: Azospirillum, plant–bacteria interaction, plant-growth-promoting bacteria, PGPB, PGPR, rhizosphere bacteria.
Collapse
Affiliation(s)
- Yoav Bashan
- Environmental Microbiology Group, Center for Biological Research of the Northwest (CIB), P.O. Box 128, La Paz, B.C.S 23000, Mexico.
| | | | | |
Collapse
|
16
|
|
17
|
Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(02)00021-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|