1
|
Wang L, Taché Y. The parasympathetic and sensory innervation of the proximal and distal colon in male mice. Front Neuroanat 2024; 18:1422403. [PMID: 39045348 PMCID: PMC11263295 DOI: 10.3389/fnana.2024.1422403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction The distributions of extrinsic neurons innervating the colon show differences in experimental animals from humans, including the vagal and spinal parasympathetic innervation to the distal colon. The neuroanatomical tracing to the mouse proximal colon has not been studied in details. This study aimed to trace the locations of extrinsic neurons projecting to the mouse proximal colon compared to the distal colon using dual retrograde tracing. Methods The parasympathetic and sensory neurons projecting to colon were assessed using Cholera Toxin subunit B conjugated to Alexa-Fluor 488 or 555 injected in the proximal and distal colon of the same mice. Results Retrograde tracing from the proximal and distal colon labeled neurons in the dorsal motor nucleus of the vagus (DMV) and the nodose ganglia, while the tracing from the distal colon did not label the parasympathetic neurons in the lumbosacral spinal cord at L6-S1. Neurons in the pelvic ganglia which were cholinergic projected to the distal colon. There were more neurons in the DMV and nodose ganglia projecting to the proximal than distal colon. The right nodose ganglion had a higher number of neurons than the left ganglion innervating the proximal colon. In the dorsal root ganglia (DRG), the highest number of neurons traced from the distal colon were at L6, and those from the proximal colon at T12. DRG neurons projected closely to the cholinergic neurons in the intermediolateral column of L6 spinal cord. Small percentages of neurons with dual projections to both the proximal and distal colon existed in the DMV, nodose ganglia and DRG. We also observed long projecting neurons traced from the caudal distal colon to the transverse and proximal colon, some of which were calbindin immunoreactive, while there were no retrogradely labeled neurons traced from the proximal to distal colon. Discussion These data demonstrated that the vagal motor and motor and sensory neurons innervate both the proximal and distal colon in mice, and the autonomic neurons in the intermediate zone of the lumbosacral spinal cord do not project directly to the mouse colon, which differs from that in humans.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
2
|
Park SK, Devi AP, Bae JY, Cho YS, Ko HG, Kim DY, Bae YC. Synaptic connectivity of urinary bladder afferents in the rat superficial dorsal horn and spinal parasympathetic nucleus. J Comp Neurol 2019; 527:3002-3013. [PMID: 31168784 DOI: 10.1002/cne.24725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 11/06/2022]
Abstract
That visceral sensory afferents are functionally distinct from their somatic analogues has been known for a long time but the detailed knowledge of their synaptic connections and neurotransmitters at the first relay nucleus in the spinal cord has been limited. To provide information on these topics, we investigated the synapses and neurotransmitters of identified afferents from the urinary bladder to the superficial laminae of the rat spinal dorsal horn (DH) and the spinal parasympathetic nucleus (SPN) by tracing with horseradish peroxidase, quantitative electron microscopical analysis, and immunogold staining for GABA and glycine. In the DH, most bladder afferent boutons formed synapses with 1-2 postsynaptic dendrites, whereas in the SPN, close to a half of them formed synapses with 3-8 postsynaptic dendrites. The number of postsynaptic dendrites and dendritic spines per bladder afferent bouton, both measures of synaptic divergence and of potential for synaptic plasticity at a single bouton level, were significantly higher in the SPN than in the DH. Bladder afferent boutons frequently received inhibitory axoaxonic synapses from presynaptic endings in the DH but rarely in the SPN. The presynaptic endings were GABA- and/or glycine-immunopositive. The bouton volume, mitochondrial volume, and active zone area, all determinants of synaptic strength, of the bladder afferent boutons were positively correlated with the number of postsynaptic dendrites. These findings suggest that visceral sensory information conveyed via the urinary bladder afferents is processed differently in the DH than in the SPN, and differently from the way somatosensory information is processed in the spinal cord.
Collapse
Affiliation(s)
- Sook Kyung Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Angom Pushparani Devi
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Duk Yoon Kim
- Department of Urology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Michael FM, Patel SP, Rabchevsky AG. Intraspinal Plasticity Associated With the Development of Autonomic Dysreflexia After Complete Spinal Cord Injury. Front Cell Neurosci 2019; 13:505. [PMID: 31780900 PMCID: PMC6856770 DOI: 10.3389/fncel.2019.00505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Traumatic spinal cord injury (SCI) leads to disruption of sensory, motor and autonomic function, and triggers structural, physiological and biochemical changes that cause reorganization of existing circuits that affect functional recovery. Propriospinal neurons (PN) appear to be very plastic within the inhibitory microenvironment of the injured spinal cord by forming compensatory circuits that aid in relaying information across the lesion site and, thus, are being investigated for their potential to promote locomotor recovery after experimental SCI. Yet the role of PN plasticity in autonomic dysfunction is not well characterized, notably, the disruption of supraspinal modulatory signals to spinal sympathetic neurons after SCI at the sixth thoracic spinal segment or above resulting in autonomic dysreflexia (AD). This condition is characterized by unmodulated sympathetic reflexes triggering sporadic hypertension associated with baroreflex mediated bradycardia in response to noxious yet unperceived stimuli below the injury to reduce blood pressure. AD is frequently triggered by pelvic visceral distension (bowel and bladder), and there are documented structural relationships between injury-induced sprouting of pelvic visceral afferent C-fibers. Their excitation of lumbosacral PN, in turn, sprout and relay noxious visceral sensory stimuli to rostral disinhibited thoracic sympathetic preganglionic neurons (SPN) that manifest hypertension. Herein, we review evidence for maladaptive plasticity of PN in neural circuits mediating heightened sympathetic reflexes after complete high thoracic SCI that manifest cardiovascular dysfunction, as well as contemporary research methodologies being employed to unveil the precise contribution of PN plasticity to the pathophysiology underlying AD development.
