1
|
Moura S, Hartl I, Brumovska V, Calabrese PP, Yasari A, Striedner Y, Bishara M, Mair T, Ebner T, Schütz GJ, Sevcsik E, Tiemann-Boege I. Exploring FGFR3 Mutations in the Male Germline: Implications for Clonal Germline Expansions and Paternal Age-Related Dysplasias. Genome Biol Evol 2024; 16:evae015. [PMID: 38411226 PMCID: PMC10898338 DOI: 10.1093/gbe/evae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Delayed fatherhood results in a higher risk of inheriting a new germline mutation that might result in a congenital disorder in the offspring. In particular, some FGFR3 mutations increase in frequency with age, but there are still a large number of uncharacterized FGFR3 mutations that could be expanding in the male germline with potentially early- or late-onset effects in the offspring. Here, we used digital polymerase chain reaction to assess the frequency and spatial distribution of 10 different FGFR3 missense substitutions in the sexually mature male germline. Our functional assessment of the receptor signaling of the variants with biophysical methods showed that 9 of these variants resulted in a higher activation of the receptor´s downstream signaling, resulting in 2 different expansion behaviors. Variants that form larger subclonal expansions in a dissected postmortem testis also showed a positive correlation of the substitution frequency with the sperm donor's age, and a high and ligand-independent FGFR3 activation. In contrast, variants that measured high FGFR3 signaling and elevated substitution frequencies independent of the donor's age did not result in measurable subclonal expansions in the testis. This suggests that promiscuous signal activation might also result in an accumulation of mutations before the sexual maturation of the male gonad with clones staying relatively constant in size throughout time. Collectively, these results provide novel insights into our understanding of the mutagenesis of driver mutations and their resulting mosaicism in the male germline with important consequences for the transmission and recurrence of associated disorders.
Collapse
Affiliation(s)
- Sofia Moura
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, USA
| | - Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Peter P Calabrese
- Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Atena Yasari
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria
| | | | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | |
Collapse
|
2
|
Cheung MS, Cole TJ, Arundel P, Bridges N, Burren CP, Cole T, Davies JH, Hagenäs L, Högler W, Hulse A, Mason A, McDonnell C, Merker A, Mohnike K, Sabir A, Skae M, Rothenbuhler A, Warner J, Irving M. Growth reference charts for children with hypochondroplasia. Am J Med Genet A 2024; 194:243-252. [PMID: 37814549 DOI: 10.1002/ajmg.a.63431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Hypochondroplasia (HCH) is a rare skeletal dysplasia causing mild short stature. There is a paucity of growth reference charts for this population. Anthropometric data were collected to generate height, weight, and head circumference (HC) growth reference charts for children with a diagnosis of HCH. Mixed longitudinal anthropometric data and genetic analysis results were collected from 14 European specialized skeletal dysplasia centers. Growth charts were generated using Generalized Additive Models for Location, Scale, and Shape. Measurements for height (983), weight (896), and HC (389) were collected from 188 (79 female) children with a diagnosis of HCH aged 0-18 years. Of the 84 children who underwent genetic testing, a pathogenic variant in FGFR3 was identified in 92% (77). The data were used to generate growth references for height, weight, and HC, plotted as charts with seven centiles from 2nd to 98th, for ages 0-4 and 0-16 years. HCH-specific growth charts are important in the clinical care of these children. They help to identify if other comorbidities are present that affect growth and development and serve as an important benchmark for any prospective interventional research studies and trials.
Collapse
Affiliation(s)
| | - Tim J Cole
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Paul Arundel
- Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Nicola Bridges
- Department of Paediatric Endocrinology, Chelsea and Westminster Hospital, London, UK
| | - Christine P Burren
- Paediatric Endocrinology and Diabetes Department, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Trevor Cole
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Justin Huw Davies
- Regional Centre for Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Lars Hagenäs
- Paediatric Endocrine Unit, Paediatric Clinic, Karolinska Hospital, Stockholm, Sweden
| | - Wolfgang Högler
- Institute of Metabolism & Systems Research, University of Birmingham, Birmingham, UK
| | - Anthony Hulse
- Evelina Children's Hospital, St. Thomas' Hospital, London, UK
| | - Avril Mason
- Department of Endocrinology (E.M.F.), Queen Elizabeth University Hospital, Glasgow, UK
| | - Ciara McDonnell
- Department of Paediatric Endocrinology & Diabetes, Children's Health Ireland, Dublin, Ireland
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Andrea Merker
- Department of Women and Child Health, Karolinska Institute, Stockholm, Sweden
| | - Klaus Mohnike
- Department of Paediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ataf Sabir
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Mars Skae
- Department of Pediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Anya Rothenbuhler
- Department of Endocrinology and Diabetology for Children, Bicetre Paris-Saclay University Hospital, Le Kremlin Bicetre, France
| | - Justin Warner
- Noah's Ark Children's Hospital for Wales, University Hospital of Wales, Cardiff, UK
| | - Melita Irving
