1
|
Li T, Li Y, Zeng Y, Zhou X, Zhang S, Ren Y. Construction of preclinical evidence for propofol in the treatment of reperfusion injury after acute myocardial infarction: A systematic review and meta-analysis. Biomed Pharmacother 2024; 174:116629. [PMID: 38640712 DOI: 10.1016/j.biopha.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Propofol, a commonly used intravenous anesthetic, has demonstrated potential in protecting against myocardial ischemia/reperfusion injury (MIRI) based on preclinical animal studies. However, the clinical benefits of propofol in this context are subject to debate. We conducted a systematic search across eight databases to identify all relevant animal studies investigating the preventive effects of propofol on MIRI until October 30, 2023. We assessed the methodological quality of the included studies using SYRCLE's bias risk tool. Statistical analysis was performed using STATA 15.1. The primary outcome measures analyzed in this study were myocardial infarct size (IS) and myocardial injury biomarkers. This study presents a comprehensive analysis of 48 relevant animal studies investigating propofol's preventive effects on MIRI. Propofol administration demonstrated a reduction in myocardial IS and decreased levels of myocardial injury biomarkers (CK-MB, LDH, cTnI). Moreover, propofol improved myocardial function parameters (+dp/dtmax, -dP/dtmax, LVEF, LVFS), exhibited favorable effects on inflammatory markers (IL-6, TNF-α) and oxidative stress markers (SOD, MDA), and reduced myocardial cell apoptotic index (AI). These findings suggest propofol exerts cardioprotective effects by reducing myocardial injury, decreasing infarct size, and improving heart function. However, the absence of animal models that accurately represent comorbidities such as aging and hypertension, as well as inconsistent administration methods that align with clinical practice, may hinder its clinical translation. Further robust investigations are required to validate these findings, elucidate the underlying mechanisms of propofol, and facilitate its potential translation into clinical practice.
Collapse
Affiliation(s)
- Tao Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Li
- Cardiology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Mayer D, Altvater M, Schenz J, Arif R, Karck M, Leuschner F, Weigand MA, Uhle F, Lichtenstern C. Monocyte Metabolism and Function in Patients Undergoing Cardiac Surgery. Front Cardiovasc Med 2022; 9:853967. [PMID: 35935635 PMCID: PMC9347004 DOI: 10.3389/fcvm.2022.853967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Cardiopulmonary bypass (CPB) can lead to systemic inflammation, which is associated with higher morbidity. Therefore, we investigated the metabolism of isolated blood monocytes before and after CPB compared to healthy controls. Methods In this prospective, monocentric, observational study, we included 30 patients undergoing CPB and 20 controls. We isolated monocytes from heparinized blood and investigated their metabolism by using Seahorse technology before (t0), 4 h (t4), and 24 h (t24) after the start of the CPB. We also examined programmed cell death 1 ligand (PD-L1), PD-L2, V-domain Ig suppressor of T cell activation (VISTA), and human leukocyte antigen-DR isotype (HLA-DR) using fluorescence-activated cell sorting analysis. Additionally, we investigated plasma cytokine levels in patients without and after ex vivo stimulation. Results CPB-induced inflammatory responses are shown by significantly elevated plasma interleukin-6 levels in the CPB group compared to baseline and controls [t0: 0 ng/ml (95%CI 0-0 ng/ml); t4: 0.16 ng/ml (95%CI 0.1-0.197 ng/ml), p < 0.0001; t24: 0.11 ng/ml (95% CI 0.1-0.16 ng/ml), p < 0.0001, and controls: 0 ng/ml (95% CI 0-0 ng/ml)]. The cytokine release in the ex vivo stimulation is reduced for lipopolysaccharide stimulation at t4 [t0: 35.68 ng/ml (95% CI 22.17-46.57 ng/ml) vs. t4: 15.02 (95% CI 10.25-24.78 ng/ml), p < 0.0001]. Intracellular metabolism of monocytes after CPB showed a protracted shift to aerobic glycolysis [t0: 179.2 pmol/min (95% CI 138.0-205.1 pmol/min) vs. t24: 250.1 pmol/min (95% CI 94.8-300.2 pmol/min), p < 0.0001]. Additionally, we observed an altered metabolism in monocytes in patients undergoing cardiac surgery compared to controls even before any surgical procedure [t0: 179.2 pmol/min (95% CI 138.0-205.1) vs. controls 97.4 (95% CI 59.13-144.6 pmol/min), p = 0.0031]. Conclusion After CPB, patients' monocytes show a shift in metabolism from oxidative phosphorylation to aerobic glycolysis, which is associated with energy-demanding and proinflammatory processes. This is the first study to show changes in monocyte immunometabolism in cardiac surgery. Monocytes of patients undergoing cardiac surgery were leaning toward aerobic glycolysis even before any surgical procedure was conducted. Leaving the question of the pathophysiological mechanisms for future studies to be investigated and paving the way for potential therapy approaches preventing inflammatory effects of CPB.
