1
|
|
2
|
Westermann CM, Dorland L, van Diggelen OP, Schoonderwoerd K, Bierau J, Waterham HR, van der Kolk JH. Decreased oxidative phosphorylation and PGAM deficiency in horses suffering from atypical myopathy associated with acquired MADD. Mol Genet Metab 2011; 104:273-8. [PMID: 21843962 DOI: 10.1016/j.ymgme.2011.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 11/27/2022]
Abstract
Earlier research on ten horses suffering from the frequently fatal disorder atypical myopathy showed that MADD (multiple acyl-CoA dehydrogenase deficiency) is the biochemical derangement behind atypical myopathy. From five horses that died as a result of this disease and seven healthy control horses, urine and plasma were collected ante mortem and muscle biopsies were obtained immediately post-mortem (2 patients and 7 control horses), to analyse creatine, purine and carbohydrate metabolism as well as oxidative phosphorylation. In patients, the mean creatine concentration in urine was increased 17-fold and the concentration of uric acid approximately 4-fold, compared to controls. The highest degree of depletion of glycogen was observed in the patient with the most severe myopathy clinically. In this patient, glycolysis was more active than in the other patients and controls, which may explain this depletion. One patient demonstrated very low phosphoglycerate mutase (PGAM) activity, less than 10% of reference values. Most respiratory chain complex activity in patients was 20-30% lower than in control horses, complex II activity was 42% lower than normal, and one patient had severely decrease ATP-synthase activity, more than 60% lower than in control horses. General markers for myopathic damage are creatine kinase (CK) and lactic acid in plasma, and creatine and uric acid in urine. To obtain more information about the cause of the myopathy analysis of carbohydrate, lipid and protein metabolism as well as oxidative phosphorylation is advised. This study expands the diagnostic possibilities of equine myopathies.
Collapse
Affiliation(s)
- C M Westermann
- Department of Equine Sciences, Medicine Section, Faculty of Veterinary Medicine, Yalelaan 114, 3584 CM, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
3
|
Bruno C, van Diggelen OP, Cassandrini D, Gimpelev M, Giuffrè B, Donati MA, Introvini P, Alegria A, Assereto S, Morandi L, Mora M, Tonoli E, Mascelli S, Traverso M, Pasquini E, Bado M, Vilarinho L, van Noort G, Mosca F, DiMauro S, Zara F, Minetti C. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology 2005; 63:1053-8. [PMID: 15452297 DOI: 10.1212/01.wnl.0000138429.11433.0d] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glycogen storage disease type IV (GSD-IV) is a clinically heterogeneous autosomal recessive disorder due to glycogen branching enzyme (GBE) deficiency and resulting in the accumulation of an amylopectin-like polysaccharide. The typical presentation is liver disease of childhood, progressing to lethal cirrhosis. The neuromuscular form of GSD-IV varies in onset (perinatal, congenital, juvenile, or adult) and severity. OBJECTIVE To identify the molecular bases of different neuromuscular forms of GSD-IV and to establish possible genotype/phenotype correlations. METHODS Eight patients with GBE deficiency had different neuromuscular presentations: three had fetal akinesia deformation sequence (FADS), three had congenital myopathy, one had juvenile myopathy, and one had combined myopathic and hepatic features. In all patients, the promoter and the entire coding region of the GBE gene at the RNA and genomic level were sequenced. RESULTS Nine novel mutations were identified, including nonsense, missense, deletion, insertion, and splice-junction mutations. The three cases with FADS were homozygous, whereas all other cases were compound heterozygotes. CONCLUSIONS This study expands the spectrum of mutations in the GBE gene and confirms that the neuromuscular presentation of GSD-IV is clinically and genetically heterogeneous.
Collapse
Affiliation(s)
- C Bruno
- Neuromuscular Disease Unit, Department of Pediatrics, University of Genova, Istituto Giannina Gaslini, Largo G. Gaslini 5, I-16147 Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Carbohydrate metabolism in the liver is responsible for plasma glucose homeostasis. Liver glycogen storage diseases are metabolic disorders which result in abnormal storage amounts and/or forms of glycogen, and often (but not always) have hepatomegaly and hypoglycaemia as presenting features. To understand the clinical complexity of the glycogen storage diseases, it is necessary to understand the properties and regulation of the proteins involved in glycogen metabolism. Advances in treatment have greatly improved metabolic control and hence the quality of life and survival. However, the lack of understanding of the molecular basis of some of the clinical features of glycogen storage diseases makes it difficult logically to devise optimal treatment regimens to prevent some of the long-term complications. Recently, molecular biology has greatly advanced our understanding of the proteins and genes involved in liver glycogen metabolism and has led to better and less invasive methods of diagnosis of these disorders.
