1
|
Harris S, Chinnery HR, Semple BD, Mychasiuk R. Shaking Up Our Approach: The Need for Characterization and Optimization of Pre-clinical Models of Infant Abusive Head Trauma. J Neurotrauma 2024; 41:1853-1870. [PMID: 38497766 DOI: 10.1089/neu.2023.0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Traumatic brain injuries (TBIs) are a large societal and individual burden. In the first year of life, the vast majority of these injuries are the result of inflicted abusive events by a trusted caregiver. Abusive head trauma (AHT) in infants, formerly known as shaken baby syndrome, is the leading cause of inflicted mortality and morbidity in this population. In this review we address clinical diagnosis, symptoms, prognosis, and neuropathology of AHT, emphasizing the burden of repetitive AHT. Next, we consider existing animal models of AHT, and we evaluate key features of an ideal model, highlighting important developmental milestones in children most vulnerable to AHT. We draw on insights from other injury models, such as repetitive, mild TBIs (RmTBIs), post-traumatic epilepsy (PTE), hypoxic-ischemic injuries, and maternal neglect, to speculate on key knowledge gaps and underline important new opportunities in pre-clinical AHT research. Finally, potential treatment options to facilitate healthy development in children following an AHT are considered. Together, this review aims to drive the field toward optimized, well-characterized animal models of AHT, which will allow for greater insight into the underlying neuropathological and neurobehavioral consequences of AHT.
Collapse
Affiliation(s)
- Sydney Harris
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Science, University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
| |
Collapse
|
2
|
Park S, Haak KV, Oldham S, Cho H, Byeon K, Park BY, Thomson P, Chen H, Gao W, Xu T, Valk S, Milham MP, Bernhardt B, Di Martino A, Hong SJ. A shifting role of thalamocortical connectivity in the emergence of cortical functional organization. Nat Neurosci 2024; 27:1609-1619. [PMID: 38858608 DOI: 10.1038/s41593-024-01679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
The cortical patterning principle has been a long-standing question in neuroscience, yet how this translates to macroscale functional specialization in the human brain remains largely unknown. Here we examine age-dependent differences in resting-state thalamocortical connectivity to investigate its role in the emergence of large-scale functional networks during early life, using a primarily cross-sectional but also longitudinal approach. We show that thalamocortical connectivity during infancy reflects an early differentiation of sensorimotor networks and genetically influenced axonal projection. This pattern changes in childhood, when connectivity is established with the salience network, while decoupling externally and internally oriented functional systems. A developmental simulation using generative network models corroborated these findings, demonstrating that thalamic connectivity contributes to developing key features of the mature brain, such as functional segregation and the sensory-association axis, especially across 12-18 years of age. Our study suggests that the thalamus plays an important role in functional specialization during development, with potential implications for studying conditions with compromised internal and external processing.
Collapse
Affiliation(s)
- Shinwon Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Autism Center, Child Mind Institute, New York, NY, USA
| | - Koen V Haak
- Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute, Radboud University, Radboud, The Netherlands
| | - Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Hanbyul Cho
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Kyoungseob Byeon
- Center for Integrative Developing Brain, Child Mind Institute, New York, NY, USA
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Haitao Chen
- Department of Biomedical Sciences and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Wei Gao
- Department of Biomedical Sciences and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ting Xu
- Center for Integrative Developing Brain, Child Mind Institute, New York, NY, USA
| | - Sofie Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7), Brain and Behavior, Forschungszentrum, Juelich, Germany
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea.
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea.
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
3
|
Yellajoshyula D. Transcriptional regulatory network for neuron-glia interactions and its implication for DYT6 dystonia. DYSTONIA (LAUSANNE, SWITZERLAND) 2023; 2:11796. [PMID: 38737544 PMCID: PMC11087070 DOI: 10.3389/dyst.2023.11796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Advances in sequencing technologies have identified novel genes associated with inherited forms of dystonia, providing valuable insights into its genetic basis and revealing diverse genetic pathways and mechanisms involved in its pathophysiology. Since identifying genetic variation in the transcription factor coding THAP1 gene linked to isolated dystonia, numerous investigations have employed transcriptomic studies in DYT-THAP1 models to uncover pathogenic molecular mechanisms underlying dystonia. This review examines key findings from transcriptomic studies conducted on in vivo and in vitro DYT-THAP1 models, which demonstrate that the THAP1-regulated transcriptome is diverse and cell-specific, yet it is bound and co-regulated by a common set of proteins. Prominent among its functions, THAP1 and its co-regulatory network target molecular pathways critical for generating myelinating oligodendrocytes that ensheath axons and generate white matter in the central nervous system. Several lines of investigation have demonstrated the importance of myelination and oligodendrogenesis in motor function during development and in adults, emphasizing the non-cell autonomous contributions of glial cells to neural circuits involved in motor function. Further research on the role of myelin abnormalities in motor deficits in DYT6 models will enhance our understanding of axon-glia interactions in dystonia pathophysiology and provide potential therapeutic interventions targeting these pathways.