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Kim HY, Lee YA, Shin CH, Cho TJ, Ko JM. Clinical Manifestations and Outcomes of 20 Korean Hypochondroplasia Patients with the FGFR3 N540K variant. Exp Clin Endocrinol Diabetes 2023; 131:123-131. [PMID: 36442838 DOI: 10.1055/a-1988-9734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hypochondroplasia is a skeletal dysplasia caused by activating pathologic variants of FGFR3. The N540K variant accounts for 60-70% of reported cases and is associated with severe manifestations. Here, we analyze the clinical manifestations and outcomes of Korean patients with hypochondroplasia harboring the FGFR3 N540K variant. METHODS Medical records of 20 unrelated patients with genetically confirmed N540K-related hypochondroplasia were retrospectively reviewed. All individuals were diagnosed with hypochondroplasia by Sanger sequencing for FGFR3, or target-panel sequencing for skeletal dysplasia. The effectiveness of growth hormone therapy was analyzed in 16 patients treated with growth hormones. RESULTS Among 20 patients (7 men, 13 women), the mean age at first visit was 3.5±1.0 years, and the mean follow-up duration was 6.8±0.6 years. The patients presented with a short stature and/or short limbs. Genu varum, macrocephaly, and developmental delay were observed in 11 (55.0%), 9 (45.0%), and 5 (25.0%) patients, respectively. Of the 12 patients who underwent neuroimaging, five (41.7%) showed abnormal findings (one required operation for obstructive hydrocephalus). Among 16 growth-hormone-treated patients (two were growth-hormone deficient), the increase in height standard deviation scores was significant after a mean 5.4±0.7 years of treatment (+0.6 and+1.8 using growth references for healthy controls and achondroplasia children, respectively). Four patients underwent surgical limb lengthening at a mean age of 8.8±3.3 years. CONCLUSIONS Neurodevelopmental abnormalities are frequently observed in patients with N540K-related hypochondroplasia. Close monitoring of skeletal manifestations and neurodevelopmental status is necessary for hypochondroplasia.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-Joon Cho
- Department of Orthopaedics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
4
|
Traversari M, Da Via S, Petrella E, Feeney RNM, Benazzi S. A case of dwarfism in 6th century Italy: Bioarchaeological assessment of a hereditary disorder. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2020; 30:110-117. [PMID: 32619963 DOI: 10.1016/j.ijpp.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The skeletal remains of a short-statured individual (T17) are described and a differential diagnosis performed to determine the etiology of the condition. MATERIALS An individual considered pathologically short in stature was discovered in the burial site of Piazza XX Settembre, Modena (northern Italy). METHODS Morphological and morphometric analyses were performed, and T17 was compared to dwarfs from other localities and periods and to the adult female population from the same site. A paleopathological survey was undertaken to assess the degree of the skeletal elements of T17 were affected. RESULTS T17 was a female, 20-30 years of age at death, with a stature of 128 cm and disproportionate dwarfism associated with congenital skeletal dysplasia. CONCLUSIONS T17 likely affected by a form of hypochondroplasia. SIGNIFICANCE Anatomical consequences of hypochondroplasia are presented, and the timeframe and associated burial goods suggest a 6th-century Lombard short stature belonging to one of the earliest Lombard settlements in Italy. SUGGESTIONS FOR FURTHER RESEARCH Future genetic analysis would resolve if the mutation in the type 3 fibroblast growth factor receptor (FGFR3) is present in the remains of T17; however, it is not exclusivly linked to hypochondroplasia.
Collapse
Affiliation(s)
- Mirko Traversari
- Laboratories of Physical Anthropology and Ancient DNA, Department of Cultural Heritage, University of Bologna, via Degli Ariani 1, 48121, Ravenna, Italy.
| | - Silvia Da Via
- Laboratories of Physical Anthropology and Ancient DNA, Department of Cultural Heritage, University of Bologna, via Degli Ariani 1, 48121, Ravenna, Italy
| | - Enrico Petrella
- Department of Radiology, AUSL Romagna, Morgagni-Pierantoni City Hospital, via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Robin N M Feeney
- UCD School of Medicine, Health Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefano Benazzi
- Laboratories of Physical Anthropology and Ancient DNA, Department of Cultural Heritage, University of Bologna, via Degli Ariani 1, 48121, Ravenna, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Yao G, Wang G, Wang D, Su G. Identification of a novel mutation of FGFR3 gene in a large Chinese pedigree with hypochondroplasia by next-generation sequencing: A case report and brief literature review. Medicine (Baltimore) 2019; 98:e14157. [PMID: 30681580 PMCID: PMC6358355 DOI: 10.1097/md.0000000000014157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Hypochondroplasia (HCH) is the mildest form of chondrodysplasia characterized by disproportionate short stature, short extremities, and variable lumbar lordosis. It is caused by mutations in fibroblast growth factor receptor 3 (FGFR3) gene. Up to date, at least thirty mutations of FGFR3 gene have been found to be related to HCH. However, mutational screening of the FGFR3 gene is still far from completeness. Identification of more mutations is particularly important in diagnosis of HCH and will gain more insights into the molecular basis for the pathogenesis of HCH. PATIENT CONCERNS A large Chinese family consisting of 53 affected individuals with HCH phenotypes was examined. DIAGNOSES A novel missense mutation, c.1052C>T, in FGFR3 gene was identified in a large Chinese family with HCH. On the basis of this finding and clinical manifestations, the final diagnosis of HCH was made. INTERVENTIONS Next-generation sequencing (NGS) of DNA samples was performed to detect the mutation in the chondrodysplasia-related genes on the proband and her parents, which was confirmed by Sanger sequencing in the proband and most of other living affected family members. OUTCOMES A novel missense mutation, c.1052C>T, in the extracellular, ligand-binding domain of FGFR3 was identified in a large Chinese family with HCH. This heterozygous mutation results in substitution of serine for phenylalanine at amino acid 351 (p.S351F) and co-segregates with the phenotype in this family. Molecular docking analysis reveals that this unique FGFR3 mutation results in an enhancement of ligand-binding affinity between FGFR3 and its main ligand, fibroblast growth factor 9. LESSONS This novel mutation is the first mutation displaying an increase in ligand-binding affinity, therefore it may serve as a model to investigate ligand-dependent activity of FGF-FGFR complex. Our data also expanded the mutation spectrum of FGFR3 gene and facilitated clinic diagnosis and genetic counseling for this family with HCH.