Collapse
Affiliation(s)
- A Burchell
- Department of Obstetrics & Gynaecology, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK
| |
Collapse
|
5
|
Schröder JM, May R, Shin YS, Sigmund M, Nase-Hüppmeier S. Juvenile hereditary polyglucosan body disease with complete branching enzyme deficiency (type IV glycogenosis). Acta Neuropathol 1993; 85:419-30. [PMID: 7683169 DOI: 10.1007/bf00334454] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyglucosan body diseases in adults, contrary to infantile cases (Andersen's disease or type IV glycogenosis or amylopectinosis), are usually not associated with a significant deficiency of the branching enzyme (= amylo-1,4-1,6 transglucosidase). We, therefore, report on a 19-year-old male with complete branching enzyme deficiency presenting with severe myopathy, dilative cardiomyopathy, heart failure, dysmorphic features, and subclinical neuropathy. His 14-year-old brother had similar symptoms and was erroneously classified by a previous muscle biopsy as having central core disease but could later be identified as also having polyglucosan body myopathy. The skeletal muscle, endomyocardiac, and sural nerve biopsies as well as the autopsy revealed extraordinarily severe deposits of polyglucosan bodies not only in striated and smooth muscle fibers, but also in histiocytes, fibroblasts, perineurial cells, axons and astrocytes. Occasional paracrystalline mitochondrial inclusions were also noted. Thus, this patient represents to our knowledge the first juvenile, familial case of polyglucosan body disease with total branching enzyme deficiency and extensive polyglucosan body storage.
Collapse
Affiliation(s)
- J M Schröder
- Institut für Neuropathologie, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | |
Collapse
|
6
|
Lossos A, Barash V, Soffer D, Argov Z, Gomori M, Ben-Nariah Z, Abramsky O, Steiner I. Hereditary branching enzyme dysfunction in adult polyglucosan body disease: a possible metabolic cause in two patients. Ann Neurol 1991; 30:655-62. [PMID: 1763891 DOI: 10.1002/ana.410300505] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe 2 unrelated patients with adult polyglucosan body disease (APBD) diagnosed by sural nerve biopsy. Both patients were offspring of consanguineous marriages. They presented clinically with late onset pyramidal tetraparesis, micturition difficulties, peripheral neuropathy, and mild cognitive impairment. Magnetic resonance imaging of the brain revealed extensive white matter abnormalities in both. In search of a possible metabolic defect, we evaluated glycogen metabolism in these patients and their clinically unaffected children. Branching enzyme activity in the patients' polymorphonuclear leukocytes was about 15% of control values, whereas their children displayed values of 50 to 60%, suggesting a possible autosomal recessive mode of transmission. This is the first report of an inherited metabolic defect in patients with adult polyglucosan body disease. We suggest that branching enzyme dysfunction may be implicated in the pathogenesis of some patients with adult polyglucosan body disease.
Collapse
Affiliation(s)
- A Lossos
- Department of Neurology, Hadassah University Hospital, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Review. Clin Chem Lab Med 1991. [DOI: 10.1515/cclm.1991.29.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Poulton J, Land J. The genetics of metabolic disorders of muscle. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1990; 4:621-64. [PMID: 2268229 DOI: 10.1016/s0950-351x(05)80070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
|
10
|
Servidei S, Riepe RE, Langston C, Tani LY, Bricker JT, Crisp-Lindgren N, Travers H, Armstrong D, DiMauro S. Severe cardiopathy in branching enzyme deficiency. J Pediatr 1987; 111:51-6. [PMID: 3474393 DOI: 10.1016/s0022-3476(87)80341-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A 7 1/2-year-old girl had exercise intolerance and exertional dyspnea. Four months later, congestive heart failure developed, with recurrent chylous pleural effusions, and she died at age 8 1/2 years. Endomyocardial biopsy tissue showed abundant PAS-positive, diastase-resistant cytoplasmic deposits. Similar inclusions were seen in muscle, skin, and liver specimens. Postmortem studies showed that the abnormal polysaccharide was especially abundant in heart and muscle, but was also present in all other tissues, including the central nervous system. Glycogen isolated from heart, muscle, and spinal cord showed a shift of the iodine spectrum toward higher than normal wavelengths. Branching enzyme activity was lacking in the muscle biopsy specimen and in all postmortem tissues; glycogenolytic enzymes had normal activities. These studies show that cardiomyopathy can be the first symptom of generalized branching enzyme deficiency and that the degree of accumulation of the abnormal polysaccharide may vary in different tissues.
Collapse
|
11
|
Guerra AS, van Diggelen OP, Carneiro F, Tsou RM, Simoes S, Santos NT. A juvenile variant of glycogenosis IV (Andersen disease). Eur J Pediatr 1986; 145:179-81. [PMID: 3464425 DOI: 10.1007/bf00446059] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An unusual patient with Andersen disease (glycogenosis type IV) is presented, with only relatively mild clinical symptoms at the age of 8 years. The patient has a profound deficiency of glycogen-branching enzyme.