Collapse
Affiliation(s)
- Daniel Mayer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Altvater
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Judith Schenz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Lichtenstern
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Christoph Lichtenstern
| |
Collapse
|
3
|
Affiliation(s)
- Junichi Sugita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo.,Department of Advanced Cardiology, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
4
|
Ibrahim TH, Abdelrahman HS, Alharbi MA, Zabani IA, Ismail MF, Kary H. Effect of ketamine on pro- and anti-inflammatory cytokine response in paediatric cardiac surgery: A prospective randomised controlled study. Indian J Anaesth 2017; 61:549-555. [PMID: 28794526 PMCID: PMC5530739 DOI: 10.4103/ija.ija_607_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Paediatric cardiac surgery with cardiopulmonary bypass (CPB) is associated with a marked inflammatory response and triggers release of inflammatory cytokines. The aim of this study was to study the effect of ketamine on the inflammatory response during correction of congenital cyanotic heart diseases. Methods: Sixty-six patients with congenital cyanotic heart diseases scheduled for cardiac surgery were randomised into three groups. Group A patients did not receive ketamine (control group), Group B patients received 2 mg/kg ketamine intravenous (IV) and Group C patients received ketamine 2 mg/kg IV and an IV infusion of ketamine (50 μg/kg/min). Interleukin (IL) levels for IL-6, IL-8, IL-10, C-reactive protein (CRP) and tumour necrosis factor-α (TNF-α) levels were examined in the three groups at four timings: pre-operative (baseline), intraoperative (after weaning off the CPB) and post-operative (6 and 24 h after weaning off CPB). Paired sample t-test and ANOVA test were used for statistical analysis and P < 0.05 was considered statistically significant. Results: Within each group, the intra- and post-operative serum levels of IL-6, IL-8, IL-10 and CRP were significantly elevated from the baseline, however, TNF-α was not significantly elevated. There were no statistically significant differences in the IL, CRP or TNF-α levels between the three groups. Conclusion: Paediatric cardiac surgery for congenital cyanotic heart disease is a triggering factor for the inflammatory response, yet we could not detect any beneficial effect of ketamine on that response whether given either as an IV induction dose or continued as an IV infusion.
Collapse
Affiliation(s)
- Tamer Hamed Ibrahim
- Department of Anaesthesiology, King Faisal Specialist Hospital and Research Centre (Jeddah Branch), Jeddah, Saudi Arabia.,Department of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hassan Saad Abdelrahman
- Department of Anaesthesiology, King Faisal Specialist Hospital and Research Centre (Jeddah Branch), Jeddah, Saudi Arabia.,Department of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohammed A Alharbi
- Department of Anaesthesiology, King Faisal Specialist Hospital and Research Centre (Jeddah Branch), Jeddah, Saudi Arabia
| | - Ibrahim A Zabani
- Department of Anaesthesiology, King Faisal Specialist Hospital and Research Centre (Jeddah Branch), Jeddah, Saudi Arabia
| | - Mohamed Fouad Ismail
- Department of Cardiovascular Diseases, King Faisal Specialist Hospital and Research Centre (Jeddah Branch), Jeddah, Saudi Arabia.,Department of Cardiothoracic Surgery, Mansoura University, Mansoura, Egypt
| | - Heba Kary
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre (Jeddah Branch), Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Howell KW, Cleveland JC, Meng X, Ao L, Su X, Schwartz RS, Fullerton DA. Interleukin 6 production during cardiac surgery correlates with increasing age. J Surg Res 2015; 201:76-81. [PMID: 26850187 DOI: 10.1016/j.jss.2015.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cardiac surgery produces a proinflammatory response characterized by cytokine production. Proinflammatory cytokines such as interleukin 6 (IL-6) may contribute to morbidity and mortality after cardiopulmonary bypass (CPB). Elderly patients undergoing CPB are at increased risk of morbidity and mortality. We hypothesized that patients aged >70 y produce more IL-6 during CPB. METHODS Twenty-three patients (ages 23-80) undergoing cardiac surgery had blood sampled from the ascending aorta and coronary sinus on initial cannulation for bypass, at 30 min of aortic cross-clamp time, on release of the aortic cross-clamp, and at 20 min after reperfusion. Group 1 patients (n = 8) were aged <60 y, group 2 patients (n = 7) were aged between 60 and 70 y, and group 3 patients (n = 8) were aged >70 y. Plasma levels of tumor necrosis factor-alpha, IL-1, and IL-6 were analyzed. RESULTS The three groups did not differ with respect to preoperative ejection fraction, New York Heart Association classification, mean aortic cross-clamp time, or mean CPB time. IL-6 levels rose throughout myocardial ischemia and reperfusion in all three age groups. The increase in IL-6 during ischemia and reperfusion in the age group >70 was greater than the increase in younger patients. IL-6 was similar in the coronary sinus and the ascending aorta. CONCLUSIONS These data suggest that patients aged >70 y undergoing cardiac operations generate more IL-6 during CPB. The increased circulating IL-6 in elderly patients may incite a proinflammatory state that could subsequently underlie the associated higher mortality and morbidity of these procedures in elderly patients.