Collapse
Affiliation(s)
- Felicia M Michael
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Samir P Patel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Alexander G Rabchevsky
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Sadler KE, McQuaid NA, Cox AC, Behun MN, Trouten AM, Kolber BJ. Divergent functions of the left and right central amygdala in visceral nociception. Pain 2017; 158:747-759. [PMID: 28225716 DOI: 10.1097/j.pain.0000000000000830] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The left and right central amygdalae (CeA) are limbic regions involved in somatic and visceral pain processing. These 2 nuclei are asymmetrically involved in somatic pain modulation; pain-like responses on both sides of the body are preferentially driven by the right CeA, and in a reciprocal fashion, nociceptive somatic stimuli on both sides of the body predominantly alter molecular and physiological activities in the right CeA. Unknown, however, is whether this lateralization also exists in visceral pain processing and furthermore what function the left CeA has in modulating nociceptive information. Using urinary bladder distension (UBD) and excitatory optogenetics, a pronociceptive function of the right CeA was demonstrated in mice. Channelrhodopsin-2-mediated activation of the right CeA increased visceromotor responses (VMRs), while activation of the left CeA had no effect. Similarly, UBD-evoked VMRs increased after unilateral infusion of pituitary adenylate cyclase-activating polypeptide in the right CeA. To determine intrinsic left CeA involvement in bladder pain modulation, this region was optogenetically silenced during noxious UBD. Halorhodopsin (NpHR)-mediated inhibition of the left CeA increased VMRs, suggesting an ongoing antinociceptive function for this region. Finally, divergent left and right CeA functions were evaluated during abdominal mechanosensory testing. In naive animals, channelrhodopsin-2-mediated activation of the right CeA induced mechanical allodynia, and after cyclophosphamide-induced bladder sensitization, activation of the left CeA reversed referred bladder pain-like behaviors. Overall, these data provide evidence for functional brain lateralization in the absence of peripheral anatomical asymmetries.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
5
|
Eldahan KC, Rabchevsky AG. Autonomic dysreflexia after spinal cord injury: Systemic pathophysiology and methods of management. Auton Neurosci 2017; 209:59-70. [PMID: 28506502 DOI: 10.1016/j.autneu.2017.05.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/30/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
Traumatic spinal cord injury (SCI) has widespread physiological effects beyond the disruption of sensory and motor function, notably the loss of normal autonomic and cardiovascular control. Injury at or above the sixth thoracic spinal cord segment segregates critical spinal sympathetic neurons from supraspinal modulation which can result in a syndrome known as autonomic dysreflexia (AD). AD is defined as episodic hypertension and concomitant baroreflex-mediated bradycardia initiated by unmodulated sympathetic reflexes in the decentralized cord. This condition is often triggered by noxious yet unperceived visceral or somatic stimuli below the injury level and if severe enough can require immediate medical attention. Herein, we review the pathophysiological mechanisms germane to the development of AD, including maladaptive plasticity of neural circuits mediating abnormal sympathetic reflexes and hypersensitization of peripheral vasculature that collectively contribute to abnormal hemodynamics after SCI. Further, we discuss the systemic effects of recurrent AD and pharmacological treatments used to manage such episodes. Contemporary research avenues are then presented to better understand the relative contributions of underlying mechanisms and to elucidate the effects of recurring AD on cardiovascular and immune functions for developing more targeted and effective treatments to attenuate the development of this insidious syndrome following high-level SCI.