Collapse
|
4
|
Castelnovo A, Lividini A, Riedner BA, Avvenuti G, Jones SG, Miano S, Tononi G, Manconi M, Bernardi G. Origin, synchronization, and propagation of sleep slow waves in children. Neuroimage 2023; 274:120133. [PMID: 37094626 DOI: 10.1016/j.neuroimage.2023.120133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
STUDY OBJECTIVES Sleep slow wave activity, as measured using EEG delta power (<4 Hz), undergoes significant changes throughout development, mirroring changes in brain function and anatomy. Yet, age-dependent variations in the characteristics of individual slow waves have not been thoroughly investigated. Here we aimed at characterizing individual slow wave properties such as origin, synchronization, and cortical propagation at the transition between childhood and adulthood. METHODS We analyzed overnight high-density (256 electrodes) EEG recordings of healthy typically developing children (N=21, 10.3±1.5 years old) and young healthy adults (N=18, 31.1±4.4 years old). All recordings were preprocessed to reduce artifacts, and NREM slow waves were detected and characterized using validated algorithms. The threshold for statistical significance was set at p=0.05. RESULTS The slow waves of children were larger and steeper, but less widespread than those of adults. Moreover, they tended to mainly originate from and spread over more posterior brain areas. Relative to those of adults, the slow waves of children also displayed a tendency to more strongly involve and originate from the right than the left hemisphere. The separate analysis of slow waves characterized by high and low synchronization efficiency showed that these waves undergo partially distinct maturation patterns, consistent with their possible dependence on different generation and synchronization mechanisms. CONCLUSIONS Changes in slow wave origin, synchronization, and propagation at the transition between childhood and adulthood are consistent with known modifications in cortico-cortical and subcortico-cortical brain connectivity. In this light, changes in slow-wave properties may provide a valuable yardstick to assess, track, and interpret physiological and pathological development.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Althea Lividini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST SS. Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Brady A Riedner
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Stephanie G Jones
- Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison(,) Madison, WI, USA
| | - Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giulio Tononi
- Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison(,) Madison, WI, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
5
|
Bornstein MH, Mash C, Romero R, Gandjbakhche AH, Nguyen T. Electrophysiological Evidence for Interhemispheric Connectivity and Communication in Young Human Infants. Brain Sci 2023; 13:brainsci13040647. [PMID: 37190612 DOI: 10.3390/brainsci13040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Little is known empirically about connectivity and communication between the two hemispheres of the brain in the first year of life, and what theoretical opinion exists appears to be at variance with the meager extant anatomical evidence. To shed initial light on the question of interhemispheric connectivity and communication, this study investigated brain correlates of interhemispheric transmission of information in young human infants. We analyzed EEG data from 12 4-month-olds undergoing a face-related oddball ERP protocol. The activity in the contralateral hemisphere differed between odd-same and odd-difference trials, with the odd-different response being weaker than the response during odd-same trials. The infants' contralateral hemisphere "recognized" the odd familiar stimulus and "discriminated" the odd-different one. These findings demonstrate connectivity and communication between the two hemispheres of the brain in the first year of life and lead to a better understanding of the functional integrity of the developing human infant brain.
Collapse
Affiliation(s)
- Marc H Bornstein
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, 8404 Irvington Avenue, Bethesda, MD 20892, USA
- Institute for Fiscal Studies, London WC1E 7AE, UK
- United Nations Children's Fund, New York, NY 10017, USA
| | - Clay Mash
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, 8404 Irvington Avenue, Bethesda, MD 20892, USA
- Environmental Influences on Child Health Outcomes, National Institutes of Health, Bethesda, MD 20852, USA
| | - Roberto Romero
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, 8404 Irvington Avenue, Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Amir H Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, 8404 Irvington Avenue, Bethesda, MD 20892, USA
| | - Thien Nguyen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, 8404 Irvington Avenue, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Siffredi V, Liverani MC, Van De Ville D, Freitas LGA, Borradori Tolsa C, Hüppi PS, Ha-Vinh Leuchter R. Corpus callosum structural characteristics in very preterm children and adolescents: Developmental trajectory and relationship to cognitive functioning. Dev Cogn Neurosci 2023; 60:101211. [PMID: 36780739 PMCID: PMC9925611 DOI: 10.1016/j.dcn.2023.101211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Previous studies suggest that structural alteration of the corpus callosum, i.e., the largest white matter commissural pathway, occurs after a preterm birth in the neonatal period and lasts across development. The present study aims to unravel corpus callosum structural characteristics across childhood and adolescence in very preterm (VPT) individuals, and their associations with general intellectual, executive and socio-emotional functioning. Neuropsychological assessments, T1-weighted and multi-shell diffusion MRI were collected in 79 VPT and 46 full term controls aged 6-14 years. Volumetric, diffusion tensor and neurite orientation dispersion and density imaging (NODDI) measures were extracted on 7 callosal portions using TractSeg. A multivariate data-driven approach (partial least squares correlation) and a cohort-based age normative modelling approach were used to explore associations between callosal characteristics and neuropsychological outcomes. The VPT and a full-term control groups showed similar trends of white-matter maturation over time, i.e., increase FA and reduced ODI, in all callosal segments, that was associated with increase in general intellectual functioning. However, using a cohort-based age-related normative modelling, findings show atypical pattern of callosal development in the VPT group, with reduced callosal maturation over time that was associated with poorer general intellectual and working memory functioning, as well as with lower gestational age.
Collapse
Affiliation(s)
- Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland.
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; SensoriMotor, Affective and Social Development Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Lorena G A Freitas
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Petra Susan Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
7
|
Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: Lifelong socioemotional consequences. Neuropharmacology 2023; 225:109404. [PMID: 36572178 PMCID: PMC9926961 DOI: 10.1016/j.neuropharm.2022.109404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - Steven M Herron
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Isiklar S, Ozdemir ST, Ozkaya G, Ozpar R. Three dimensional development and asymmetry of the corpus callosum in the 0-18 age group: A retrospective magnetic resonance imaging study. Clin Anat 2022; 36:581-598. [PMID: 36527384 DOI: 10.1002/ca.23996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Most of the corpus callosum (CC) developmental studies are concerned with its two-dimensional structure. Linear and area measurements do not directly assess the CC size but estimate the overall structure from the cross-sectional image. This study investigated age- and sex-related changes in volumetric development and asymmetry of CC from birth to 18. For this retrospective study, we selected 696 patients (329 [47.27%] females) with both 3D-T1-weighted sequence and normal radiological anatomy from patients 0-18 years of age who had brain magnetic resonance imaging (MRI) between 2012 and 2020. The genu, body, splenium, and total volume of CC were calculated using MRICloud. The measurement results of 23 age groups were analyzed with SPSS (ver.28). Total CC volume was 18740.76 ± 4314.06 mm3 between 0 and 18 years of age, and its ratio to total brain volume (TBV) was 1.70% ± 0.23%. We observed that the total CC volume has six developmental periods 0 years, 1, 2-4, 5-9, 10-16, and 17-18 years. Genu and body grew in five developmental periods, while splenium in seven. There was intermittent sexual dimorphism in the CC volume in the first 4 years of life (p < 0.05). However, sex factor was insignificant in CC ratio to TBV. Total CC was right lateralized on average 1.81% (ranging -0.59% to 4.52%). Genu was 8.70% lateralized to the right, the body was 2.99% to the left, and the splenium was 1.41% to the right. The three-dimensional development of CC agreed with the two-dimensional developmental data of CC except for some differences.