Collapse
Affiliation(s)
- Kenneth W Howell
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lihua Ao
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xin Su
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Robert S Schwartz
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
6
|
Baki ED, Aldemir M, Kokulu S, Koca HB, Ela Y, Sıvacı RG, Öztürk NK, Emmiler M, Adalı F, Uzel H. Comparison of the Effects of Desflurane and Propofol Anesthesia on the Inflammatory Response and S100β Protein During Coronary Artery Bypass Grafting. Inflammation 2013; 36:1327-33. [DOI: 10.1007/s10753-013-9671-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Galeone A, Brunetti G, Rotunno C, Oranger A, Colucci S, de Luca Tupputi Schinosa L, Zallone A, Grano M, Paparella D. Activation of the receptor activator of the nuclear factor- B ligand pathway during coronary bypass surgery: comparison between on- and off-pump coronary artery bypass surgery procedures. Eur J Cardiothorac Surg 2013; 44:e141-7. [DOI: 10.1093/ejcts/ezt244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Welters I, Feurer MK, Preiss V, Müller M, Scholz S, Kwapisz M, Mogk M, Neuhäuser C. Continuous S -(+)-ketamine administration during elective coronary artery bypass graft surgery attenuates pro-inflammatory cytokine response during and after cardiopulmonary bypass. Br J Anaesth 2011; 106:172-9. [DOI: 10.1093/bja/aeq341] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
L-arginine enhances nitrative stress and exacerbates tumor necrosis factor-alpha toxicity to human endothelial cells in culture: prevention by propofol. J Cardiovasc Pharmacol 2010; 55:358-67. [PMID: 20125033 DOI: 10.1097/fjc.0b013e3181d265a3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Supplementation of L-arginine, a nitric oxide precursor, during the late phase of myocardial ischemia/reperfusion increases myocyte apoptosis and exacerbates myocardial injury, but the underlying mechanism is unclear. During myocardial ischemia/reperfusion, apoptosis of endothelial cells precedes that of cardiomyocyte. Tumor necrosis factor-alpha (TNF) production is increased during myocardial ischemia/reperfusion, which may exacerbate myocardial injury by inducing endothelial cell apoptosis. We postulated that L-arginine may exacerbate TNF-induced endothelial cell apoptosis by enhancing peroxynitrite-mediated nitrative stress. Cultured human umbilical vein endothelial cells were either not treated (control) or treated with TNF alone or with TNF in the presence of L-arginine, the nonselective nitric oxide synthase inhibitor N (omega)-nitro-L-arginine (L-NNA), propofol (an anesthetic that scavenges peroxynitrite), or L-arginine plus propofol, respectively, for 24 hours. TNF increased intracellular superoxide and hydrogen peroxide production accompanied by increases of inducible nitric oxide synthase (iNOS) protein expression and nitric oxide production. This was accompanied by increased protein expression of nitrotyrosine, a fingerprint of peroxynitrite and an index of nitrative stress, and increased endothelial cell apoptosis. L-arginine did not enhance TNF-induced increases of superoxide and peroxynitrite production but further increased TNF-induced increase of nitrotyrosine production and exacerbated TNF-mediated cell apoptosis. L-NNA and propofol, respectively, reduced TNF-induced nitrative stress and attenuated TNF cellular toxicity. The L-arginine-mediated enhancement of nitrative stress and TNF toxicity was attenuated by propofol. Thus, under pathological conditions associated with increased TNF production, L-arginine supplementation may further exacerbate TNF cellular toxicity by enhancing nitrative stress.
Collapse
|
10
|
Abstract
Cardiovascular pathologies are still the primary cause of death worldwide. The molecular mechanisms behind these pathologies have not been fully elucidated. Unravelling them will bring us closer to therapeutic strategies to prevent or treat cardiovascular disease. One of the major transcription factors that has been linked to both cardiovascular health and disease is NF-kappaB (nuclear factor kappaB). The NF-kappaB family controls multiple processes, including immunity, inflammation, cell survival, differentiation and proliferation, and regulates cellular responses to stress, hypoxia, stretch and ischaemia. It is therefore not surprising that NF-kappaB has been shown to influence numerous cardiovascular diseases including atherosclerosis, myocardial ischaemia/reperfusion injury, ischaemic preconditioning, vein graft disease, cardiac hypertrophy and heart failure. The function of NF-kappaB is largely dictated by the genes that it targets for transcription and varies according to stimulus and cell type. Thus NF-kappaB has divergent functions and can protect cardiovascular tissues from injury or contribute to pathogenesis depending on the cellular and physiological context. The present review will focus on recent studies on the function of NF-kappaB in the cardiovascular system.