Collapse
Affiliation(s)
- Khalid C Eldahan
- Department of Physiology, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - Alexander G Rabchevsky
- Department of Physiology, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
6
|
He J, Li G, Luo D, Sun H, Qi Y, Li Y, Jin X. Reconstruction of atonic bladder innervation after spinal cord injury: A bladder reflex arc with afferent and efferent pathways. J Spinal Cord Med 2015; 38:717-28. [PMID: 25582052 PMCID: PMC4725806 DOI: 10.1179/2045772314y.0000000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Establishing bladder reflex arcs only with the efferent pathway to induce micturition after spinal cord injury (SCI) has been successful. However, the absence of sensory function and micturition desires can lead to serious complications. Objectives To reconstruct a bladder reflex arc with both afferent and efferent pathways to achieve atonic bladder innervation after SCI. Methods A reflex arc was established by microanastomosis of the S2 dorsal root to the peripheral process of the L5 dorsal ganglion and the L5 ventral root to the S2 ventral root. The functions of the reflex arc were evaluated using electrophysiology, wheat germ agglutinin-horseradish peroxidase (WGA-HRP) tracing, and calcitonin gene-related peptide (CGRP) immunocytochemistry analysis. Hind-paw motion was evaluated by CatWalk gait. Results Compound action potentials and compound muscle action potentials were recorded at the right L5 dorsal root following electrical stimulation of right S2 dorsal root. Similar to the control side, these were not significantly different before or after the spinal cord destruction between L6 and S4. WGA-HRP tracing and CGRP immunocytochemistry showed that construction of the afferent and efferent pathways of the bladder reflex arc encouraged axonal regeneration of motor and sensory nerves, which then made contact with the anterior and posterior horns of the spinal cord, ultimately reestablishing axoplasmic transportation. Gait analysis showed that at 3 months following the operation, only the regularity index was significantly different as compared with 1 day before the operation, other parameters showing no difference. Conclusion Bladder reflex arc with the afferent and efferent pathways reconstructs the micturition function without great influence on the motion of leg.
Collapse
Affiliation(s)
- Jun He
- Department of Orthopaedics, the Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Guitao Li
- Department of Orthopaedics, Guangdong No. 2 Provincial People's Hospital, No. 1 Shiliugang Road, Guangzhou, China
| | - Dixin Luo
- Department of Orthopaedics, Guangdong No. 2 Provincial People's Hospital, No. 1 Shiliugang Road, Guangzhou, China
| | - Hongtao Sun
- Department of Orthopaedics, Guangdong No. 2 Provincial People's Hospital, No. 1 Shiliugang Road, Guangzhou, China
| | - Yong Qi
- Department of Orthopaedics, Guangdong No. 2 Provincial People's Hospital, No. 1 Shiliugang Road, Guangzhou, China
| | - Yiyi Li
- Department of Orthopaedics, Guangdong No. 2 Provincial People's Hospital, No. 1 Shiliugang Road, Guangzhou, China
| | - Xunjie Jin
- Department of Orthopaedics, Guangdong No. 2 Provincial People's Hospital, No. 1 Shiliugang Road, Guangzhou, China,Correspondence to: Xunjie Jin, Department of Orthopaedics, Guangdong No. 2 Provincial People's Hospital, No. 1 Shiliugang Road, Guangzhou 510317, China.
| |
Collapse
|
7
|
Chen YB, Huang FS, Fen B, Yin JB, Wang W, Li YQ. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats. Front Cell Neurosci 2015; 9:206. [PMID: 26074773 PMCID: PMC4446531 DOI: 10.3389/fncel.2015.00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023] Open
Abstract
The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24–30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current–voltage relationship revealed that the EM-2-induced current was reversed at −95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may explain the mechanism of action of morphine treatment and morphine-induced bladder dysfunction in the clinic.
Collapse
Affiliation(s)
- Ying-Biao Chen
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Fen-Sheng Huang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Division of Medical Biophysics, Institute of Neuroscience and Physiology, Göteborg University Göteborg, Sweden
| | - Ban Fen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Wei Wang
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China ; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
8
|
Hubscher CH, Gupta DS, Brink TS. Convergence and cross talk in urogenital neural circuitries. J Neurophysiol 2013; 110:1997-2005. [DOI: 10.1152/jn.00297.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite common comorbidity of sexual and urinary dysfunctions, the interrelationships between the neural control of these functions are poorly understood. The medullary reticular formation (MRF) contributes to both mating/arousal functions and micturition, making it a good site to test circuitry interactions. Urethane-anesthetized adult Wistar rats were used to examine the impact of electrically stimulating different nerve targets [dorsal nerve of the penis (DNP) or clitoris (DNC); L6/S1 trunk] on responses of individual extracellularly recorded MRF neurons. The effect of bladder filling on MRF neurons was also examined, as was stimulation of DNP on bladder reflexes via cystometry. In total, 236 MRF neurons responded to neurostimulation: 102 to DNP stimulation (12 males), 64 to DNC stimulation (12 females), and 70 to L6/S1 trunk stimulation (12 males). Amplitude thresholds were significantly different at DNP (15.0 ± 0.6 μA), DNC (10.5 ± 0.7 μA), and L6/S1 trunk (54.2 ± 4.6 μA), whereas similar frequency responses were found (max responses near 30–40 Hz). In five males, filling/voiding cycles were lengthened with DNP stimulation (11.0 ± 0.9 μA), with a maximal effective frequency plateau beginning at 30 Hz. Bladder effects lasted ∼2 min after DNP stimulus offset. Many MRF neurons receiving DNP/DNC input responded to bladder filling (35.0% and 68.3%, respectively), either just before (43%) or simultaneously with (57%) the voiding reflex. Taken together, MRF-evoked responses with neurostimulation of multiple nerve targets along with different responses to bladder infusion have implications for the role of MRF in multiple aspects of urogenital functions.
