1
|
Politano L. Read-through approach for stop mutations in Duchenne muscular dystrophy. An update. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2021; 40:43-50. [PMID: 33870095 PMCID: PMC8033424 DOI: 10.36185/2532-1900-041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
Dystrophinopathies are allelic conditions caused by deletions, duplications and point-mutations in the DMD gene, located on the X chromosome (Xp21.2). Mutations that prematurely interrupt the dystrophin protein synthesis lead to the most severe clinical form, Duchenne muscular Dystrophy, characterized by early involvement of muscle strength. There is no known cure for dystrophinopathies. In DMD, treatment with corticosteroids have changed the natural history and the progression of the disease, prolonging ambulation, and slowing the onset of respiratory and cardiac involvement and scoliosis by several years. In the last few years, new perspectives and options are deriving from the discovery of pharmacological approaches able to restore normal, full-length dystrophin and potentially reverse the course of the disease. Read-through (RT) of nonsense mutations, thanks to its ability to bypass the premature stop codon and to act on virtually any region of the dystrophin gene, independently of the location in which the mutation resides, is one of these promising approaches. This non-systematic review shows the different steps that, passing from yeast to humans, have made it possible to use this innovative successful approach to treat serious diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomiology and Medical Genetics, "Luigi Vanvitelli" University, Naples, Italy
| |
Collapse
|
2
|
Finkel RS. Read-through strategies for suppression of nonsense mutations in Duchenne/ Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol 2010; 25:1158-64. [PMID: 20519671 PMCID: PMC3674569 DOI: 10.1177/0883073810371129] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleotide changes within an exon can alter the trinucleotide normally encoding a particular amino acid, such that a new ''stop'' signal is transcribed into the mRNA open reading frame. This causes the ribosome to prematurely terminate its reading of the mRNA, leading to nonsense-mediated decay of the transcript and lack of production of a normal full-length protein. Such premature termination codon mutations occur in an estimated 10% to 15% of many genetically based disorders, including Duchenne/Becker muscular dystrophy. Therapeutic strategies have been developed to induce ribosomal read-through of nonsense mutations in mRNA and allow production of a full-length functional protein. Small-molecule drugs (aminoglycosides and ataluren [PTC124]) have been developed and are in clinical testing in patients with nonsense mutations within the dystrophin gene. Use of nonsense mutation suppression in Duchenne/Becker muscular dystrophy may offer the prospect of targeting the specific mutation causing the disease and correcting the fundamental pathophysiology.
Collapse
Affiliation(s)
- Richard S. Finkel
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Röhrig CH, Retz OA, Hareng L, Hartung T, Schmidt RR. A new strategy for the synthesis of dinucleotides loaded with glycosylated amino acids--investigations on in vitro non-natural amino acid mutagenesis for glycoprotein synthesis. Chembiochem 2005; 6:1805-16. [PMID: 16142818 DOI: 10.1002/cbic.200500079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The in vitro non-natural amino acid mutagenesis method provides the opportunity to introduce non-natural amino acids site-specifically into proteins. To this end, a chemically synthesised aminoacylated dinucleotide is enzymatically ligated to a truncated suppressor transfer RNA. The loaded suppressor tRNA is then used in translation reactions to read an internal stop codon. Here we report an advanced and general strategy for the synthesis of the aminoacyl dinucleotide. The protecting group pattern developed for the dinucleotide facilitates highly efficient aminoacylation, followed by one-step global deprotection. The strategy was applied to the synthesis of dinucleotides loaded with 2-acetamido-2-deoxy-glycosylated amino acids, including N- and O-beta-glycosides and O- and C-alpha-glycosides of amino acids, thus enabling the extension of in vitro non-natural amino acid mutagenesis towards the synthesis of natural glycoproteins of high biological interest. We demonstrate the incorporation of the glycosylamino acids--although with low suppression efficiency--into the human interleukin granulocyte-colony stimulating factor (hG-CSF), as verified by the ELISA technique.
Collapse
Affiliation(s)
- Christoph H Röhrig
- Department of Chemistry, University of Konstanz, Fach M 725, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
4
|
Beier H, Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 2001; 29:4767-82. [PMID: 11726686 PMCID: PMC96686 DOI: 10.1093/nar/29.23.4767] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon-codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon-codon affinity, the extent of base modifications within or 3' of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3' side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs.