Collapse
Affiliation(s)
- Sefa Isiklar
- Medical Imaging Techniques Program, Vocational School of Health Services, Bursa Uludag University, Bursa, Turkey
| | - Senem Turan Ozdemir
- Department of Anatomy, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Güven Ozkaya
- Department of Biostatistics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Rıfat Ozpar
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
9
|
Quah SKL, McIver L, Bullmore ET, Roberts AC, Sawiak SJ. Higher-order brain regions show shifts in structural covariance in adolescent marmosets. Cereb Cortex 2022; 32:4128-4140. [PMID: 35029670 PMCID: PMC9476623 DOI: 10.1093/cercor/bhab470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Substantial progress has been made studying morphological changes in brain regions during adolescence, but less is known of network-level changes in their relationship. Here, we compare covariance networks constructed from the correlation of morphometric volumes across 135 brain regions of marmoset monkeys in early adolescence and adulthood. Substantial shifts are identified in the topology of structural covariance networks in the prefrontal cortex (PFC) and temporal lobe. PFC regions become more structurally differentiated and segregated within their own local network, hypothesized to reflect increased specialization after maturation. In contrast, temporal regions show increased inter-hemispheric covariances that may underlie the establishment of distributed networks. Regionally selective coupling of structural and maturational covariance is revealed, with relatively weak coupling in transmodal association areas. The latter may be a consequence of continued maturation within adulthood, but also environmental factors, for example, family size, affecting brain morphology. Advancing our understanding of how morphological relationships within higher-order brain areas mature in adolescence deepens our knowledge of the developing brain's organizing principles.
Collapse
Affiliation(s)
- Shaun K L Quah
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Lauren McIver
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Edward T Bullmore
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Angela C Roberts
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EB, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Translational Neuroimaging Laboratory, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
10
|
Jacob J, Gupta R. Neuropsychological functions in a pediatric case of partial agenesis of the corpus callosum: Clinical implications. APPLIED NEUROPSYCHOLOGY: CHILD 2022; 12:165-176. [PMID: 35412920 DOI: 10.1080/21622965.2022.2059371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The corpus callosum (CC) is involved in several cognitive processes and the interhemispheric transfer of information. The current case study investigated neurocognitive and emotional processes in a 7-year-old female with partial agenesis of the corpus callosum, with an absent splenium and posterior body, with comorbid autism and ADHD. We measured cognitive functions, such as response inhibition, error monitoring, attentional disengagement, and attention capture by irrelevant emotional stimuli. We found that response inhibition was intact in the case. When happy faces were used as stop-signals, it interfered with response inhibition compared to angry-face-stop-signals. Similarly, happy faces (relative to angry faces) interfered with error monitoring; irrelevant angry faces captured attention more than happy faces. Attentional disengagement functions were impaired in the case compared to healthy controls. The findings give an insight into the interaction between cognition and emotion in pediatric partial agenesis of the CC, and have important clinical and theoretical implications.
Collapse
Affiliation(s)
- Jemima Jacob
- Cognitive and Behavioural Neuroscience Laboratory, Department of Humanities and Social Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Rashmi Gupta
- Cognitive and Behavioural Neuroscience Laboratory, Department of Humanities and Social Sciences, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
11
|
Wu Y, Zhong Y, Liao X, Miao X, Yu J, Lai X, Zhang Y, Ma C, Pan H, Wang S. Transmembrane protein 108 inhibits the proliferation and myelination of oligodendrocyte lineage cells in the corpus callosum. Mol Brain 2022; 15:33. [PMID: 35410424 PMCID: PMC8996597 DOI: 10.1186/s13041-022-00918-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Abnormal white matter is a common neurobiological change in bipolar disorder, and dysregulation of myelination in oligodendrocytes (OLs) is the cause. Transmembrane protein 108 (Tmem108), as a susceptible gene of bipolar disorder, is expressed higher in OL lineage cells than any other lineage cells in the central nervous system. Moreover, Tmem108 mutant mice exhibit mania-like behaviors, belonging to one of the signs of bipolar disorder. However, it is unknown whether Tmem108 regulates the myelination of the OLs. Results Tmem108 expression in the corpus callosum decreased with the development, and OL progenitor cell proliferation and OL myelination were enhanced in the mutant mice. Moreover, the mutant mice exhibited mania-like behavior after acute restraint stress and were susceptible to drug-induced epilepsy. Conclusions Tmem108 inhibited OL progenitor cell proliferation and mitigated OL maturation in the corpus callosum, which may also provide a new role of Tmem108 involving bipolar disorder pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13041-022-00918-7.