Collapse
Affiliation(s)
- Guixiang Yao
- Institute of Translational Medicine, Jinan Central Hospital Affiliated to Shandong University
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong
| | - Guangxin Wang
- Institute of Translational Medicine, Jinan Central Hospital Affiliated to Shandong University
| | - Dawei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Guohai Su
- Institute of Translational Medicine, Jinan Central Hospital Affiliated to Shandong University
| |
Collapse
|
6
|
Arenas MA, Del Pino M, Fano V. FGFR3-related hypochondroplasia: longitudinal growth in 57 children with the p.Asn540Lys mutation. J Pediatr Endocrinol Metab 2018; 31:1279-1284. [PMID: 30335613 DOI: 10.1515/jpem-2018-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022]
Abstract
Background Children with hypochondroplasia (HCH), who have FGFR3 mutations c.1620C>A or c.1620C>G (p.Asn540Lys) appear to have a more severe phenotype than those with HCH without these mutations. We describe the change in height, leg length and body proportions in a retrospective cohort of children with HCH related-p.Asn540Lys mutation and we compared them with Argentine population. Methods Anthropometric measurements were initially taken and followed up by the same observer, with standardized techniques. Sitting height/height and head circumference/height ratio were calculated as a body disproportion indicator. In order to make a comparison with the Argentine population height average, centiles of height, leg length and body proportions were estimated by the LMS method. Results The sample consisted of 57 HCH children (29 males and 28 females) between the ages of 0-18 years. The median (interquartile range) number of measurements per child was 8 (4.3, 13) for height, 7 (4, 12) for sitting height and 7.5 (4, 12.8) for head circumference. Leg length increased from 17 cm at birth to approximately 54 cm in adolescents, 25 cm shorter than the leg length in non-HCH populations. Sitting height increased from 39 cm at birth to 81 cm in adolescents, 7 cm below mean in non-HCH adolescents. Mean (range) adult height were 143.6 cm (131-154.5) and 130.8 cm (124-138) for males and females, respectively. Conclusions The disharmonic growth between the less affected trunk and the severely affected limbs determine body disproportion in HCH.
Collapse
Affiliation(s)
- María Alejandra Arenas
- Department of Growth and Development, Garrahan Hospital, Combate de los Pozos 1881 (1245), Buenos Aires, Argentina, Phone: 0054 11 4122 6221, Fax: 0054 11 43085325
| | - Mariana Del Pino
- Department of Growth and Development, Garrahan Hospital, Buenos Aires, Argentina
| | - Virginia Fano
- Department of Growth and Development, Garrahan Hospital, Buenos Aires, Argentina
| |
Collapse
|
7
|
Ornitz DM, Legeai-Mallet L. Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn 2017; 246:291-309. [PMID: 27987249 DOI: 10.1002/dvdy.24479] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3 revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimerization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chondrocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone growth in people with Ach and related conditions. Developmental Dynamics 246:291-309, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurence Legeai-Mallet
- Imagine Institute, Inserm U1163, Université Paris Descartes, Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
8
|
Massart F, Miccoli M, Baggiani A, Bertelloni S. Height outcome of short children with hypochondroplasia after recombinant human growth hormone treatment: a meta-analysis. Pharmacogenomics 2015; 16:1965-73. [PMID: 26555758 DOI: 10.2217/pgs.15.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypochondroplasia (HCH) is a genetic skeletal dysplasia, characterized by rhizomelic short height (Ht) with facial dysmorphology and lumbar hyperlordosis. Albeit there are concerns that HCH children may not achieve optimal long-term outcome in response to recombinant human growth hormone (rhGH), anecdotal experiences suggested at least short-term Ht improvement. After thorough search of published studies, meta-analysis of rhGH use in HCH children was performed. In 113 HCH children, rhGH administration (median 0.25 mg/kg/week) progressively improved Ht pattern with 12 months catch-up growth (p < 0.0001). Then, Ht improvement resulted constant until 36 months (p < 0.0001), but stature remained subnormal. While bone age chronologically progressed, no serious adverse events were reported. In conclusion, our meta-analysis indicates that rhGH treatment progressively improved Ht outcome of HCH subjects.