Collapse
|
11
|
|
12
|
Moss NC, Tang RH, Willis M, Stansfield WE, Baldwin AS, Selzman CH. Inhibitory kappa B kinase-β is a target for specific nuclear factor kappa B-mediated delayed cardioprotection. J Thorac Cardiovasc Surg 2008; 136:1274-9. [DOI: 10.1016/j.jtcvs.2008.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/25/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
|
13
|
Markel TA, Crisostomo PR, Lahm T, Novotny NM, Rescorla FJ, Tector AJ, Meldrum DR. Stem cells as a potential future treatment of pediatric intestinal disorders. J Pediatr Surg 2008; 43:1953-63. [PMID: 18970924 PMCID: PMC2584666 DOI: 10.1016/j.jpedsurg.2008.06.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/18/2008] [Accepted: 06/22/2008] [Indexed: 12/27/2022]
Abstract
All surgical disciplines encounter planned and unplanned ischemic events that may ultimately lead to cellular dysfunction and death. Stem cell therapy has shown promise for the treatment of a variety of ischemic and inflammatory disorders where tissue damage has occurred. As stem cells have proven beneficial in many disease processes, important opportunities in the future treatment of gastrointestinal disorders may exist. Therefore, this article will serve to review the different types of stem cells that may be applicable to the treatment of gastrointestinal disorders, review the mechanisms suggesting that stem cells may work for these conditions, discuss current practices for harvesting and purifying stem cells, and provide a concise summary of a few of the pediatric intestinal disorders that could be treated with cellular therapy.
Collapse
Affiliation(s)
- Troy A. Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul R. Crisostomo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tim Lahm
- Department of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nathan M. Novotny
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - A. Joseph Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel R. Meldrum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana,Center for Immunobiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
14
|
McGuinness J, Bouchier-Hayes D, Redmond JM. Understanding the inflammatory response to cardiac surgery. Surgeon 2008; 6:162-71. [PMID: 18581753 DOI: 10.1016/s1479-666x(08)80113-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The systemic inflammatory response to cardiac surgery is common, and resultant impairment of multiple organ function is generally mild or subclinical due to physiological reserve within organ systems. Unfortunately, the changing profile of patients referred for surgery suggests that the systemic inflammatory response may prominently influence surgical outcome in the future. Older, co-morbid patients with more limited physiological reserve are being referred for complex lengthy procedures, and paediatric surgery has witnessed a shift to earlier complex primary correction or palliation involving long cardiopulmonary bypass times or a period of suboptimal organ perfusion using circulatory arrest or low flow cardiopulmonary bypass. Unique to cardiac surgery is the predictability of the inflammatory response, but prophylactic therapies have not translated into clinical benefit, which the preconditioning phenomenon may address.
Collapse
Affiliation(s)
- J McGuinness
- Department of Surgery, The Royal College of Surgeons in Ireland. Beaumont Hospital, Dublin
| | | | | |
Collapse
|
15
|
Markel TA, Crisostomo PR, Wang M, Wang Y, Lahm T, Novotny NM, Tan J, Meldrum DR. TNFR1 signaling resistance associated with female stem cell cytokine production is independent of TNFR2-mediated pathways. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1124-30. [PMID: 18685063 DOI: 10.1152/ajpregu.90508.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
End-organ ischemia is a common source of patient morbidity and mortality. Stem cell therapy represents a novel treatment modality for ischemic diseases and may aid injured tissues through the release of beneficial paracrine mediators. Female bone marrow mesenchymal stem cells (MSCs) have demonstrated a relative resistance to detrimental TNF receptor 1 (TNFR1) signaling and are thought to be superior to male stem cells in limiting inflammation. However, it is not known whether sex differences exist in TNF receptor 2 (TNFR2)-ablated MSCs. Therefore, we hypothesized that 1) sex differences would be observed in wild-type (WT) and TNFR2-ablated MSC cytokine signaling, and 2) the production of IL-6, VEGF, and IGF-1 in males, but not females, would be mediated through TNFR2. MSCs were harvested from male and female WT and TNFR2 knockout (TNFR2KO) mice and were subsequently exposed to TNF (50 ng/ml) or LPS (100 ng/ml). After 24 h, supernatants were collected and measured for cytokines. TNF and LPS stimulated WT stem cells to produce cytokines, but sex differences were only seen in IL-6 and IGF-1 after TNF stimulation. Ablation of TNFR2 increased VEGF and IGF-1 production in males compared with wild-type, but no difference was observed in females. Female MSCs from TNFR2KOs produced significantly lower levels of VEGF and IGF-1 compared with male TNFR2KOs. The absence of TNFR2 signaling appears to play a greater role in male MSC cytokine production. As a result, male, but not female stem cell cytokine production may be mediated through TNFR2 signaling cascades.