Collapse
|
12
|
Yellajoshyula D, Pappas SS, Dauer WT. Oligodendrocyte and Extracellular Matrix Contributions to Central Nervous System Motor Function: Implications for Dystonia. Mov Disord 2022; 37:456-463. [PMID: 34989453 PMCID: PMC11152458 DOI: 10.1002/mds.28892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
The quest to elucidate nervous system function and dysfunction in disease has focused largely on neurons and neural circuits. However, fundamental aspects of nervous system development, function, and plasticity are regulated by nonneuronal elements, including glial cells and the extracellular matrix (ECM). The rapid rise of genomics and neuroimaging techniques in recent decades has highlighted neuronal-glial interactions and ECM as a key component of nervous system development, plasticity, and function. Abnormalities of neuronal-glial interactions have been understudied but are increasingly recognized to play a key role in many neurodevelopmental disorders. In this report, we consider the role of myelination and the ECM in the development and function of central nervous system motor circuits and the neurodevelopmental disease dystonia. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Nicolas S, McGovern AJ, Hueston CM, O'Mahony SM, Cryan JF, O'Leary OF, Nolan YM. Prior maternal separation stress alters the dendritic complexity of new hippocampal neurons and neuroinflammation in response to an inflammatory stressor in juvenile female rats. Brain Behav Immun 2022; 99:327-338. [PMID: 34732365 DOI: 10.1016/j.bbi.2021.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
Stress during critical periods of neurodevelopment is associated with an increased risk of developing stress-related psychiatric disorders, which are more common in women than men. Hippocampal neurogenesis (the birth of new neurons) is vulnerable to maternal separation (MS) and inflammatory stressors, and emerging evidence suggests that hippocampal neurogenesis is more sensitive to stress in the ventral hippocampus (vHi) than in the dorsal hippocampus (dHi). Although research into the effects of MS stress on hippocampal neurogenesis is well documented in male rodents, the effect in females remains underexplored. Similarly, reports on the impact of inflammatory stressors on hippocampal neurogenesis in females are limited, especially when female bias in the prevalence of stress-related psychiatric disorders begins to emerge. Thus, in this study we investigated the effects of MS followed by an inflammatory stressor (lipopolysaccharide, LPS) in early adolescence on peripheral and hippocampal inflammatory responses and hippocampal neurogenesis in juvenile female rats. We show that MS enhanced an LPS-induced increase in the pro-inflammatory cytokine IL-1β in the vHi but not in the dHi. However, microglial activation was similar following LPS alone or MS alone in both hippocampal regions, while MS prior to LPS reduced microglial activation in both dHi and vHi. The production of new neurons was unaffected by MS and LPS. MS and LPS independently reduced the dendritic complexity of new neurons, and MS exacerbated LPS-induced reductions in the complexity of distal dendrites of new neurons in the vHi but not dHi. These data highlight that MS differentially primes the physiological response to LPS in the juvenile female rat hippocampus.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Andrew J McGovern
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
14
|
Early Development of the GABAergic System and the Associated Risks of Neonatal Anesthesia. Int J Mol Sci 2021; 22:ijms222312951. [PMID: 34884752 PMCID: PMC8657958 DOI: 10.3390/ijms222312951] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Human and animal studies have elucidated the apparent neurodevelopmental effects resulting from neonatal anesthesia. Observations of learning and behavioral deficits in children, who were exposed to anesthesia early in development, have instigated a flurry of studies that have predominantly utilized animal models to further interrogate the mechanisms of neonatal anesthesia-induced neurotoxicity. Specifically, while neonatal anesthesia has demonstrated its propensity to affect multiple cell types in the brain, it has shown to have a particularly detrimental effect on the gamma aminobutyric acid (GABA)ergic system, which contributes to the observed learning and behavioral deficits. The damage to GABAergic neurons, resulting from neonatal anesthesia, seems to involve structure-specific changes in excitatory-inhibitory balance and neurovascular coupling, which manifest following a significant interval after neonatal anesthesia exposure. Thus, to better understand how neonatal anesthesia affects the GABAergic system, we first review the early development of the GABAergic system in various structures that have been the focus of neonatal anesthesia research. This is followed by an explanation that, due to the prolonged developmental curve of the GABAergic system, the entirety of the negative effects of neonatal anesthesia on learning and behavior in children are not immediately evident, but instead take a substantial amount of time (years) to fully develop. In order to address these concerns going forward, we subsequently offer a variety of in vivo methods which can be used to record these delayed effects.
Collapse
|
15
|
Parker KN, Donovan MH, Smith K, Noble-Haeusslein LJ. Traumatic Injury to the Developing Brain: Emerging Relationship to Early Life Stress. Front Neurol 2021; 12:708800. [PMID: 34484104 PMCID: PMC8416304 DOI: 10.3389/fneur.2021.708800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the high incidence of brain injuries in children, we have yet to fully understand the unique vulnerability of a young brain to an injury and key determinants of long-term recovery. Here we consider how early life stress may influence recovery after an early age brain injury. Studies of early life stress alone reveal persistent structural and functional impairments at adulthood. We consider the interacting pathologies imposed by early life stress and subsequent brain injuries during early brain development as well as at adulthood. This review outlines how early life stress primes the immune cells of the brain and periphery to elicit a heightened response to injury. While the focus of this review is on early age traumatic brain injuries, there is also a consideration of preclinical models of neonatal hypoxia and stroke, as each further speaks to the vulnerability of the brain and reinforces those characteristics that are common across each of these injuries. Lastly, we identify a common mechanistic trend; namely, early life stress worsens outcomes independent of its temporal proximity to a brain injury.