Collapse
|
12
|
Ferguson IT, Mahon M, Cumming WJ. An adult case of Andersen's disease--Type IV glycogenosis. A clinical, histochemical, ultrastructural and biochemical study. J Neurol Sci 1983; 60:337-51. [PMID: 6579239 DOI: 10.1016/0022-510x(83)90144-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A middle-aged man presented with a thirty-year history of progressive, asymmetrical limb-girdle weakness. The muscle biopsy revealed a vacuolar myopathy. The vacuoles which did not disrupt the fibre outline, lay in a subsarcolemmal position. They were PAS-positive and the material was partially resistant to diastase digestion. Electron microscopy showed the vacuoles to contain free unbound glycogen with filamentous material. Leucocyte brancher enzyme activity was normal but the muscle activity was less than half the control value. Histochemical and ultrastructural characteristics of the storage material resemble the amylopectin polysaccharide deposits seen in childhood Type IV glycogenosis.
Collapse
|
13
|
Brown DH, Brown BI. Studies of the residual glycogen branching enzyme activity present in human skin fibroblasts from patients with type IV glycogen storage disease. Biochem Biophys Res Commun 1983; 111:636-43. [PMID: 6220706 DOI: 10.1016/0006-291x(83)90354-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human skin fibroblasts from patients with Type IV glycogen storage disease, in which there is a demonstrable deficiency of glycogen branching enzyme, were shown to be able to synthesize [14C]glycogen containing [14C]glucose at branch points when sonicates containing endogenous glycogen synthase a were incubated with UDP[14C]glucose. The branch point content of the glycogen synthesized by the Type IV cells was essentially the same as that formed by normal cells, but the total synthetic capacity of the Type IV cells was lower. A new assay for the branching enzyme using glycogen synthase as the indicator enzyme has been developed. Using this assay it has been shown that the residual branching enzyme of affected children and of their heterozygote parents is less easily inhibited by an IgG antibody raised in rabbits against the normal human liver enzyme than is the branching enzyme of normal fibroblasts.
Collapse
|
14
|
Zimmerman CP, Gold AM. Glycogen branching enzyme in Lafora myoclonus epilepsy. BIOCHEMICAL MEDICINE 1982; 28:83-93. [PMID: 6216884 DOI: 10.1016/0006-2944(82)90058-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Grabowski GA, Desnick RJ. Prenatal diagnosis of inherited metabolic diseases; principles, pitfalls, and prospects. Methods Cell Biol 1982; 26:95-179. [PMID: 6752654 DOI: 10.1016/s0091-679x(08)61365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
|
17
|
Cox RP, King JC. Gene expression in cultured mammalian cells. INTERNATIONAL REVIEW OF CYTOLOGY 1976; 43:281-351. [PMID: 4408 DOI: 10.1016/s0074-7696(08)60071-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Ishihara T, Uchino F, Adachi H, Takahashi M, Watanabe S, Tsunetoshi S, Fuji T, Ikee Y. Type IV glycogenosis - a study of two cases. ACTA PATHOLOGICA JAPONICA 1975; 25:613-33. [PMID: 1060362 DOI: 10.1111/j.1440-1827.1975.tb01995.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liver biopsy materials of two siblings with type IV glycogenosis were studied by light and electron microscopy. Biochemical analysis was added using autopsy material in one of the two cases. Two kinds of polysaccharides were noted not only in the cardiac muscle, skeletal muscles, smooth muscles and reticuloendothelial cells, but also in the neutrophils and platelets. One was glycogen and the other was similar to amylopectin. Ultrastructurally, a large amount of fibrils, 60 A in width, glycogen rosettes and glycogen granules were detected in those cells. Branching glycosyltransferase deficiency was biochemically confirmed in one case examined.
Collapse
|
19
|
Melancon SB, Khachadurian AK, Nadler HL, Brown BI. Metabolic and biochemical studies in fructose 1,6-diphosphatase deficiency. J Pediatr 1973; 82:650-7. [PMID: 4349063 DOI: 10.1016/s0022-3476(73)80591-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Krivit W, Sharp HL, Lee JC, Larner J, Edstrom R. Low molecular weight glycogen as a cause of generalized glycogen storage disease. Am J Med 1973; 54:88-97. [PMID: 4345263 DOI: 10.1016/0002-9343(73)90087-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Zellweger H, Mueller S, Ionasescu V, Schochet SS, McCormick WF. Glycogenosis. IV. A new cause of infantile hypotonia. J Pediatr 1972; 80:842-4. [PMID: 4502299 DOI: 10.1016/s0022-3476(72)80144-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|