Collapse
Affiliation(s)
- H Beier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
5
|
Franco GR, Tanaka M, Simpson AJ, Pena SD. Characterization of a Schistosoma mansoni homologue of the gene encoding the breast basic conserved protein 1/L13 ribosomal protein. Comp Biochem Physiol B Biochem Mol Biol 1998; 120:701-8. [PMID: 9854818 DOI: 10.1016/s0305-0491(98)10072-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Schistosoma mansoni gene sequence encoding the breast basic conserved protein 1/ribosomal protein L13 has been isolated from an adult worm cDNA library using the Expressed Sequence Tag strategy. The cDNA codes for a putative protein of 184 amino acids which is approximately 55% identical to other eukaryotic L13 ribosomal proteins. A PCR amplified genomic fragment containing the coding region of the gene was seen to possess only a single large intron interrupting the open reading frame. Studies of gene expression by RT-PCR showed the transcript is expressed in distinct stages of the parasite life cycle. The cDNA was also hybridized with an ordered cosmid library of S. mansoni and the identified cosmids were mapped to chromosomes 3 and W by chromosomal in situ suppression hybridization.
Collapse
Affiliation(s)
- G R Franco
- Departamento de Bioquímica e Imunologia, ICB-UFMG, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
6
|
Abstract
Alphatogaviruses, of which Sindbis virus (SV) is the prototype, replicate to high titer in the laboratory both in mosquito cells and in vertebrate cells. By studying the replication of SV in mosquito cells as well as in vertebrate cells, we were able to obtain several viral mutants which have novel phenotypes and have contributed to our basic knowledge of this virus family. These include three host range mutants: SVAP15/21 which replicates normally in mosquito cells but is restricted in vertebrate cells and SVCL35 and SVCL58, which are restricted in mosquito cells but replicate normally in vertebrate cells. As well, two other mutants are described here: SVLM21, which can replicate in methionine-starved mosquito cells and SVMPA, which can replicate in mosquito cells treated with mycophenolic acid or ribavirin. The causal mutations of both SVLM21 and SVMPA are within the sequence encoding the nonstructural protein nsPl; these and other findings have enabled us to associate the capping and methylation of the viral mRNAs with the nsPl protein. Our work serves to emphasize that it is both worthwhile and important to study the replication of arthropod-borne viruses in cells derived from the arthropod host as well as in cells derived from the vertebrate host.
Collapse
Affiliation(s)
- V Stollar
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854
| |
Collapse
|
7
|
Kopelowitz J, Hampe C, Goldman R, Reches M, Engelberg-Kulka H. Influence of codon context on UGA suppression and readthrough. J Mol Biol 1992; 225:261-9. [PMID: 1375653 DOI: 10.1016/0022-2836(92)90920-f] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We studied the influence of the codon context on UGA suppression by a suppressor tRNA and on UGA readthrough by a normal tRNA in Escherichia coli. This was done by a series of constructs where only the immediate context of the TGA codon was varied by only one nucleotide at a time. For both UGA suppression and UGA readthrough the codon context had a similar influence according to the following rules. (1) The nature of the nucleotide immediately adjacent to the 3' side of the UGA is an important determinant; at that position the level of UGA translation is influenced by the nucleotides in the order A greater than G greater than C greater than U. (2) At extremely high or low levels of UGA translation this influence of the adjacent 3' nucleotide is not seen. (3) In all cases, the nature of both the nucleotide immediately adjacent to the 5' side of the codon and that following the base adjacent to the 3' side of the codon have little effect, if any, on UGA translation. The varying influence of the codon context effect on UGA translation is discussed in relation to its role in gene expression.
Collapse
Affiliation(s)
- J Kopelowitz
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
8
|
Lahijani RS, Otteson EW, St Jeor SC. A possible role for nonsense suppression in the synthesis of a human cytomegalovirus 58-kDa virion protein. Virology 1992; 186:309-12. [PMID: 1309277 DOI: 10.1016/0042-6822(92)90087-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 1.6-kb late mRNA originating from the HindIII R fragment of human cytomegalovirus (HCMV) encodes a 58-kDa virion phosphoprotein. Data presented support the hypothesis that this protein may be synthesized via the translational readthrough of an opal termination codon separating two open reading frames located in tandem. To our knowledge this is the first report of nonsense suppression as a means of regulating gene expression in HCMV.