Collapse
Affiliation(s)
- Kaila N. Parker
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Michael H. Donovan
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Kylee Smith
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Linda J. Noble-Haeusslein
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
16
|
Chesnut M, Hartung T, Hogberg H, Pamies D. Human Oligodendrocytes and Myelin In Vitro to Evaluate Developmental Neurotoxicity. Int J Mol Sci 2021; 22:7929. [PMID: 34360696 PMCID: PMC8347131 DOI: 10.3390/ijms22157929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Center for Alternatives to Animal Testing (CAAT-Europe), University of Konstanz, 78464 Konstanz, Germany
| | - Helena Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
17
|
Gajawelli N, Deoni SCL, Ramsy N, Dean DC, O'Muircheartaigh J, Nelson MD, Lepore N, Coulon O. Developmental changes of the central sulcus morphology in young children. Brain Struct Funct 2021; 226:1841-1853. [PMID: 34043074 PMCID: PMC11557372 DOI: 10.1007/s00429-021-02292-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/06/2021] [Indexed: 12/01/2022]
Abstract
The human brain grows rapidly in early childhood, reaching 95% of its final volume by age 6. Understanding brain growth in childhood is important both to answer neuroscience questions about anatomical changes in development, and as a comparison metric for neurological disorders. Metrics for neuroanatomical development including cortical measures pertaining to the sulci can be instrumental in early diagnosis, monitoring, and intervention for neurological diseases. In this paper, we examine the development of the central sulcus in children aged 12-60 months from structural magnetic resonance images. The central sulcus is one of the earliest sulci to develop at the fetal stage and is implicated in diseases such as Attention Deficit Hyperactive Disorder and Williams syndrome. We investigate the relationship between the changes in the depth of the central sulcus with respect to age. In our results, we observed a pattern of depth present early on, that had been previously observed in adults. Results also reveal the presence of a rightward depth asymmetry at 12 months of age at a location related to orofacial movements. That asymmetry disappears gradually, mostly between 12 and 24 months, and we suggest that it is related to the development of language skills.
Collapse
Affiliation(s)
- Niharika Gajawelli
- CIBORG Laboratory, Department of Radiology, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Sean C L Deoni
- Advanced Baby Imaging Lab, Hasbro Children's Hospital, 593 Eddy Street Ground Level, Providence, RI, 02903, USA
- Pediatrics and Radiology, Warren Alpert Medical School, Brown University, 222 Richmond St, Providence, RI, 02903, USA
- Maternal, Newborn & Child Health Discovery & Tools at the Bill and Melinda Gates Foundation, 500 5th Ave N, Seattle, WA, 98109, USA
| | - Natalie Ramsy
- Carle Illinois College of Medicine, 807 S Wright St, Champaign, IL, 61820, USA
| | - Douglas C Dean
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI, 53705, USA
| | - Jonathan O'Muircheartaigh
- Department for Forensic and Neurodevelopmental Sciences, Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 2nd FloorDenmark Hill, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing St. Thomas' Hospital Westminster Bridge Road SE17EH, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Marvin D Nelson
- CIBORG Laboratory, Department of Radiology, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Natasha Lepore
- CIBORG Laboratory, Department of Radiology, Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA.
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Los Angeles, CA, 90033, USA.
| | - Olivier Coulon
- Faculty of Medicine, Institut de Neurosciences de la Timone, Aix-Marseille University, CNRS UMR7289, 27, boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
18
|
Li Q, Zhao Y, Huang Z, Guo Y, Long J, Luo L, You W, Sweeney JA, Li F, Gong Q. Microstructural white matter abnormalities in pediatric and adult obsessive-compulsive disorder: A systematic review and meta-analysis. Brain Behav 2021; 11:e01975. [PMID: 33270358 PMCID: PMC7882176 DOI: 10.1002/brb3.1975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To identify the most prominent and replicable fractional anisotropy (FA) alterations of white matter associated with obsessive-compulsive disorder (OCD) in tract-based spatial statistics (TBSS) studies. METHODS We reviewed previous TBSS studies (n = 20) in OCD and performed a meta-analysis (n = 16) of FA differences. RESULTS No between-group differences in FA were detected in the pooled meta-analysis. However, reduced FA was identified in the genu and anterior body of corpus callosum (CC) in adult OCD. FA reductions in the anterior body of CC were associated with a later age of onset in adult patients with OCD. For pediatric OCD, decreased FA in earlier adolescence and increased FA in later adolescence were seemingly related to an altered trajectory of brain maturation. CONCLUSIONS Absent in the pooled sample but robust in adults, disrupted microstructural organization in the anterior part of CC indicates a bias of deficits toward connections in interhemispheric connections of rostral neocortical regions, which could lead to deficits of interhemispheric communication and thus contribute to cognitive and emotional deficits in adult OCD. The correlation between FA in the anterior body of CC and older illness onset suggests that patients with later adult onset of illness may represent a biologically distinct subgroup. For pediatric OCD, alterations in neurodevelopmental maturation may contribute to inconsistent patterns of FA alteration relative to controls during adolescence. While most studies of OCD have emphasized alterations of within hemisphere fronto-striatal circuits, these results indicate that between hemisphere connectivity of this circuitry may also represent important pathophysiology of the illness.