Collapse
Affiliation(s)
- C. H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - D. S. Gupta
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - T. S. Brink
- Neuromodulation Research, Medtronic Incorporated, Minneapolis, Minnesota
| |
Collapse
|
9
|
Dou XL, Qin RL, Qu J, Liao YH, Lu YC, Zhang T, Shao C, Li YQ. Synaptic connections between endomorphin 2-immunoreactive terminals and μ-opioid receptor-expressing neurons in the sacral parasympathetic nucleus of the rat. PLoS One 2013; 8:e62028. [PMID: 23671582 PMCID: PMC3643968 DOI: 10.1371/journal.pone.0062028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/16/2013] [Indexed: 02/06/2023] Open
Abstract
The urinary bladder is innervated by parasympathetic preganglionic neurons (PPNs) that express μ-opioid receptors (MOR) in the sacral parasympathetic nucleus (SPN) at lumbosacral segments L6-S1. The SPN also contains endomorphin 2 (EM2)-immunoreactive (IR) fibers and terminals. EM2 is the endogenous ligand of MOR. In the present study, retrograde tract-tracing with cholera toxin subunit b (CTb) or wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) via the pelvic nerve combined with immunohistochemical staining for EM2 and MOR to identify PPNs within the SPN as well as synaptic connections between the EM2-IR terminals and MOR-expressing PPNs in the SPN of the rat. After CTb was injected into the pelvic nerve, CTb retrogradely labeled neurons were almost exclusively located in the lateral part of the intermediolateral gray matter at L6-S1 of the lumbosacral spinal cord. All of the them also expressed MOR. EM2-IR terminals formed symmetric synapses with MOR-IR, WGA-HRP-labeled and WGA-HRP/MOR double-labeled neuronal cell bodies and dendrites within the SPN. These results provided morphological evidence that EM2-containing axon terminals formed symmetric synapses with MOR-expressing PPNs in the SPN. The present results also show that EM2 and MOR might be involved in both the homeostatic control and information transmission of micturition.
Collapse
Affiliation(s)
- Xiao Liang Dou
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rong Liang Qin
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Juan Qu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yong Hui Liao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ya cheng Lu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Chen Shao
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- * E-mail: (CS); (YQL)
| | - Yun Qing Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
- * E-mail: (CS); (YQL)
| |
Collapse
|
10
|
TAKEDA M, MOCHIZUKI T, YOSHIYAMA M, NAKAGOMI H, KOBAYASHI H, SAWADA N, ZAKOHJI H, DU S, ARAKI I. Sensor Mechanism and Afferent Signal Transduction of the Urinary Bladder: Special Focus on transient receptor potential Ion Channels. Low Urin Tract Symptoms 2010; 2:51-60. [DOI: 10.1111/j.1757-5672.2010.00074.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Abstract
The mechanism of visceral pain is still less understood compared with that of somatic pain. This is primarily due to the diverse nature of visceral pain compounded by multiple factors such as sexual dimorphism, psychological stress, genetic trait, and the nature of predisposed disease. Due to multiple contributing factors there is an enormous challenge to develop animal models that ideally mimic the exact disease condition. In spite of that, it is well recognized that visceral hypersensitivity can occur due to (1) sensitization of primary sensory afferents innervating the viscera, (2) hyperexcitability of spinal ascending neurons (central sensitization) receiving synaptic input from the viscera, and (3) dysregulation of descending pathways that modulate spinal nociceptive transmission. Depending on the type of stimulus condition, different neural pathways are involved in chronic pain. In early-life psychological stress such as maternal separation, chronic pain occurs later in life due to dysregulation of the hypothalamic-pituitary-adrenal axis and significant increase in corticotrophin releasing factor (CRF) secretion. In contrast, in early-life inflammatory conditions such as colitis and cystitis, there is dysregulation of the descending opioidergic system that results excessive pain perception (i.e., visceral hyperalgesia). Functional bowel disorders and chronic pelvic pain represent unexplained pain that is not associated with identifiable organic diseases. Often pain overlaps between two organs and approximately 35% of patients with chronic pelvic pain showed significant improvement when treated for functional bowel disorders. Animal studies have documented that two main components such as (1) dichotomy of primary afferent fibers innervating two pelvic organs and (2) common convergence of two afferent fibers onto a spinal dorsal horn are contributing factors for organ-to-organ pain overlap. With reports emerging about the varieties of peptide molecules involved in the pathological conditions of visceral pain, it is expected that better therapy will be achieved relatively soon to manage chronic visceral pain.