Collapse
Affiliation(s)
- Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Markel TA, Crisostomo PR, Wang M, Herring CM, Meldrum DR. Activation of individual tumor necrosis factor receptors differentially affects stem cell growth factor and cytokine production. Am J Physiol Gastrointest Liver Physiol 2007; 293:G657-62. [PMID: 17640973 DOI: 10.1152/ajpgi.00230.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is an emergency of the newborn that often requires surgery. Growth factors from stem cells may aid in decreasing intestinal damage while also promoting restitution. We hypothesized that 1) TNF, LPS, or hypoxia would alter bone marrow mesenchymal stem cell (BMSC) TNF, IGF-1, IL-6, and VEGF production, and 2) TNF receptor type 1 (TNFR1) or type 2 (TNFR2) ablation would result in changes to the patterns of cytokines and growth factors produced. BMSCs were harvested from female wild-type (WT), TNFR1 knockout (KO), and TNFR2KO mice. Cells were stimulated with TNF, LPS, or hypoxia. After 24 h, cell supernatants were assayed via ELISA. Production of TNF and IGF-1 was decreased in both knockouts compared with WT regardless of the stimulus utilized, whereas IL-6 and VEGF levels appeared to be cooperatively regulated by both the activated TNF receptor and the initial stimulus. IL-6 was increased compared with WT in both knockouts following TNF stimulation but was significantly decreased with LPS. Compared with WT, hypoxia increased IL-6 in TNFR1KO but not TNFR2KO cells. TNF stimulation decreased VEGF in TNFR2KO cells, whereas TNFR1 ablation resulted in no change in VEGF compared with WT. TNFR1 ablation resulted in a decrease in VEGF following LPS stimulation compared with WT; no change was noted in TNFR2KO cells. With hypoxia, TNFR1KO cells expressed more VEGF compared with WT, whereas no difference was noted between WT and TNFR2KO cells. TNF receptor ablation modifies BMSC cytokine production. Identifying the proper stimulus and signaling cascades for the production of desired growth factors may be beneficial in maximizing the therapeutic potential of stem cells.
Collapse
Affiliation(s)
- Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
17
|
Moss NC, Stansfield WE, Willis MS, Tang RH, Selzman CH. IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2007; 293:H2248-53. [PMID: 17675566 DOI: 10.1152/ajpheart.00776.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite years of experimental and clinical research, myocardial ischemia-reperfusion (IR) remains an important cause of cardiac morbidity and mortality. The transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated as a key mediator of reperfusion injury. Activation of NF-kappaB is dependent upon the phosphorylation of its inhibitor, IkappaBalpha, by the specific inhibitory kappaB kinase (IKK) subunit, IKKbeta. We hypothesized that specific antagonism of the NF-kappaB inflammatory pathway through IKKbeta inhibition reduces acute myocardial damage following IR injury. C57BL/6 mice underwent left anterior descending (LAD) artery ligation and release in an experimental model of acute IR. Bay 65-1942, an ATP-competitive inhibitor that selectively targets IKKbeta kinase activity, was administered intraperitoneally either prior to ischemia, at reperfusion, or 2 h after reperfusion. Compared with untreated animals, mice treated with IKKbeta inhibition had significant reduction in left ventricular infarct size. Cardiac function was also preserved following pretreatment with IKKbeta inhibition. These findings were further associated with decreased expression of phosphorylated IkappaBalpha and phosphorylated p65 in myocardial tissue. In addition, IKKbeta inhibition decreased serum levels of TNF-alpha and IL-6, two prototypical downstream effectors of NF-kappaB activity. These results demonstrate that specific IKKbeta inhibition can provide both acute and delayed cardioprotection and offers a clinically accessible target for preventing cardiac injury following IR.
Collapse
Affiliation(s)
- Nancy C Moss
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina 27599-7065, USA
| | | | | | | | | |
Collapse
|
18
|
Markel TA, Crisostomo PR, Wang M, Herring CM, Lahm T, Meldrum KK, Lillemoe KD, Rescorla FJ, Meldrum DR. Iron chelation acutely stimulates fetal human intestinal cell production of IL-6 and VEGF while decreasing HGF: the roles of p38, ERK, and JNK MAPK signaling. Am J Physiol Gastrointest Liver Physiol 2007; 292:G958-63. [PMID: 17204543 DOI: 10.1152/ajpgi.00502.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bacteria have developed mechanisms to sequester host iron via chelators such as deferoxamine (DFO). Interestingly, DFO has been shown to stimulate acute intestinal epithelial cell inflammatory cytokine production in the absence of bacteria; however, this mechanism has not been elucidated. Intestinal epithelial cell production of IL-6 and TNF-alpha is elevated in various gastrointestinal pathologies, including acute intestinal ischemia. Similarly, VEGF and HGF are essential to intestinal epithelial cell integrity. Therapeutic strategies that decrease IL-6 and TNF-alpha while increasing VEGF and HGF therefore have theoretical appeal. We hypothesized that 1) fetal human intestinal epithelial cells acutely produce increased IL-6, TNF-alpha, VEGF, and HGF during iron chelation and 2) the MAPK pathway mediates these effects. Fetal human intestinal epithelial cells were stimulated by iron chelation (1 mM DFO) with and without p38 MAPK, ERK, or JNK inhibition. Supernatants were harvested after 24 h of incubation, and IL-6, TNF-alpha, VEGF, and HGF levels were quantified by ELISA. Activation of MAPK pathways was confirmed by Western blot analysis. DFO stimulation resulted in a significant increase in epithelial cell IL-6 and VEGF production while yielding a decrease in HGF production (P<0.05). Unexpectedly, TNF-alpha was not detectable. p38 MAPK, ERK, and JNK inhibition significantly decreased IL-6, VEGF, and HGF production (P<0.05). In conclusion, DFO acutely increases fetal human intestinal epithelial cell IL-6 and VEGF expression while causing an unexpected decrease in HGF expression and no detectable TNF-alpha production. Furthermore, chelator-induced intestinal epithelial cell cytokine expression depends on p38, ERK, and JNK MAPK pathways.