Collapse
Affiliation(s)
- Francesco Massart
- Pediatric Unit, Maternal & Infant Department, St. Chiara University Hospital of Pisa, Pisa, Italy
| | - Mario Miccoli
- Epidemiology Unit, Department of Experimental Pathology M.B.I.E., University of Pisa, 56126 Pisa PI, Italy
| | - Angelo Baggiani
- Epidemiology Unit, Department of Experimental Pathology M.B.I.E., University of Pisa, 56126 Pisa PI, Italy
| | - Silvano Bertelloni
- Pediatric Unit, Maternal & Infant Department, St. Chiara University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Regelmann MO, Rapaport R. Growth hormone treatment in patients with hypochondroplasia. Horm Res Paediatr 2015; 82:353-4. [PMID: 25531227 DOI: 10.1159/000369169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Molly O Regelmann
- Division of Pediatric Endocrinology and Diabetes, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, N.Y., USA
| | | |
Collapse
|
10
|
Kant SG, Cervenkova I, Balek L, Trantirek L, Santen GWE, de Vries MC, van Duyvenvoorde HA, van der Wielen MJR, Verkerk AJMH, Uitterlinden AG, Hannema SE, Wit JM, Oostdijk W, Krejci P, Losekoot M. A novel variant of FGFR3 causes proportionate short stature. Eur J Endocrinol 2015; 172:763-70. [PMID: 25777271 DOI: 10.1530/eje-14-0945] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/16/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Mutations of the fibroblast growth factor receptor 3 (FGFR3) cause various forms of short stature, of which the least severe phenotype is hypochondroplasia, mainly characterized by disproportionate short stature. Testing for an FGFR3 mutation is currently not part of routine diagnostic testing in children with short stature without disproportion. DESIGN A three-generation family A with dominantly transmitted proportionate short stature was studied by whole-exome sequencing to identify the causal gene mutation. Functional studies and protein modeling studies were performed to confirm the pathogenicity of the mutation found in FGFR3. We performed Sanger sequencing in a second family B with dominant proportionate short stature and identified a rare variant in FGFR3. METHODS Exome sequencing and/or Sanger sequencing was performed, followed by functional studies using transfection of the mutant FGFR3 into cultured cells; homology modeling was used to construct a three-dimensional model of the two FGFR3 variants. RESULTS A novel p.M528I mutation in FGFR3 was detected in family A, which segregates with short stature and proved to be activating in vitro. In family B, a rare variant (p.F384L) was found in FGFR3, which did not segregate with short stature and showed normal functionality in vitro compared with WT. CONCLUSIONS Proportionate short stature can be caused by a mutation in FGFR3. Sequencing of this gene can be considered in patients with short stature, especially when there is an autosomal dominant pattern of inheritance. However, functional studies and segregation studies should be performed before concluding that a variant is pathogenic.
Collapse
Affiliation(s)
- Sarina G Kant
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Iveta Cervenkova
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lukas Balek
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lukas Trantirek
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gijs W E Santen
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Martine C de Vries
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hermine A van Duyvenvoorde
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michiel J R van der Wielen
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Annemieke J M H Verkerk
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - André G Uitterlinden
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sabine E Hannema
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jan M Wit
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Wilma Oostdijk
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Pavel Krejci
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Monique Losekoot
- Department of Clinical GeneticsLeiden University Medical Center, PO Box 9600, 2300RC, Leiden, The NetherlandsDepartment of BiologyFaculty of MedicineCentral European Institute of TechnologyMasaryk University, Brno, Czech RepublicDepartment of PediatricsLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineErasmus Medical Center, Rotterdam, The NetherlandsDepartment of Orthopaedic SurgeryDavid Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
11
|
Xue Y, Sun A, Mekikian PB, Martin J, Rimoin DL, Lachman RS, Wilcox WR. FGFR3 mutation frequency in 324 cases from the International Skeletal Dysplasia Registry. Mol Genet Genomic Med 2014; 2:497-503. [PMID: 25614871 PMCID: PMC4303219 DOI: 10.1002/mgg3.96] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 11/27/2022] Open
Abstract
Fibroblast growth factor receptor 3 (FGFR3) is the only gene known to cause achondroplasia (ACH), hypochondroplasia (HCH), and thanatophoric dysplasia types I and II (TD I and TD II). A second, as yet unidentified, gene also causes HCH. In this study, we used sequencing analysis to determine the frequency of FGFR3 mutations for each phenotype in 324 cases from the International Skeletal Dysplasia Registry (ISDR). Our data suggest that there is a considerable overlap of genotype and phenotype between ACH and HCH. Thus, it is important to test for mutations found in either disorder when ACH or HCH is suspected. Only two of 29 cases with HCH did not have an identified mutation in FGFR3, much less than previously reported. We recommend testing other mutations in FGFR3, instead of just the common HCH mutation, p.Asn540Lys. The mutation frequency for TD I and TD II in the largest series of cases to date are also reported. This study provides valuable information on FGFR3 mutation frequency of four skeletal dysplasias for clinical diagnostic laboratories and clinicians.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Human Genetics, Emory University Atlanta, Georgia, 30322
| | - Angela Sun
- Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, California
| | - P Betty Mekikian
- Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, California
| | - Jorge Martin
- Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, California
| | - David L Rimoin
- Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, California ; Department of Pediatrics, UCLA School of Medicine Los Angeles, California
| | - Ralph S Lachman
- Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, California
| | - William R Wilcox
- Department of Human Genetics, Emory University Atlanta, Georgia, 30322 ; Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, California ; Department of Pediatrics, UCLA School of Medicine Los Angeles, California
| |
Collapse
|
12
|
Flechtner I, Lambot-Juhan K, Teissier R, Colmenares A, Baujat G, Beltrand J, Ajaltouni Z, Pauwels C, Pinto G, Samara-Boustani D, Simon A, Thalassinos C, Le Merrer M, Cormier-Daire V, Polak M. Unexpected high frequency of skeletal dysplasia in idiopathic short stature and small for gestational age patients. Eur J Endocrinol 2014; 170:677-84. [PMID: 24536087 DOI: 10.1530/eje-13-0864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To assess the prevalence of skeletal dysplasias (SDs) in patients with idiopathic short stature (ISS) or small for gestational age (SGA) status. SETTING Rare Endocrine/Growth Diseases Center in Paris, France. DESIGN A prospective study on consecutive patients with ISS and SGA enrolled from 2004 to 2009. METHOD We used a standardized workup to classify patients into well-established diagnostic categories. Of 713 patients with ISS (n=417) or SGA status (n=296), 50.9% underwent a skeletal survey. We chose patients labeled normal or with a prepubertal slowdown of growth as a comparison group. RESULTS Diagnoses were ISS (16.9%), SGA (13.5%), normal growth (24.5%), transient growth rate slowing (17.3%), endocrine dysfunction (12%), genetic syndrome (8.9%), chronic disease (5.1%), and known SD (1.8%). SD was found in 20.9% of SGA and 21.8% ISS patients and in only 13.2% in our comparison group. SD prevalence was significantly higher in the ISS group than in the comparison group, especially (50%) for patients having at least one parent whose height was <-2 SDS. Dyschondrosteosis and hypochondroplasia were the most frequently identified SD, and genetic anomaly was found in 61.5 and 30% respectively. Subtle SD was found equally in the three groups and require long-term growth follow-up to evaluate the impact on final height. CONCLUSION SD may explain more than 20% of cases of growth retardation ascribed to ISS or SGA, and this proportion is higher when parental height is <-2 SDS. A skeletal survey should be obtained in patients with delayed growth in a context of ISS or SGA.