Collapse
|
12
|
Ion channel and receptor mechanisms of bladder afferent nerve sensitivity. Auton Neurosci 2009; 153:26-32. [PMID: 19632906 DOI: 10.1016/j.autneu.2009.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 01/25/2023]
Abstract
Sensory nerves of the urinary bladder consist of small diameter A(delta) and C fibers running in the hypogastic and pelvic nerves. Neuroanatomical studies have revealed a complex neuronal network within the bladder wall. Electrophysiological recordings in vitro and in vivo have revealed several distinct classes of afferent fibers that may signal a wide range of bladder stimulations including physiological bladder filling, noxious distension, cold, chemical irritation and inflammation. The exact mechanisms that underline mechanosensory transduction in bladder afferent terminals remain ambiguous; however, a wide range of ion channels (e.g., TTX-resistant Na(+) channels, Kv channels and hyperpolarization-activated cyclic nucleotide-gated cation channels) and receptors (e.g., TRPV1, TRPM8, TRPA1, P2X(2/3), etc) have been identified at bladder afferent terminals and implicated in the generation and modulation of afferent signals. Experimental investigations have revealed that expression and/or function of these ion channels and receptors may be altered in animal models and patients with overactive and painful bladder disorders. Some of these ion channels and receptors may be potential therapeutic targets for bladder diseases.
Collapse
|
13
|
Hou S, Duale H, Rabchevsky AG. Intraspinal sprouting of unmyelinated pelvic afferents after complete spinal cord injury is correlated with autonomic dysreflexia induced by visceral pain. Neuroscience 2008; 159:369-79. [PMID: 19146928 DOI: 10.1016/j.neuroscience.2008.12.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
Autonomic dysreflexia is a potentially life-threatening hypertensive syndrome following high thoracic (T) spinal cord injury (SCI). It is commonly triggered by noxious pelvic stimuli below the injury site that correlates with increased sprouting of primary afferent C-fibers into the lumbosacral (L/S) spinal cord. We have recently demonstrated that injury-induced plasticity of (L/S) propriospinal neurons, which relay pelvic visceral sensations to thoracolumbar sympathetic preganglionic neurons, is also correlated with the development of this syndrome. To determine the phenotype of pelvic afferent fiber sprouts after SCI, cholera toxin subunit beta (CTb) was injected into the distal colon 2 weeks post-T4 transection/sham to label colonic visceral afferents. After 1 week of transport, the (L/S) spinal cords were cryosectioned and immunohistochemically stained for CTb, the nociceptive-specific marker calcitonin gene-related peptide (CGRP), and the myelinated fiber marker RT97. Quantitative analysis showed that the density of CGRP(+) afferent fibers was significantly increased in the L/S dorsal horns of T4-transected versus sham rats, whereas RT97(+) afferent fiber density showed no change. Importantly, CTb-labeled pelvic afferent fibers were co-localized with CGRP(+) fibers, but not with RT97(+) fibers. These results suggest that the sprouting of unmyelinated nociceptive pelvic afferents following high thoracic SCI, but not myelinated fibers, contributes to hypertensive autonomic dysreflexia induced by pelvic visceral pain.
Collapse
Affiliation(s)
- S Hou
- Spinal Cord and Brain Injury Research Center, Department of Physiology, B471, Biomedical and Biological Sciences Research Building, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| | | | | |
Collapse
|
14
|
Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG. Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol 2008; 509:382-99. [PMID: 18512692 PMCID: PMC2536612 DOI: 10.1002/cne.21771] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complete thoracic (T) spinal cord injury (SCI) above the T6 level typically results in autonomic dysreflexia, an abnormal hypertensive condition commonly triggered by nociceptive stimuli below the level of SCI. Overexpression of nerve growth factor in the lumbosacral spinal cord induces profuse sprouting of nociceptive pelvic visceral afferent fibers that correlates with increased hypertension in response to noxious colorectal distension. After complete T4 SCI, we evaluated the plasticity of propriospinal neurons conveying visceral input rostrally to thoracic sympathetic preganglionic neurons. The anterograde tracer biotinylated dextran amine (BDA) was injected into the lumbosacral dorsal gray commissure (DGC) of injured/nontransected rats immediately after injury (acute) or 2 weeks later (delayed). At 1 or 2 weeks after delayed or acute injections, respectively, a higher density (P < 0.05) of BDA(+) fibers was found in thoracic dorsal gray matter of injured vs. nontransected spinal cords. For corroboration, fast blue (FB) or cholera toxin subunit beta (CTb) was injected into the T9 dorsal horns 2 weeks postinjury/nontransection. After 1 week transport, more retrogradely labeled (P < 0.05) DGC propriospinal neurons (T13-S1) were quantified in injured vs. nontransected cords. We also monitored immediate early gene c-fos expression following colorectal distension and found increased (P < 0.01) c-Fos(+) cell numbers throughout the DGC after injury. Collectively, these results imply that, in conjunction with local primary afferent fiber plasticity, injury-induced sprouting of DGC neurons may be a key constituent in relaying visceral sensory input to sympathetic preganglionic neurons that elicit autonomic dysreflexia after high thoracic SCI.