Collapse
Affiliation(s)
- Qian Li
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
| | - Zixuan Huang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Medical Imaging Technology Department, West China School of MedicineSichuan UniversityChengduChina
| | - Yi Guo
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
| | - Jingyi Long
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
| | - Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of PsychiatryUniversity of CincinnatiCincinnatiOHUSA
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
19
|
Blankenship TL, Strong RW, Kibbe MM. Development of multiple object tracking via multifocal attention. Dev Psychol 2020; 56:1684-1695. [PMID: 32614210 DOI: 10.1037/dev0001064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multifocal attention is the ability to simultaneously attend to multiple objects, and is critical for typical functioning. Although adults are able to use multifocal attention, little is known about the development of this ability. In two experiments, we investigated multifocal attention in 6-8-year-old children and adults using a child-friendly, computerized multiple object tracking task designed to encourage the use of multifocal attention. We also investigated whether multifocal attention in children is deployed independently across left and right hemifields of vision, as in adults. Our results suggest that children's capacity for multifocal attention increases significantly across middle childhood. We also found evidence that at least one signature of hemifield-independent multifocal attention, the bilateral field advantage, can be observed in children. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
20
|
Region-specific effects of maternal separation on oxidative stress accumulation in parvalbumin neurons of male and female rats. Behav Brain Res 2020; 388:112658. [PMID: 32339550 DOI: 10.1016/j.bbr.2020.112658] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
Early life adversity in humans is linked to cognitive deficits and increased risk of mental illnesses, including depression, bipolar disorder, and schizophrenia, with evidence for different vulnerabilities in men versus women. Modeling early life adversity in rodents shows similar neuropsychological deficits that may partially be driven by sex-dependent dysfunction in parvalbumin (PV) interneurons in the prefrontal cortex (PFC), hippocampus (HPC), and basolateral amygdala (BLA). Research demonstrates that PV interneurons are particularly susceptible to oxidative stress; therefore, accumulation of oxidative damage may drive PV dysfunction following early life adversity. The goal of this study was to quantify oxidative stress accumulation in PV neurons in rats exposed to maternal separation (MS). Pups were separated from their dam and littermates for 4 h per day from postnatal day (P)2 to 20. Serial sections from the PFC, HPC, and BLA of juvenile (P20) rats of both sexes were immunohistochemically stained with antibodies against PV and 8-oxo-dG, a marker for oxidative DNA damage. PV cell counts, colocalization with 8-oxo-dG, and intensity of each signal were measured in each region to determine the effects of MS and establish whether MS-induced oxidative damage varies between sexes. A significant increase in colocalization of PV and 8-oxo-dG was found in the PFC and HPC, indicating increased oxidative stress in that cell population following MS. Region-specific sex differences were also revealed in the PFC, BLA, and HPC. These data identify oxidative stress during juvenility as a potential mechanism mediating PV dysfunction in individuals with a history of early life adversity.
Collapse
|
21
|
Simpson LN, Schneble EJ, Griffin ED, Obayashi JT, Setran PA, Ross DA, Pettersson DR, Pollock JM. Morphological changes of the dorsal contour of the corpus callosum during the first two years of life. Pediatr Radiol 2020; 50:543-549. [PMID: 31840188 DOI: 10.1007/s00247-019-04585-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND In the medicolegal literature, focal concavities or notching of the corpus callosum has been thought to be associated with fetal alcohol spectrum disorders. Recent work suggests corpus callosum notching is a dynamic and normal anatomical feature, although it has not yet been defined in early life or infancy. OBJECTIVE Our purpose was to characterize the dorsal contour of the corpus callosum during the first 2 years of life by defining the prevalence, onset and trajectory of notching on midsagittal T1-weighted images. MATERIALS AND METHODS We reviewed retrospectively 1,157 consecutive patients between birth and 2 years of age. Corpus callosum morphology was evaluated and described. A notch was defined as a dorsal concavity of at least 1 mm in depth along the dorsal surface of the corpus callosum. Patient age as well as notch depth, location, number and presence of the pericallosal artery in the notch were noted. RESULTS Two hundred thirty-three notches were identified in 549 patients: 36 anterior, 194 posterior and 3 patients with undulations. A statistically significant (R2=0.53, Beta=0.021, P=0.002) positive correlation between posterior notch prevalence and age in months was noted. A positive correlation between age and depth of the posterior notch was also statistically significant (r=0.32, n=179, P≤0.001). A trend for increased anterior notch prevalence with age was identified with significant correlation between visualized pericallosal artery indentation and anterior notching (r=0.20, n=138, P=0.016). Sub-analysis of the first month of life showed corpus callosum notching was not present. CONCLUSION The presence of posterior notching increased significantly with age and was more frequent than that of anterior notching. Corpus callosum notching was absent in the first week of life, building on prior studies suggesting corpus callosum notching is acquired. This study provides baseline data on normative corpus callosum notching trajectories by age group during early life, a helpful correlate when associating corpus callosum morphology with disease.
Collapse
Affiliation(s)
- Lauren N Simpson
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Erika J Schneble
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA
| | - Elena D Griffin
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA
| | - James T Obayashi
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Phillip A Setran
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA
| | - Donald A Ross
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.,Operative Care Division, Portland Veterans Administration Hospital, Portland, OR, USA
| | - David R Pettersson
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA
| | - Jeffrey M Pollock
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA.
| |
Collapse
|
22
|
Bulgarelli C, de Klerk CCJM, Richards JE, Southgate V, Hamilton A, Blasi A. The developmental trajectory of fronto-temporoparietal connectivity as a proxy of the default mode network: a longitudinal fNIRS investigation. Hum Brain Mapp 2020; 41:2717-2740. [PMID: 32128946 PMCID: PMC7294062 DOI: 10.1002/hbm.24974] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The default mode network (DMN) is a network of brain regions that is activated while we are not engaged in any particular task. While there is a large volume of research documenting functional connectivity within the DMN in adults, knowledge of the development of this network is still limited. There is some evidence for a gradual increase in the functional connections within the DMN during the first 2 years of life, in contrast to other functional resting‐state networks that support primary sensorimotor functions, which are online from very early in life. Previous studies that investigated the development of the DMN acquired data from sleeping infants using fMRI. However, sleep stages are known to affect functional connectivity. In the current longitudinal study, fNIRS was used to measure spontaneous fluctuations in connectivity within fronto‐temporoparietal areas—as a proxy for the DMN—in awake participants every 6 months from 11 months till 36 months. This study validates a method for recording resting‐state data from awake infants, and presents a data analysis pipeline for the investigation of functional connections with infant fNIRS data, which will be beneficial for researchers in this field. A gradual development of fronto‐temporoparietal connectivity was found, supporting the idea that the DMN develops over the first years of life. Functional connectivity reached its maximum peak at about 24 months, which is consistent with previous findings showing that, by 2 years of age, DMN connectivity is similar to that observed in adults.