Collapse
MESH Headings
- Adolescent
- Bone Diseases, Developmental/epidemiology
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/physiopathology
- Bone and Bones/abnormalities
- Bone and Bones/physiopathology
- Child
- Child, Preschool
- Cohort Studies
- Dwarfism/epidemiology
- Dwarfism/genetics
- Dwarfism/physiopathology
- Family Health
- Female
- Fetal Growth Retardation/epidemiology
- Fetal Growth Retardation/genetics
- Fetal Growth Retardation/physiopathology
- France/epidemiology
- Genetic Variation
- Growth Disorders/epidemiology
- Growth Disorders/etiology
- Growth Disorders/genetics
- Growth Disorders/physiopathology
- Hospitals, Pediatric
- Hospitals, Teaching
- Humans
- Infant
- Infant, Small for Gestational Age
- Limb Deformities, Congenital/epidemiology
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/physiopathology
- Lordosis/epidemiology
- Lordosis/genetics
- Lordosis/physiopathology
- Male
- Osteochondrodysplasias/epidemiology
- Osteochondrodysplasias/genetics
- Osteochondrodysplasias/physiopathology
- Prevalence
- Prospective Studies
- Referral and Consultation
Collapse
Affiliation(s)
- I Flechtner
- Pediatric Endocrinology, Gynecology and Diabetology, AP-HP, Imagine Institute Affiliate, Centre de Référence des Maladies Endocriniennes Rares
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Detection of a de novo Y278C mutation in FGFR3 in a pregnancy with severe fetal hypochondroplasia: Prenatal diagnosis and literature review. Taiwan J Obstet Gynecol 2013; 52:580-5. [DOI: 10.1016/j.tjog.2013.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 11/22/2022] Open
|
14
|
Rothenbuhler A, Linglart A, Piquard C, Bougnères P. A pilot study of discontinuous, insulin-like growth factor 1-dosing growth hormone treatment in young children with FGFR3 N540K-mutated hypochondroplasia. J Pediatr 2012; 160:849-53. [PMID: 22137367 DOI: 10.1016/j.jpeds.2011.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/14/2011] [Accepted: 10/18/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To assess the growth promoting effect of a recombinant growth hormone (rGH) treatment protocol adjusted on insulin-like growth factor 1 (IGF-1) dosing in children affected by the most severe forms of FGFR3 N540K-mutated hypochondroplasia. STUDY DESIGN Midterm results of an open-label, single-center, nonrandomized, 2003-2020 pilot trial to final stature, including 6 children (mean age, 2.6 ± 0.7 years; mean height SDS, -3.0 ± 0.5) with the N540K mutation of FGFR3 gene who received an rGH dosage titrated to an IGF-1 level close to 1.5 SDS of the normal range. rGH therapy was interrupted 1 day per week, 1 month per year, and 6 months every 2 years. RESULTS The mean height SDS increased by 1.9 during the 6.1 ± 0.9-year study period, reaching -0.8 to -1.3 at age 8.7 ± 1 years. The mean±SDS baseline IGF-1 value was -1.6 ± 0.5 before rGH treatment and 1.4±0.3 during the last year of observation. The average cumulative rGH dose was 0.075 ± 0.018 mg/kg/day (range, 0.059-0.100 mg/kg/day). Trunk/leg disproportion was improved. CONCLUSION IGF-1-dosing rGH treatment durably improves growth and reduces body disproportion in children with severe forms of hypochondroplasia.
Collapse
Affiliation(s)
- Anya Rothenbuhler
- Service d'Endocrinologie Pédiatrique, Hôpitaux Universitaires Paris Sud, Paris, France
| | | | | | | |
Collapse
|
15
|
Fano V, Gravina LP, Pino MD, Chertkoff L, Barreiro C, Lejarraga H. High specificity of head circumference to recognize N540K mutation in hypochondroplasia. Ann Hum Biol 2009; 32:782-8. [PMID: 16418051 DOI: 10.1080/03014460500268481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hypochondroplasia (HCH) is a skeletal dysplasia characterized by short stature with disproportionately short arms and legs. Anthopometrics and skeletal features are very similar to achondroplasia but milder. Seventy per cent of affected individuals are heterozygous for a mutation of the FGFR3 gene. Differences in some anthropometric measurements in affected patients with and without N540K mutation were analysed. Diagnosis of the disease was made on the presence of previously standardized criteria: short stature, short limbs and three or more X-ray features. Genomic DNA was extracted from peripheral blood leukocytes by standard procedures. PCR amplification of exons 10, 13 and 15 of FGFR3 was performed. Twenty-six patients were studied (median age was 7.31, range 0.27-20.0 years). Sitting height, body proportions and head circumference (HC) were statistically different in the mutated group. Receiver Operating Characteristic (ROC) analysis was carried out in order to estimate the discriminating power of different cut-off points of HC for recognizing patients with and without the mutation. A figure of 1.86 SD for HC was found to have a sensitivity of 73.3% and specificity of 100% for detecting HCH patients with the mutation. All of them had a HC greater than 1.86?SD. These results contribute to a better characterization of the clinical-molecular relationships in HCH.