Collapse
Affiliation(s)
- Shaoping Hou
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
- Department of Physiology, University of Kentucky, Lexington, KY 40536−0509
| | - Hanad Duale
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
- Department of Physiology, University of Kentucky, Lexington, KY 40536−0509
| | - Adrian A. Cameron
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
| | - Sarah M. Abshire
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
| | - Travis S. Lyttle
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
| | - Alexander G. Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536−0509
- Department of Physiology, University of Kentucky, Lexington, KY 40536−0509
| |
Collapse
|
15
|
Cameron AA, Smith GM, Randall DC, Brown DR, Rabchevsky AG. Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci 2006; 26:2923-32. [PMID: 16540569 PMCID: PMC3535471 DOI: 10.1523/jneurosci.4390-05.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe spinal cord injuries above mid-thoracic levels can lead to a potentially life-threatening hypertensive condition termed autonomic dysreflexia, which is often triggered by painful distension of pelvic viscera (bladder or bowel) and consequent sensory fiber activation, including nociceptive C-fibers. Interruption of tonically active medullo-spinal pathways after injury causes disinhibition of thoracolumbar sympathetic preganglionic neurons, and intraspinal sprouting of nerve growth factor (NGF)-responsive primary afferent fibers is thought to contribute to their hyperactivity. We investigated spinal levels that are critical for eliciting autonomic dysreflexia using a model of noxious colorectal distension (CRD) after complete spinal transection at the fourth thoracic segment in rats. Post-traumatic sprouting of calcitonin gene-related peptide (CGRP)-immunoreactive primary afferent fibers was selectively altered at specific spinal levels caudal to the injury with bilateral microinjections of adenovirus encoding the growth-promoting NGF or growth-inhibitory semaphorin 3A (Sema3a) compared with control green fluorescent protein (GFP). Two weeks later, cardio-physiological responses to CRD were assessed among treatment groups before histological analysis of afferent fiber density at the injection sites. Dysreflexic hypertension was significantly higher with NGF overexpression in lumbosacral segments compared with GFP, whereas similar overexpression of Sema3a significantly reduced noxious CRD-evoked hypertension. Quantitative analysis of CGRP immunostaining in the spinal dorsal horns showed a significant correlation between the extent of fiber sprouting into the spinal segments injected and the severity of autonomic dysreflexia. These results demonstrate that site-directed genetic manipulation of axon guidance molecules after complete spinal cord injury can alter endogenous circuitry to modulate plasticity-induced autonomic pathophysiology.
Collapse
|
16
|
Ranson RN, Priestley DJ, Santer RM, Watson AHD. Changes in the substance P-containing innervation of the lumbosacral spinal cord in male Wistar rats as a consequence of ageing. Brain Res 2005; 1036:139-44. [PMID: 15725411 DOI: 10.1016/j.brainres.2004.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 12/09/2004] [Accepted: 12/11/2004] [Indexed: 01/01/2023]
Abstract
Quantitative image analysis was used to determine age-related changes in the substance P-containing innervation of autonomic and somatic nuclei in the lumbosacral spinal cord, which are associated with the control of micturition and sexual reflexes. In the upper lumbar segments (L1-L2), significant declines in the distribution density of substance P-containing processes were observed in the dorsal grey commissure, the intermediolateral cell column and the ventral horn. More caudally, at levels corresponding to L5 through S1, significant reductions were seen in the dorsal grey commissure and within the sacral parasympathetic nucleus. In contrast to these observations, the substance P-immunoreactive innervation of the dorsolateral nucleus remained robust in aged animals and was not significantly different from young adults. It is possible that these distinct age-related patterns of change in substance P-containing innervation, are reflected in the urinary/sexual dysfunction's in aged animals.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Biomedical Sciences Buildings, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | | | |
Collapse
|
17
|
Qin C, Chandler MJ, Foreman RD. Effects of urinary bladder distension on activity of T3-T4 spinal neurons receiving cardiac and somatic noxious inputs in rats. Brain Res 2003; 971:210-20. [PMID: 12706237 DOI: 10.1016/s0006-8993(03)02362-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aims of this study were to examine effects of urinary bladder distension (UBD) on T(3)-T(4) spinal neurons receiving cardiac and somatic noxious inputs and to determine the pathway involved in transmitting urinary bladder inputs to thoracic spinal segments. Extracellular potentials of single T(3)-T(4) neurons were recorded in pentobarbital anesthetized male rats. Either bradykinin solution (10(-5) M) or an allogenic mixture (adenosine 10(-3) M, bradykinin, histamine, serotonin, prostaglandin E2 10(-5) M each) was administered intrapericardially. UBD was produced by saline inflation (0.5-2.0 ml, 20 s). Of 487 neurons tested for responses to UBD, 70 were inhibited and 37 were excited. Seventy-six out of 336 neurons received convergent input from UBD and heart; 69/76 viscerovisceral convergent neurons had somatic fields. Spinal transection at rostral C(1) abolished UBD inhibition in 5/9 neurons; whereas transections at L(1)-L(2) abolished UBD inhibition in 3/3 cells tested. Results showed that T(3)-T(4) spinal neurons processing cardiac and somatic nociceptive information were primarily inhibited by input from the urinary bladder through either supraspinal structures or direct intraspinal pathways.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73190, USA.