Collapse
Affiliation(s)
- Chiara Bulgarelli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - Carina C J M de Klerk
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK.,Department of Psychology, University of Essex, Colchester, UK
| | - John E Richards
- Institute for Mind and Brain, Department of Psychology, University of South Carolina, Columbia, South Carolina
| | | | - Antonia Hamilton
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Anna Blasi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
23
|
Burkhouse KL, Stange JP, Jacobs RH, Bhaumik R, Bessette KL, Peters AT, Crane NA, Kreutzer KA, Fitzgerald K, Monk C, Welsh RC, Phan KL, Langenecker SA. Developmental changes in resting-state functional networks among individuals with and without internalizing psychopathologies. Depress Anxiety 2019; 36:141-152. [PMID: 30516853 PMCID: PMC6519436 DOI: 10.1002/da.22864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Three well-established intrinsic connectivity networks (ICNs) involved in cognitive-affective processing include the cognitive control network (CCN), default mode network (DMN), and salience and emotional network (SEN). Despite recent advances in understanding developmental changes in these ICNs, the majority of research has focused on single seeds or networks in isolation with limited age ranges. Additionally, although internalizing psychopathologies (IPs), such as anxiety and depression, are often characterized by maladaptive cognitive-affective processing styles, it is not clear how IP history influences age-related changes in brain networks. METHOD The current study aimed to characterize the normative development of the CCN, DMN, and SEN across a large age-span (7-29 year olds) of typically developing (TD) individuals (n = 97). We also explore how age may impact differences in network connectivity between TD individuals and patients with IPs (n = 136). RESULTS Among TD individuals, DMN and CCN connectivity strengthened with age, whereas connectivity between the SEN and ventromedial prefrontal cortex weakened across development. When exploring group (IP vs. TD) differences, the IP group was characterized by greater connectivity between the CCN and cerebellum and between the SEN and caudate from childhood to early adulthood, relative to TD individuals. In addition, patients with IPs, versus TD individuals, exhibited reduced connectivity between the SEN and medial frontal gyrus from adolescence to adulthood. CONCLUSIONS The current findings shed light on differential age-related changes in brain network patterns among psychiatrically free, TD individuals and those with internalizing disorders, and may provide plausible targets for novel mechanism-based treatments that differ based on developmental stage.
Collapse
Affiliation(s)
| | | | | | - Runa Bhaumik
- University of Illinois-Chicago; Department of Psychiatry
| | - Katie L. Bessette
- University of Illinois-Chicago; Department of Psychiatry
- University of Illinois-Chicago; Department of Psychology
| | - Amy T. Peters
- University of Illinois-Chicago; Department of Psychiatry
- University of Illinois-Chicago; Department of Psychology
| | | | | | | | | | - Robert C. Welsh
- The University of Utah Medical Center, Department of Psychiatry
| | - K. Luan Phan
- University of Illinois-Chicago; Department of Psychiatry
- University of Illinois-Chicago; Department of Psychology
- Jesse Brown VA Medical Center; Mental Health Service Line
- University of Illinois-Chicago; Department of Anatomy and Cell Biology & the Graduate Program in Neuroscience
| | - Scott A. Langenecker
- University of Illinois-Chicago; Department of Psychiatry
- University of Illinois-Chicago; Department of Psychology
- The University of Utah Medical Center, Department of Psychiatry
| |
Collapse
|
24
|
Lee JB, Affeldt BM, Gamboa Y, Hamer M, Dunn JF, Pardo AC, Obenaus A. Repeated Pediatric Concussions Evoke Long-Term Oligodendrocyte and White Matter Microstructural Dysregulation Distant from the Injury. Dev Neurosci 2018; 40:358-375. [PMID: 30466074 DOI: 10.1159/000494134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/30/2018] [Indexed: 11/19/2022] Open
Abstract
Concussion or mild traumatic brain injury (mTBI) is often accompanied by long-term behavioral and neuropsychological deficits. Emerging data suggest that these deficits can be exacerbated following repeated injuries. However, despite the overwhelming prevalence of mTBI in children due to falls and sports-related activities, the effects of mTBI on white matter (WM) structure and its development in children have not been extensively examined. Moreover, the effect of repeated mTBI (rmTBI) on developing WM has not yet been studied, despite the possibility of exacerbated outcomes with repeat injuries. To address this knowledge gap, we investigated the long-term effects of single (s)mTBI and rmTBI on the WM in the pediatric brain, focusing on the anterior commissure (AC), a WM structure distant to the injury site, using diffusion tensor imaging (DTI) and immunohistochemistry (IHC). We hypothesized that smTBI and rmTBI to the developing mouse brain would lead to abnormalities in microstructural integrity and impaired oligodendrocyte (OL) development. We used a postnatal day 14 Ascl1-CreER: ccGFP mouse closed head injury (CHI) model with a bilateral repeated injury. We demonstrate that smTBI and rmTBI differentially lead to myelin-related diffusion changes in the WM and to abnormal OL development in the AC, which are accompanied by behavioral deficits 2 months after the initial injury. Our results suggest that mTBIs elicit long-term behavioral alterations and OL-associated WM dysregulation in the developing brain. These findings warrant additional research into the development of WM and OL as key components of pediatric TBI pathology and potential therapeutic targets.