Collapse
Affiliation(s)
- Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Miranda DR, Gommers D, Papadakos PJ, Lachmann B. Mechanical Ventilation Affects Pulmonary Inflammation in Cardiac Surgery Patients: The Role of the Open-Lung Concept. J Cardiothorac Vasc Anesth 2007; 21:279-84. [PMID: 17418750 DOI: 10.1053/j.jvca.2006.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Indexed: 11/11/2022]
|
20
|
Yang S, Hu S, Choudhry MA, Rue LW, Bland KI, Chaudry IH. Anti-rat soluble IL-6 receptor antibody down-regulates cardiac IL-6 and improves cardiac function following trauma-hemorrhage. J Mol Cell Cardiol 2006; 42:620-30. [PMID: 17313958 DOI: 10.1016/j.yjmcc.2006.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 12/11/2006] [Indexed: 11/27/2022]
Abstract
Although anti-IL-6-mAb down-regulates cardiac IL-6 and attenuates IL-6-mediated cardiac dysfunction following trauma-hemorrhage, it is not known whether blockade of IL-6 receptor will down-regulate cardiac IL-6 and improve cardiac function under those conditions. Six groups of male adult rats (275-325 g) were used: sham/trauma-hemorrhage+vehicle, sham/trauma-hemorrhage+IgG, sham/trauma-hemorrhage+anti-rat sIL-6R. Rats underwent trauma-hemorrhage (removal of 60% of the circulating blood volume and fluid resuscitation after 90 min). Vehicle (V), normal goat IgG or anti-rat sIL-6R (16.7 microg/kg BW) was administered intra-peritoneally in the middle of resuscitation. Two hours later, cardiac function was measured by ICG dilution technique; blood samples collected, cardiomyocytes isolated, and cardiomyocyte nuclei were then extracted. Cardiac IL-6, IL-6R, gp130, IkappaB-alpha/P-IkappaB-alpha, NF-kappaB, and ICAM-1 expressions were measured by immunoblotting. Plasma IL-6 and cardiomyocyte NF-kappaB DNA-binding activity were determined by ELISA. In additional animals, heart harvested and cardiac MPO activity and CINC-1 and -3 were also measured. In another group of rats, cardiac function was measure by microspheres at 24 h following trauma-hemorrhage. Cardiac function was depressed and cardiac IL-6, P-IkappaB-alpha, NF-kappaB and its DNA-binding activity, ICAM-1, MPO activity, and CINC-1 and -3 were markedly increased after trauma-hemorrhage. Moreover, cardiac dysfunction was evident even 24 h after trauma-hemorrhage. Administration of sIL-6R following trauma-hemorrhage: (1) improved cardiac output at 2 h and 24 h (p<0.05); (2) down-regulated both cardiac IL-6 and IL-6R (p<0.05); and (3) attenuated cardiac P-IkappaB-alpha, NF-kappaB, NF-kappaB DNA-binding activity, ICAM-1, CINC-1, -3, and MPO activity (p<0.05). IgG did not significantly influence the above parameters. Thus, IL-6-mediated up-regulation of cardiac NF-kappaB, ICAM-1, CINC-1, -3, and MPO activity likely contributes to altered cardiac function following trauma-hemorrhage. Since IL-6R blockade after trauma-hemorrhage down-regulates cardiac IL-6 and improves cardiac functions, blockade of IL-6R following trauma-hemorrhage appears to be a novel and effective adjunct for improving organ and cell function under those conditions.