Collapse
Affiliation(s)
- Virginia Fano
- Service of Growth and Development, Hospital J. P. Garrahan, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
16
|
Harada D, Yamanaka Y, Ueda K, Tanaka H, Seino Y. FGFR3-related dwarfism and cell signaling. J Bone Miner Metab 2009; 27:9-15. [PMID: 19066716 DOI: 10.1007/s00774-008-0009-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
Affiliation(s)
- Daisuke Harada
- Department of Pediatrics, Okayama University Graduated School of Medicine and Dentistry, 2-5-1, Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Bone and cartilage and their disorders are addressed under the following headings: functions of bone; normal and abnormal bone remodeling; osteopetrosis and osteoporosis; epithelial-mesenchymal interaction, condensation and differentiation; osteoblasts, markers of bone formation, osteoclasts, components of bone, and pathology of bone; chondroblasts, markers of cartilage formation, secondary cartilage, components of cartilage, and pathology of cartilage; intramembranous and endochondral bone formation; RUNX genes and cleidocranial dysplasia (CCD); osterix; histone deacetylase 4 and Runx2; Ligand to receptor activator of NFkappaB (RANKL), RANK, osteoprotegerin, and osteoimmunology; WNT signaling, LRP5 mutations, and beta-catenin; the role of leptin in bone remodeling; collagens, collagenopathies, and osteogenesis imperfecta; FGFs/FGFRs, FGFR3 skeletal dysplasias, craniosynostosis, and other disorders; short limb chondrodysplasias; molecular control of the growth plate in endochondral bone formation and genetic disorders of IHH and PTHR1; ANKH, craniometaphyseal dysplasia, and chondrocalcinosis; transforming growth factor beta, Camurati-Engelmann disease (CED), and Marfan syndrome, types I and II; an ACVR1 mutation and fibrodysplasia ossificans progressiva; MSX1 and MSX2: biology, mutations, and associated disorders; G protein, activation of adenylyl cyclase, GNAS1 mutations, McCune-Albright syndrome, fibrous dysplasia, and Albright hereditary osteodystrophy; FLNA and associated disorders; and morphological development of teeth and their genetic mutations.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
18
|
Tsai T, Gombos D, Fulton L, Conway RM, O'Brien JM, Cronin JE, Muthialu A. Retinoblastoma and hypochondroplasia: a case report of two germline mutations arising simultaneously. Ophthalmic Genet 2005; 26:107-10. [PMID: 16020314 DOI: 10.1080/13816810590967998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To report a rare case of a patient with two germline mutations arising de novo resulting in bilateral retinoblastoma and hypochondroplasia. DESIGN A brief review about retinoblastoma and hypochondroplasia; a case report with genetic mutational analysis results. CASE REPORT We report a patient manifesting the clinical features of both bilateral retinoblastoma and hypochondroplasia. Genetic analysis revealed two germline mutations, a seven base-pair deletion in exon 12 (G70313-703129del) in one allele of the retinoblastoma gene (RB1) and the N540K (C1620C > A) mutation in one allele of the fibroblast growth factor 3 (FGFR3) gene, a frequent mutation in hypochondroplasia. Neither parent has a personal or family history of cancer or ocular tumors. Only the patient's mother is short in stature, and her genetic analysis revealed no FGFR3 mutations. CONCLUSIONS Although the probability of both germline mutations occurring in a single individual is exceedingly low, the etiology and mechanism are unknown in this patient. To the best of our knowledge, this is the first report of two clinically distinct heritable germline mutations arising de novo in an individual.
Collapse
Affiliation(s)
- Tony Tsai
- Ocular Oncology Division, Department of Ophthalmology, University of California-San Francisco, UCSF Medical Center, 10 Koret Way, San Francisco, CA 94143, U.S.A
| | | | | | | | | | | | | |
Collapse
|
19
|
Riepe FG, Krone N, Sippell WG. Disproportionate stature but normal height in hypochondroplasia. Eur J Pediatr 2005; 164:397-9. [PMID: 15909185 DOI: 10.1007/s00431-005-1640-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 01/19/2005] [Indexed: 11/29/2022]
Affiliation(s)
- Felix G Riepe
- Division of Paediatric Endocrinology, Department of Paediatrics, Christian-Albrechts-University of Kiel, Schwanenweg 20, 24105, Kiel, Germany
| | | | | |
Collapse
|
20
|
Wilkie AOM. Bad bones, absent smell, selfish testes: The pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev 2005; 16:187-203. [PMID: 15863034 DOI: 10.1016/j.cytogfr.2005.03.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The discovery in 1994 that highly specific mutations of fibroblast growth factor (FGF) receptor 3 caused the most common form of human short-limbed dwarfism, achondroplasia, heralded a new era in FGF receptor (FGFR) biology. A decade later, the purpose of this review is to survey how the study of humans with FGFR mutations continues to provide insights into FGFR function in health and disease, and the clinical applications of these findings. Amongst the most interesting recent discoveries have been the description of novel phenotypes associated with FGFR1 and FGFR3 mutations; identification of fundamental differences in the cellular mechanisms of mutant FGFR2 and FGFR3 action; and the direct identification of FGFR2 and FGFR3 mutations in sperm. These clinical observations illustrate the pleiotropism of FGFR action and fuel ongoing efforts to understand the rich biology and pathophysiology of the FGF signalling system.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, NDCLS, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
21
|
Yoshida R, Nagai T, Hasegawa T, Kinoshita E, Tanaka T, Ogata T. Two novel and one recurrent PTPN11 mutations in LEOPARD syndrome. Am J Med Genet A 2005; 130A:432-4. [PMID: 15389709 DOI: 10.1002/ajmg.a.30281] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Adamsbaum C, André C, Merzoug V, Kalifa G. Âge osseux, intérêt diagnostique et limites. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.emcped.2004.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Thomas NS, Maloney V, Bass P, Mulik V, Wellesley D, Castle B. SHOX mutations in a family and a fetus with Langer mesomelic dwarfism. Am J Med Genet A 2005; 128A:179-84. [PMID: 15214013 DOI: 10.1002/ajmg.a.30095] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD) are caused by mutations in the SHOX gene. LWD results from haploinsufficiency and is dominantly inherited, while the more severe LMD results from the homozygous loss of SHOX. We describe a family and fetus with two SHOX mutations. Several relatives carry an approximately 200 kb interstitial deletion that includes the whole SHOX gene. Their condition is mild, with no Madelung deformity, and was originally diagnosed as hypochondroplasia (HCH). This deletion was also transmitted to a female fetus. However, unlike her carrier relatives, the ultrasound scan of the fetus and subsequent autopsy were consistent with LMD. The fetus inherited an additional Xp deletion (Xpter-Xp22.12) that also included the SHOX gene from her chromosomally normal father. This represents a unique molecular condition for LMD: the fetus is a compound heterozygote with two independent deletions, one inherited and one arising from a de novo event.