| | | | | |
Collapse
|
18
|
SPINAL IMPLANTS OF OLFACTORY ENSHEATHING CELLS PROMOTE AXON REGENERATION AND BLADDER ACTIVITY AFTER BILATERAL LUMBOSACRAL DORSAL RHIZOTOMY IN THE ADULT RAT. J Urol 2002. [DOI: 10.1016/s0022-5347(05)65356-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
SPINAL IMPLANTS OF OLFACTORY ENSHEATHING CELLS PROMOTE AXON REGENERATION AND BLADDER ACTIVITY AFTER BILATERAL LUMBOSACRAL DORSAL RHIZOTOMY IN THE ADULT RAT. J Urol 2002. [DOI: 10.1097/00005392-200203000-00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Taylor JS, Muñetón-Gómez VC, Eguía-Recuero R, Nieto-Sampedro M. Transplants of olfactory bulb ensheathing cells promote functional repair of multiple dorsal rhizotomy. PROGRESS IN BRAIN RESEARCH 2001; 132:641-54. [PMID: 11545026 DOI: 10.1016/s0079-6123(01)32108-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- J S Taylor
- Instituto Cajal de Neurobiología, CSIC, Avenida del Doctor Arce, 37, Madrid 28002, Spain
| | | | | | | |
Collapse
|
21
|
Coordination of the bladder detrusor and the external urethral sphincter in a rat model of spinal cord injury: effect of injury severity. J Neurosci 2001. [PMID: 11160435 DOI: 10.1523/jneurosci.21-02-00559.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recovery of urinary tract function after spinal cord injury (SCI) is important in its own right and may also serve as a model for studying mechanisms of functional recovery after injury in the CNS. Normal micturition requires coordinated activation of smooth muscle of the bladder (detrusor) and striated muscle of the external urethral sphincter (EUS) that is controlled by spinal and supraspinal circuitry. We used a clinically relevant rat model of thoracic spinal cord contusion injury to examine the effect of varying the degree of residual supraspinal connections on chronic detrusor-EUS coordination. Urodynamic evaluation at 8 weeks after SCI showed that detrusor contractions of the bladder recovered similarly in groups of rats injured with a 10 gm weight dropped 12.5, 25, or 50 mm onto the spinal cord. In contrast, the degree of coordinated activation of the EUS varied with the severity of initial injury and the degree of preservation of white matter at the injury site. The 12.5 mm SCI resulted in the sparing of 20% of the white matter at the injury site and complete recovery of detrusor-EUS coordination. In more severely injured rats, the chronic recovery of detrusor-EUS coordination was very incomplete and correlated to decreased innervation of lower motoneurons by descending control pathways and their increased levels of mRNA for glutamate receptor subunits NR2A and GluR2. These results show that the extent of recovery of detrusor-EUS coordination depends on injury severity and the degree of residual connections with brainstem control centers.
Collapse
|
22
|
Vera PL, Nadelhaft I. Anatomical evidence for two spinal 'afferent-interneuron-efferent' reflex pathways involved in micturition in the rat: a 'pelvic nerve' reflex pathway and a 'sacrolumbar intersegmental' reflex pathway. Brain Res 2000; 883:107-18. [PMID: 11063993 DOI: 10.1016/s0006-8993(00)02732-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We labeled interneurons in the L1-L2 and L6-S1 spinal cord segments of the rat that are involved in bladder innervation using transneuronal retrograde transport of pseudorabies virus (PRV) in normal animals and in animals with selected nerve transections. Preganglionic neurons were identified using antisera against choline acetyltransferase (ChAT). In some experiments we labelled parasympathetic preganglionic neurons (PPNs) in the L6-S1 spinal cord by retrograde transport of Fluorogold from the major pelvic ganglion. We identified bladder afferent terminals using the transganglionic transport of the anterograde tracer cholera toxin subunit b. We present anatomical evidence for two spinal pathways involved in innervation of the bladder. First, in the intact rat, afferent information from the bladder connects, via interneurons in L6-S1, to the PPNs that provide the efferent innervation of the bladder. The afferent terminals were located mainly in close apposition to interneurons located dorsal to the retrogradely labeled PPNs. Second, using L6-S1 ganglionectomies or L6-S1 ventral root rhizotomies we limited viral transport to the sympathetic pathways innervating the bladder. This procedure also labelled interneurons (but not PPNs) with PRV in the L6-S1 spinal cord in a location very similar to those described in the intact rat. These interneurons also receive bladder afferent terminals but we propose that they project to sympathetic preganglionic neurons, most of which are in the L1-L2 spinal segments. Based on this anatomical evidence, we propose the existence of two spinal reflex pathways involved in micturition: a pathway limited to a reflex arc in the pelvic nerve (presumably excitatory to the detrusor muscle); and a pathway involving the pelvic nerve and sympathetic nerve fibers, some of which may travel in the hypogastric (presumably inhibitory to the detrusor muscle).