Collapse
Affiliation(s)
- Shaolong Yang
- Center for Surgical Research and Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
21
|
Gasz B, Lenard L, Racz B, Benko L, Borsiczky B, Cserepes B, Gal J, Jancso G, Lantos J, Ghosh S, Szabados S, Papp L, Alotti N, Roth E. Effect of cardiopulmonary bypass on cytokine network and myocardial cytokine production. Clin Cardiol 2006; 29:311-5. [PMID: 16881540 PMCID: PMC6654681 DOI: 10.1002/clc.4960290708] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In addition to the well-investigated proinflammatory cytokine expression, there is an ever increasing interest in the field of anti-inflammatory response to cardiopulmonary bypass (CPB). Evidence suggests that myocardium serves as an important source of cytokines during reperfusion and application of CPB. The effect of coronary artery bypass graft (CABG) without CPB on myocardial cytokine production has not as yet been investigated. HYPOTHESIS Cardiopulmonary bypass can cause long-term disturbance in pro- and anti-inflammatory cytokine balance, which may impede a patient's recovery following surgery. Therefore, the effect of CPB on the balance of the pro-/anti-inflammatory cytokines network and myocardial cytokine outflow was assessed throughout a longer period after surgery. METHODS Twenty patients were scheduled for CABG with CPB and 10 had off-pump surgery. Blood samples were taken before, during, and over the first week following surgery. Coronary sinus blood samples were collected during surgery. The ratio of pro- and anti-inflammatory cytokines was calculated and the cytokine concentration of peripheral and coronary sinus blood were compared in both groups. RESULTS Pro-/anti-inflammatory cytokine ratio decreased early after CPB followed by a delayed and marked increase. A more balanced ratio was present following off-pump surgery. Coronary sinus levels of certain cytokines exceeded the concentration of systemic blood in the course of CPB but not during off-pump operation. CONCLUSION Patients show pro-inflammatory predominant cytokine balance at a later stage after CPB in contrast to those without CPB. The heart produces a remarkable amount of cytokines only in the course of surgery with CPB.
Collapse
Affiliation(s)
- B Gasz
- Department of Surgical Research and Techniques, University of Pecs, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Terrell AM, Crisostomo PR, Wairiuko GM, Wang M, Morrell ED, Meldrum DR. Jak/STAT/SOCS signaling circuits and associated cytokine-mediated inflammation and hypertrophy in the heart. Shock 2006; 26:226-34. [PMID: 16912647 DOI: 10.1097/01.shk.0000226341.32786.b9] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytokines are important mediators of cardiac disease. Accumulating evidence indicates that members of the interleukin-6 family of cytokines promote cardiac hypertrophy through the activation of the Janus kinase-signal transducer and activator of transcription (Jak/STAT) pathway. Aberrant Jak/STAT signaling may promote progression from hypertrophy to heart failure. Suppressor of cytokine signaling (SOCS) proteins are underexplored, negative regulators of Jak/STAT signaling. SOCS proteins may also interact with other inflammatory pathways known to affect cardiac function. A better understanding of the therapeutic potential of these proteins may lead to the controlled progression of heart failure and the limitation of myocardial depression. This review summarizes the cardiophysiological effect of the IL-6 cytokine family, outlines the mechanistic pathway of Jak/STAT signaling, explores the regulatory role of SOCS proteins in the heart, and discusses the potential of using SOCS proteins clinically.
Collapse
Affiliation(s)
- Andrew M Terrell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
23
|
Xia Z, Liu M, Wu Y, Sharma V, Luo T, Ouyang J, McNeill JH. N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression. Eur J Pharmacol 2006; 550:134-42. [PMID: 17026986 DOI: 10.1016/j.ejphar.2006.08.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 08/27/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
The circulatory inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in pathological conditions, such as diabetes, which initiate or exacerbate vascular endothelial injury. Both nitric oxide (NO) and reactive oxygen species may play a dual role (i.e., inhibiting or promoting) in TNF-alpha-induced endothelial cell apoptosis. We investigated the effects of the antioxidant N-acetylcysteine on TNF-alpha-induced apoptosis in human vascular endothelial cell (cell line ECV304) apoptosis, NO production and lipid peroxidation. Cultured vascular endothelial cell (ECV304) were either not treated (control), or treated with TNF-alpha (40 ng/ml) alone or TNF-alpha in the presence of N-acetylcysteine at 30 mmol/l or 1 mmol/l, respectively, for 24 h. Cell viability was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was assessed by flow cytometry. TNF-alpha-induced endothelial cell apoptosis was associated with increased inducible NO synthase but reduced endothelial NO synthase (eNOS) protein expression. NO production and the levels of the lipid peroxidation product malondialdehyde were concomitantly increased. Treatment with NAC at 30 mmol/l restored eNOS expression and further increased NO production as compared to TNF-alpha alone, resulting in improved cell viability and reduced apoptosis. This was accompanied by increased superoxide dismutase activity, increased glutathione peroxidase production and reduced malondialdehyde levels. N-acetylcysteine at 1 mmol/l, however, did not have significant effects on TNF-alpha-induced endothelial cell apoptosis and cell viability despite it slightly enhanced glutathione peroxidase production. N-acetylcysteine attenuation of TNF-alpha-induced human vascular endothelial cell apoptosis is associated with the restoration of eNOS expression.