Collapse
Affiliation(s)
- N Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, United Kingdom.
| | | | | | | | | | | |
Collapse
|
24
|
Grosso S, Farnetani MA, Berardi R, Bartalini G, Carpentieri M, Galluzzi P, Mostardini R, Morgese G, Balestri P. Medial temporal lobe dysgenesis in Muenke syndrome and hypochondroplasia. Am J Med Genet A 2003; 120A:88-91. [PMID: 12794698 DOI: 10.1002/ajmg.a.10171] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypochondroplasia (HCH) and Muenke syndrome (MS) are caused by mutations on FGFR3 gene. FGFR3 is known to play a role in controlling nervous system development. We describe the clinical and neuroradiological findings of the first two patients, to our knowledge, affected by HCH and MS, respectively, in whom bilateral dysgenesis of the medial temporal lobe structures has been observed. In both patients diagnosis was confirmed by molecular analysis. They were mentally normal and showed similarities in early-onset temporal lobe-related seizures. In both patients EEG recorded bilateral temporal region discharges. MRI detected temporal lobe anomalies with inadequate differentiation between white and gray matter, defective gyri, and abnormally shaped hippocampus.
Collapse
Affiliation(s)
- Salvatore Grosso
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Viale M. Bracci-Le Scotte, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thauvin-Robinet C, Faivre L, Lewin P, De Monléon JV, François C, Huet F, Couailler JF, Campos-Xavier AB, Bonaventure J, Le Merrer M. Hypochondroplasia and stature within normal limits: another family with an Asn540Ser mutation in the fibroblast growth factor receptor 3 gene. Am J Med Genet A 2003; 119A:81-4. [PMID: 12707965 DOI: 10.1002/ajmg.a.10238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Tanaka N, Katsumata N, Horikawa R, Tanaka T. The comparison of the effects of short-term growth hormone treatment in patients with achondroplasia and with hypochondroplasia. Endocr J 2003; 50:69-75. [PMID: 12733711 DOI: 10.1507/endocrj.50.69] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The effects of recombinant human growth hormone (rhGH) treatment for three years were compared in patients with achondroplasia (ACH) and hypochondroplasia (HCH), whose diagnosis had been confirmed by DNA analysis of the fibroblast growth factor receptor 3 gene. Height SDS (H-SDS) and height velocity SDS (HV-SDS) using the standard for ACH significantly improved during three-year treatment as compared with that before treatment in both ACH and HCH except HV-SDS in the third year. The improvement was much greater in HCH than in ACH. The mean increase H-SDS using the standard for ACH in three years in ACH (from -0.2 SD to 0.1 SD) is almost negligible but that in HCH (from 1.2 SD to 2.6 SD) can be estimated as effective clinically. It can be concluded short-term GH treatment in HCH is effective to increase growth rate and H-SDS, but it has little effect in ACH. Further studies would be required to confirm the other beneficial effects of GH treatment such as increase in bone mineral density in ACH and HCH and the effect on the final height.