Collapse
Affiliation(s)
- R S Lahijani
- Department of Microbiology, University of Nevada, Reno 89557
| | | | | |
Collapse
|
9
|
Abstract
We describe a novel procedure for determining the amino acid (aa) sequence of the internal regions of proteins. This procedure has been implemented by directly determining the sequence of aa 65-75 of the product of the trpR gene of Escherichia coli, the trp repressor. This method is based on the insertion of the cleavage site of a specific protease (factor Xa) into the protein immediately before the region to be sequenced by Edman degradation. The simplicity of the procedure makes it appealing for studies of protein structure-function relationships, and of the expression of genetic information. The method is particularly useful when there is ambiguity concerning the co-linearity of the aa and nucleotide sequences.
Collapse
Affiliation(s)
- I Benhar
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
10
|
Firoozan M, Grant CM, Duarte JA, Tuite MF. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast 1991; 7:173-83. [PMID: 1905859 DOI: 10.1002/yea.320070211] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A simple quantitative in vivo assay has been developed for measuring the efficiency of translation of one or other of the three termination codons. UAA, UAG and UGA in Saccharomyces cerevisiae. The assay employs a 3-phosphoglycerate kinase-beta-galactosidase gene fusion, carried on a multicopy plasmid, in which the otherwise retained reading frame is disrupted by one or other of the three termination codons. Termination readthrough is thus quantitated by measuring beta-galactosidase in transformed strains. Using these plasmids to quantitate the endogenous levels of termination readthrough we show that readthrough of all three codons can be detected in a non-suppressor (sup+) strain of S. cerevisiae. The efficiency of this endogenous readthrough is much higher in a [psi+] strain than in a [psi-] strain with the UGA codon being the leakiest in the nucleotide context used. The utility of the assay plasmids for studying genetic modifiers of nonsense suppressors is also shown by their use to demonstrate that the cytoplasmic genetic determinant [psi+] broadens the decoding properties of a serine-inserting UAA suppressor tRNA (SUQ5) to allow it to translate the other two termination codons in the order of efficiency UAA greater than UAG greater than UGA.
Collapse
Affiliation(s)
- M Firoozan
- Biological Laboratory, University of Kent, Canterbury, U.K
| | | | | | | |
Collapse
|
11
|
Miele L, Strack B, Kruft V, Lanka E. Gene organization and nucleotide sequence of the primase region of IncP plasmids RP4 and R751. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1991; 2:145-62. [PMID: 1818755 DOI: 10.3109/10425179109039685] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primase genes of RP4 are part of the primase operon located within the Tra1 region of this conjugative plasmid. The operon contains a total of seven transfer genes four of which (traA, B, C, D) are described here. Determination of the nucleotide sequence of the primase region confirmed the existence of an overlapping gene arrangement at the DNA primase locus (traC) with in-phase translational initiation signals. The traC gene encodes two acidic and hydrophilic polypeptide chains of 1061 (TraC1) and 746 (TraC2) amino acids corresponding to molecular masses of 116,721 and 81,647 Da. In contrast to RP4 the IncP beta plasmid R751 specifies four large primase gene products (192, 152, 135 and 83 kDa) crossreacting with anti-RP4 DNA primase serum. As shown by deletion analysis at least the 135 and 83 kDa polypeptides are two separate translational products that by analogy with the RP4 primases, arise from in-phase translational initiation sites. Even the smallest primase gene products TraC2 (RP4) and TraC4 (R751) exhibit primase activity. Nucleotide sequencing of the R751 primase region revealed the existence of three in-phase traC translational initiation signals leading to the expression of gene products with molecular masses of 158,950 Da, 134,476 Da, and 80,759 Da. The 192 kDa primase polypeptide is suggested to be a fusion protein resulting from an in frame translational readthrough of the traD UGA stopcodon. Distinct sequence similarities can be detected between the TraC proteins of RP4 and R751 gene products TraC3 and TraC4 and in addition between the TraD proteins of both plasmids. The R751 traC3 gene contains a stretch of 507 bp which is unrelated to RP4 traC or any other RP4 Tra1 gene.