Collapse
Affiliation(s)
- Zhengyuan Xia
- Anesthesiology Research Laboratory, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Pevni D, Frolkis I, Shapira I, Schwartz D, Yuhas Y, Schwartz IF, Chernichovski T, Uretzky G. Heparin Added to Cardioplegic Solution Inhibits Tumor Necrosis Factor-α Production and Attenuates Myocardial Ischemic-Reperfusion Injury. Chest 2005; 128:1805-11. [PMID: 16162790 DOI: 10.1378/chest.128.3.1805] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Tumor necrosis factor (TNF)-alpha is known to be a proinflammatory cytokine that has a pronounced negative inotropic effect and plays an important role in ischemic-reperfusion injury. METHODS Twenty isolated rat hearts were randomly divided equally into two groups (heparin and non-heparin) and were perfused with a Krebs-Henseleit solution using a modified Langendorff model. The influence of heparin on the synthesis and release of TNF-alpha by isolated rat hearts after 1 h of global cardioplegic ischemia and on left ventricular (LV) performances during 30 min of postischemic reperfusion was investigated. RESULTS Significant mean (+/- SEM) amounts of TNF-alpha in myocardial tissue (1,149 +/- 33.7 pg/g) and effluent (951.8 +/- 27.3 pg/mL) from the coronary sinus were detected after global cardioplegic ischemia. The addition of heparin to the cardioplegic solution significantly improved the recovery of LV function in the postischemic heart (p < 0.0001 for all measurements). TNF-alpha protein production in the heparin-treated hearts was below detectable levels despite a postischemic increase of TNF-alpha messenger RNA expression in both heparin-treated hearts and nontreated hearts (0.71 +/- 0.06 and 0.8 +/- 0.12 relative optical density, respectively). CONCLUSION This study shows, for the first time, that heparin causes the inhibition of TNF-alpha protein synthesis and release from the isolated ischemic rat heart within the posttranscriptional stage, and that it prevents the depression of LV function caused by ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Dimitry Pevni
- Department of Thoracic and Cardiovascular Surgery, Tel Aviv Sourasky Medical Center, 6 Weizmann St, Tel Aviv 64239, Israel
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yadavalli GK, Chien JW, Wener KM, Devecchio JL, Gupta S, Salata RA, Lee JH, Caldeira C, Auletta JJ, Heinzel FP. INTERLEUKIN 12 AND INTERFERON-?? SYNTHETIC DEFICIENCY IS ASSOCIATED WITH DENDRITIC CELL CYTOPENIA AFTER CARDIAC SURGERY. Shock 2005; 24:26-33. [PMID: 15988317 DOI: 10.1097/01.shk.0000167110.73129.a8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traumatic or inflammatory injury associates with deactivation of monocytes and impaired synthesis of proinflammatory cytokines. We conducted a prospective, observational study to test whether cardiac surgery additionally impaired dendritic and natural killer (NK) cell functions responsible for innate immune production of interleukin (IL)-12-dependent interferon (IFN)-gamma in response to bacteria or toll-like receptor agonists. Blood samples were taken just before induction of anesthesia and 24 h postoperatively. LPS- and fixed Staphylococcus aureus-inducible IFNgamma synthesis in whole blood culture after surgery was reduced to 5% of preoperative values (P < 0.001). Production of IL-12 p70, a critical inducer of IFNgamma in the innate immune response, was reduced to 30% of that produced by preoperative samples (P = 0.013). Circulating CD11c, DR myeloid dendritic cells (DC) that are known sources of IL-12 p70 in normal blood, declined to approximately 25% of presurgical numbers (P = 0.004). Experimental depletion of CD11c, but not CD14, cells from normal peripheral blood mononuclear cell (PBMC) similarly disabled Staphylococcus aureus Cowan 1 (SAC)-induced production of IL-12 p70 and IFNgamma. Consistent with SAC-induced IFNgamma expression in CD56 NK and NK-T cells, CD56 depletion ablated IFNgamma production in normal whole blood. However, repletion of IL-12 p70, IL-18, IL-15, and IL-23 in postoperative blood failed to restore presurgical levels of IFNgamma synthesis (P < 0.05). We conclude that DC cytopenia after major surgery is sufficient to explain postoperative IL-12 p70 and IFNgamma synthetic deficiency. In addition, postoperative blood became hyporesponsive to IFNgamma-inducing cytokines as a further contribution to IFNgamma insufficiency. The novel finding of DC cytopenia after major surgery may portend a lack of other immunologic functions provided by this potent accessory cell population.
Collapse
Affiliation(s)
- Gopala K Yadavalli
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McFadden D, Souba WW. Editorial board changes for the journal of surgical research—2004. J Surg Res 2004. [DOI: 10.1016/j.jss.2004.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|