Collapse
Affiliation(s)
- Noriko Tanaka
- Department of Growth and Puberty, National Research Institute for Child Health and Development, Tokyo 154-8567, Japan
| | | | | | | |
Collapse
|
27
|
Wilkie AOM, Patey SJ, Kan SH, van den Ouweland AMW, Hamel BCJ. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 112:266-78. [PMID: 12357470 DOI: 10.1002/ajmg.10775] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors (FGFs) comprise a family of 22 distinct proteins with pleiotropic signaling functions in development and homeostasis. These functions are mediated principally by four fibroblast growth factor receptors (FGFRs), members of the receptor tyrosine kinase family, with heparin glycosaminoglycan as an important cofactor. Developmental studies in chick and mouse highlight the critical role of FGF-receptor signaling in multiple phases of limb development, including the positioning of the limb buds, the maintenance of limb bud outgrowth, the detailed patterning of the limb elements, and the growth of the long bones. Corroborating these important roles, mutations of two members of the FGFR family (FGFR1 and FGFR2) are associated with human disorders of limb patterning; in addition, mutations of FGFR3 and FGF23 affect growth of the limb bones. Analysis of FGFR2 mutations in particular reveals a complex pattern of genotype/phenotype correlation, which will be reviewed in detail. Circumstantial evidence suggests that the more severe patterning abnormalities are mediated by illegitimate paracrine signaling in the mesoderm, mediated by FGF10 or by a related FGF, and this is beginning to gain some experimental support. A further test of this hypothesis is provided by a unique family segregating two FGFR2 mutations in cis (S252L; A315S), in which severe syndactyly occurs in the absence of the craniosynostosis that typically accompanies FGFR2 mutations.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
28
|
Tamai S, Tanaka Y, Kizu R, Ishii T, Muroya K, Sato S, Nishimura G, Matsuo N. Auxological and Radiological Manifestations of Patients with Hypochondroplasia Negative for N540K Mutation in Fibroblast Growth Factor Receptor 3 Gene. Clin Pediatr Endocrinol 2001. [DOI: 10.1297/cpe.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Shinya Tamai
- Department of Pediatrics, Keio University School of Medicine
| | - Yoko Tanaka
- Department of Pediatrics, Keio University School of Medicine
| | - Rika Kizu
- Department of Pediatrics, Keio University School of Medicine
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine
| | - Koji Muroya
- Department of Pediatrics, Keio University School of Medicine
| | - Seiji Sato
- Department of Pediatrics, Keio University School of Medicine
| | | | - Nobutake Matsuo
- Department of Pediatrics, Keio University School of Medicine
| |
Collapse
|
29
|
Bellus GA, Spector EB, Speiser PW, Weaver CA, Garber AT, Bryke CR, Israel J, Rosengren SS, Webster MK, Donoghue DJ, Francomano CA. Distinct missense mutations of the FGFR3 lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype. Am J Hum Genet 2000; 67:1411-21. [PMID: 11055896 PMCID: PMC1287918 DOI: 10.1086/316892] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2000] [Accepted: 09/27/2000] [Indexed: 11/04/2022] Open
Abstract
The fibroblast growth factor-receptor 3 (FGFR3) Lys650 codon is located within a critical region of the tyrosine kinase-domain activation loop. Two missense mutations in this codon are known to result in strong constitutive activation of the FGFR3 tyrosine kinase and cause three different skeletal dysplasia syndromes-thanatophoric dysplasia type II (TD2) (A1948G [Lys650Glu]) and SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) syndrome and thanatophoric dysplasia type I (TD1) (both due to A1949T [Lys650Met]). Other mutations within the FGFR3 tyrosine kinase domain (e.g., C1620A or C1620G [both resulting in Asn540Lys]) are known to cause hypochondroplasia, a relatively common but milder skeletal dysplasia. In 90 individuals with suspected clinical diagnoses of hypochondroplasia who do not have Asn540Lys mutations, we screened for mutations, in FGFR3 exon 15, that would disrupt a unique BbsI restriction site that includes the Lys650 codon. We report here the discovery of three novel mutations (G1950T and G1950C [both resulting in Lys650Asn] and A1948C [Lys650Gln]) occurring in six individuals from five families. Several physical and radiological features of these individuals were significantly milder than those in individuals with the Asn540Lys mutations. The Lys650Asn/Gln mutations result in constitutive activation of the FGFR3 tyrosine kinase but to a lesser degree than that observed with the Lys540Glu and Lys650Met mutations. These results demonstrate that different amino acid substitutions at the FGFR3 Lys650 codon can result in several different skeletal dysplasia phenotypes.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Amino Acid Substitution
- Base Sequence
- Body Height
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/physiopathology
- Carpal Bones/abnormalities
- Child
- Child, Preschool
- Codon/genetics
- Enzyme Activation
- Exons/genetics
- Female
- Humans
- Infant
- Infant, Newborn
- Lysine/genetics
- Male
- Mutation, Missense/genetics
- Phenotype
- Phosphorylation
- Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
Collapse
Affiliation(s)
- G A Bellus
- Department of Dermatology, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
During the last few years, it has been demonstrated that some syndromic craniosynostosis and short-limb dwarfism syndromes, a heterogeneous group comprising of 11 distinct clinical entities, are caused by mutations in one of three fibroblast growth factor receptor genes (FGFR1, FGFR2, and FGFR3). The present review list all mutations described to date in these three genes and the phenotypes associated with them. In addition, the tentative phenotype-genotype correlation is discussed, including the most suggested causative mechanisms for these conditions.
Collapse
Affiliation(s)
- M R Passos-Bueno
- Departamento Biologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
Ramaswami U, Hindmarsh PC, Brook CG. Growth hormone therapy in hypochondroplasia. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1999; 88:116-7. [PMID: 10102069 DOI: 10.1111/j.1651-2227.1999.tb14368.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patients with hypochondroplasia present with variable phenotypes. Children with severe short stature and disproportion of the body segments usually have the mutation Asn540Lys. They respond to growth hormone (GH) therapy with an increase in spinal length and, coupled with a surgical leg-lengthening procedure, it is possible for some patients to achieve adult heights within the normal range. Some children who present with proportionate short stature and hypochondroplasia fail to increase their growth rate at puberty, although the growth spurt can be restored by GH therapy. Others, with an identical presentation, seem to grow normally during puberty. At present, there is no way of predicting who will undergo a normal pubertal growth spurt. We therefore monitor all patients during childhood and give GH treatment only to those patients who fail to develop a growth spurt at puberty. Severe cases may occasionally need treatment before puberty if their growth velocity is compromised, but these will probably also be candidates for a surgical leg-lengthening procedure.
Collapse
Affiliation(s)
- U Ramaswami
- London Centre for Paediatric Endocrinology, Middlesex Hospital, London, UK
| | | | | |
Collapse
|
32
|
|