Collapse
Affiliation(s)
- L Miele
- Max-Planck-Institut für Molekulare Genetik, Abteilung Schuster, Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Lemm JA, Durbin RK, Stollar V, Rice CM. Mutations which alter the level or structure of nsP4 can affect the efficiency of Sindbis virus replication in a host-dependent manner. J Virol 1990; 64:3001-11. [PMID: 2159558 PMCID: PMC249484 DOI: 10.1128/jvi.64.6.3001-3011.1990] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two mutants of Sindbis virus have been isolated which grow inefficiently at 34.5 degrees C in mosquito cells yet replicate normally in chicken embryo fibroblast cells at the same temperature. In addition, these mutants exhibit temperature-sensitive growth in both cell types and are RNA- at the nonpermissive temperatures (K.J. Kowal and V. Stollar, Virology 114:140-148, 1981). To clarify the basis of this host restriction, we have mapped the causal mutations for these temperature-dependent, host-restricted mutants. Functional mapping and sequence analysis of the mutant cDNAs revealed several mutations which mapped to the amino terminus of nsP4, the putative polymerase subunit of the viral RNA replicase. These mutations resulted in the following amino acid changes in nsP4: leucine to valine at residue 48, aspartate to glycine at residue 142, and proline to arginine at residue 187. Virus containing any of these mutations was restricted in its ability to replicate in mosquito but not chicken embryo fibroblast cells at 34.5 degrees C. In addition to its temperature-dependent, host-restricted phenotype, virus derived from one cDNA clone also exhibited decreased levels of nsP34 and nsP4 yet contained only a silent change in its genome. This C-to-U mutation occurred at nucleotide 5751, the first nucleotide after the opal termination codon separating nsP3 and nsP4. Our results suggest that this substitution decreases readthrough of the opal codon and diminishes production of nsP34 and nsP4. Such a decrease in synthesis rates might lead to levels of these products which are insufficient for viral RNA replication in mosquito cells at the higher temperature. This work provides the first evidence that nsP4 function can be strongly influenced by the host environment.
Collapse
Affiliation(s)
- J A Lemm
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | | | |
Collapse
|
13
|
Hatfield DL, Smith DW, Lee BJ, Worland PJ, Oroszlan S. Structure and function of suppressor tRNAs in higher eukaryotes. Crit Rev Biochem Mol Biol 1990; 25:71-96. [PMID: 2183969 DOI: 10.3109/10409239009090606] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D L Hatfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
14
|
Engelberg-Kulka H, Schoulaker-Schwarz R. A flexible genetic code, or why does selenocysteine have no unique codon? Trends Biochem Sci 1988; 13:419-21. [PMID: 2978098 DOI: 10.1016/0968-0004(88)90209-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Valle RP, Morch MD. Stop making sense: or Regulation at the level of termination in eukaryotic protein synthesis. FEBS Lett 1988; 235:1-15. [PMID: 3042454 PMCID: PMC7130263 DOI: 10.1016/0014-5793(88)81225-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1988] [Indexed: 01/03/2023]
Abstract
An increasing number of examples of translational regulation at the level of termination has been recently reported in eukaryotes. This paper reviews our present knowledge on this topic and proposes an understanding of these regulations by relating the study of viral gene expression to a comprehensive view of the mechanisms and components of the translational process.
Collapse
Key Words
- viral gene expression
- nonsense suppression
- frameshift
- suppressor trna
- protein synthesis termination
- translational accuracy
- aids, acquired immunodeficiency syndrome
- almv, alfalfa mosaic virus
- blv, bovine leukemia virus
- bnyvv, beet necrotic yellow vein virus
- bp, base pair
- camv, cauliflower mosaic virus
- carmv, carnation mottle virus
- felv, feline leukemia virus
- hiv-1, human immunodeficiency virus type 1
- htlv i, human t-cell leukemia virus type i
- htlv ii, human t-cell leukemia virus type ii
- ibv, infectious bronchitis virus
- nt, nucleotide
- ltsv, lucerne transient streak virus
- mo-mulv, moloney murine leukemia virus
- mmtv, mouse mammary tumor virus
- mpmv, mason pfizer monkey virus
- orf, open reading frame
- p-ser, phosphoserine
- ramulv, rauscher murine leukemia virus
- rf, release factor
- rsv, rous sarcoma virus
- se-cys, selenocysteine
- tmv, tobacco mosaic virus
- trv, tobacco rattle virus
- tymv, turnip yellow mosaic virus
- sbwmv, soil-borne wheat mosaic virus
Collapse
Affiliation(s)
- R P Valle
- Institut Jacques Monod, Paris, France
| | | |
Collapse
|