Collapse
Affiliation(s)
- P L Vera
- Veteran's Administration Medical Center, R&D Service (151), Bay Pines, FL 33744, USA
| | | |
Collapse
|
23
|
Nicholas AP, Zhang X, Hökfelt T. An immunohistochemical investigation of the opioid cell column in lamina X of the male rat lumbosacral spinal cord. Neurosci Lett 1999; 270:9-12. [PMID: 10454133 DOI: 10.1016/s0304-3940(99)00446-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tri-color immunohistochemistry was employed to examine enkephalin-like immunoreactive neurons in lamina X of the rat lumbosacral spinal cord. Serial coronal sections from levels L1 to S3 were examined. A rostral group of large (40-50 microm diameter), pyramidal-shaped enkephalin-like immunoreactive neurons were shown from levels L1 to L4-5. Essentially all of these neurons were also immunoreactive for galanin and cholecystokinin. A second enkephalin-like immunoreactive cell group, extending from L5 to approximately the S2-3 level, contained smaller (20-30 microm diameter), ovoid-shaped perikaryia. Approximately 75% of these enkephalin-like immunoreactive neurons were also immunoreactive for neuropeptide Y. Neurotensin-immunoreactivity was also present in this area, having varying amounts of co-localization with these other two peptides. These results demonstrate that the lumbosacral opioid cell column in lamina X is not a neurochemically homogenous structure.
Collapse
Affiliation(s)
- A P Nicholas
- Department of Neurology, University of Alabama at Birmingham, 35233-7340, USA.
| | | | | |
Collapse
|
24
|
Wang HF, Shortland P, Park MJ, Grant G. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder. Neuroscience 1998; 87:275-88. [PMID: 9722157 DOI: 10.1016/s0306-4522(98)00061-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with myelinated fibres). Double labelling with other neuronal markers showed that 71%, 43% and 36% of the cholera toxin B subunit-immunoreactive cells were calcitonin gene-related peptide-, isolectin B4-binding- and substance P-positive, respectively. A few cholera toxin B subunit cells showed galanin-immunoreactivity, but none were somatostatin-, vasoactive intestinal polypeptide-, or neuropeptide Y-immunoreactive or contained fluoride-resistant acid phosphatase. The results show that cholera toxin B subunit-horseradish peroxidase is a more effective retrograde and transganglionic tracer for pelvic primary afferents from the urinary bladder than wheat germ agglutinin-horseradish peroxidase and isolectin B4-horseradish peroxidase, but in contrast to somatic nerves, it is transported mainly by unmyelinated fibres in the visceral afferents.
Collapse
Affiliation(s)
- H F Wang
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Su X, Sengupta JN, Gebhart GF. Effects of opioids on mechanosensitive pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 1997; 77:1566-80. [PMID: 9084620 DOI: 10.1152/jn.1997.77.3.1566] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A total of 443 pelvic nerve afferent fibers in the L6 dorsal root of the rat were identified by electrical stimulation of the pelvic nerve; 319 (72%) were myelinated A delta fibers with a mean conduction velocity (CV) of 11.8 m/s and 124 (28%) were unmyelinated C fibers with mean CV of 1.9 m/s. Two hundred fifty-two fibers (57%) responded to noxious urinary bladder distension (UBD; 80 mmHg); 108 were C fibers (mean CV; 1.9 m/s) and 144 were A delta fibers (mean CV; 8.2 m/s). Forty-nine UBD-sensitive fibers were further characterized; all gave monotonic increases in firing to increasing distending pressures. Thirty-six fibers (73%) had a low-threshold (LT) for response (mean: 6 mmHg) and 13 fibers (27%) had high-thresholds (HT) for response (mean: 32 mmHg). Responses of 15 fibers to graded UBD (11 LT and 4 HT) were tested before and after instillation of 0.5 ml of 30% xylenes (n = 11) or 5% mustard oil (n = 4) into the bladder. The mean resting activity of 13 fibers significantly increased, and 7 fibers exhibited sensitization of responses to graded UBD 30 min after xylenes or mustard oil instillation. All 4 HT fibers were sensitized; 3 of the 11 LT fibers were sensitized (i.e., gave increased responses to UBD). The effects of opioid receptor agonists were tested on responses to noxious UBD (80 mmHg). Cumulative intraarterial doses of mu-opioid receptor agonists (morphine, 8 mg/kg, and fentanyl, 300 micrograms/kg) and of delta-opioid receptor agonists (DPDPE, 300 micrograms/kg, and SNC-80, 300 micrograms/kg) did not affect responses to noxious UBD. In contrast, cumulative 16 mg/kg intraarterial doses of the kappa-opioid receptor agonists U50,488H, U69,593 and U62,066 dose-dependently attenuated responses to noxious UBD. There were no differences in the dose-response relationships of these drugs on afferent fibers from untreated and xylenes- or mustard oil-treated urinary bladder. These results reveal that there is a greater proportion of UBD-sensitive fibers in the L6 dorsal root (57%) than in the S1 dorsal root of the rat (38%; a previous study). The attenuation of responses to UBD by kappa, but not mu or delta opioid receptor agonists suggests a potential use for peripherally acting kappa opioid receptor agonists in the control of urinary bladder pain.
Collapse
Affiliation(s)
- X Su
- University of Iowa, College of Medicine, Department of Pharmacology, Iowa City 52242, USA
| | | | | |
Collapse
|