Collapse
Affiliation(s)
- Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Bethann M Affeldt
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yaritxa Gamboa
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Mary Hamer
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jeff F Dunn
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea C Pardo
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andre Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA, .,Department of Pediatrics, University of California Irvine School of Medicine, Irvine, California, USA,
| |
Collapse
|
25
|
Preliminary Study of Diffusion Kurtosis Imaging in Mild Traumatic Brain Injury. IRANIAN JOURNAL OF RADIOLOGY 2018. [DOI: 10.5812/iranjradiol.56115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Zhao S, Wang X, Gao X, Chen J. Delayed and progressive damages to juvenile mice after moderate traumatic brain injury. Sci Rep 2018; 8:7339. [PMID: 29743575 PMCID: PMC5943589 DOI: 10.1038/s41598-018-25475-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Symptoms are commonly more severe in pediatric traumatic brain injury (TBI) patients than in young adult TBI patients. To understand the mechanism, juvenile mice received a controlled cortical impact (CCI) injury at moderate level. Tissue lesion and cell death were measured and compared to our previous reports on brain injury in the young adult mice that received same level of impact using same injury device. Tissue lesion and cell death in the cortex was much less in the juvenile mouse brain in the first few hours after injury. However, once the injury occurred, it developed more rapidly, lasted much longer, and eventually led to exaggerated cell death and a 32.7% larger tissue lesion cavity in the cortex of juvenile mouse brain than of young adult mouse brain. Moreover, we found significant cell death in the thalamus of juvenile brains at 72 h, which was not commonly seen in the young adult mice. In summary, cell death in juvenile mice was delayed, lasted longer, and finally resulted in more severe brain injury than in the young adult mice. The results suggest that pediatric TBI patients may have a longer therapeutic window, but they also need longer intensive clinical care after injury.
Collapse
Affiliation(s)
- Shu Zhao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Xiaoting Wang
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States.
| |
Collapse
|
27
|
Quantitative Analysis of Kynurenine Aminotransferase II in the Adult Rat Brain Reveals High Expression in Proliferative Zones and Corpus Callosum. Neuroscience 2017; 369:1-14. [PMID: 29126954 DOI: 10.1016/j.neuroscience.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/06/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022]
Abstract
Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan degradation, acts as an endogenous antagonist of alpha7 nicotinic and NMDA receptors and is implicated in a number of neurophysiological and neuropathological processes including cognition and neurodegenerative events. Therefore, kynurenine aminotransferase II (KAT II/AADAT), the enzyme responsible for the formation of the majority of neuroactive kynurenic acid in the brain, has prompted significant interest. Using immunohistochemistry, this enzyme was localized primarily in astrocytes throughout the adult rat brain, but detailed neuroanatomical studies are lacking. Here, we employed quantitative in situ hybridization to analyze the relative expression of KAT II mRNA in the brain of rats under normal conditions and 6 h after the administration of lipopolysaccharides (LPSs). Specific hybridization signals for KAT II were detected, with the highest expression in the subventricular zone (SVZ), the rostral migratory stream and the floor of the third ventricle followed by the corpus callosum and the hippocampus. This pattern of mRNA expression was paralleled by differential protein expression, determined by serial dilutions of antibodies (up to 1:1 million), and was confirmed to be primarily astrocytic in nature. The mRNA signal in the SVZ and the hippocampus was substantially increased by the LPS treatment without detectable changes elsewhere. These results demonstrate that KAT II is expressed in the rat brain in a region-specific manner and that gene expression is sensitive to inflammatory processes. This suggests an unrecognized role for kynurenic acid in the brain's germinal zones.
Collapse
|
28
|
Perturbed Wnt signaling leads to neuronal migration delay, altered interhemispheric connections and impaired social behavior. Nat Commun 2017; 8:1158. [PMID: 29079819 PMCID: PMC5660087 DOI: 10.1038/s41467-017-01046-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Perturbed neuronal migration and circuit development have been implicated in the pathogenesis of neurodevelopmental diseases; however, the direct steps linking these developmental errors to behavior alterations remain unknown. Here we demonstrate that Wnt/C-Kit signaling is a key regulator of glia-guided radial migration in rat somatosensory cortex. Transient downregulation of Wnt signaling in migrating, callosal projection neurons results in delayed positioning in layer 2/3. Delayed neurons display reduced neuronal activity with impaired afferent connectivity causing permanent deficit in callosal projections. Animals with these defects exhibit altered somatosensory function with reduced social interactions and repetitive movements. Restoring normal migration by overexpressing the Wnt-downstream effector C-Kit or selective chemogenetic activation of callosal projection neurons during a critical postnatal period prevents abnormal interhemispheric connections as well as behavioral alterations. Our findings identify a link between defective canonical Wnt signaling, delayed neuronal migration, deficient interhemispheric connectivity and abnormal social behavior analogous to autistic characteristics in humans. Functional consequence of transient delay in neuronal migration is unclear. This study shows that Wnt/C-Kit signaling regulates radial migration in rat somatosensory cortex, and that transient delay of L2/3 neuronal migration leads to interhemispheric connectivity alteration and abnormal social behavior.
Collapse
|
29
|
Lyra KP, Chaim KT, Leite CC, Park EJ, Andrade CS, Passarelli V, Valério RMF, Jorge CL, Castro LHM, Otaduy MCG. Corpus callosum diffusion abnormalities in refractory epilepsy associated with hippocampal sclerosis. Epilepsy Res 2017; 137:112-118. [PMID: 28988018 DOI: 10.1016/j.eplepsyres.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/05/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To detect by diffusion tensor imaging (DTI) the extent of microstructural integrity changes of the corpus callosum (CC) in patients with hippocampal sclerosis (HS) and to evaluate possible association with clinical characteristics. METHODS Fourty-two patients with temporal lobe epilepsy (TLE) and HS and 30 control subjects were studied with DTI. We grouped patients according to lesion side (left or right) HS. Mean diffusivity (MD), fractional anisotropy (FA), radial (RD) and axial diffusivity (AD) were extracted from five segments in CC midsagittal section obtained by automatic segmentation. CC DTI findings were compared between groups. We also evaluated association of DTI changes and clinical characteristics. RESULTS HS patients displayed decreased FA and increased MD and RD in the anterior, mid-posterior and posterior CC segments, compared to controls. No differences were observed in AD. Patients reporting febrile seizure as the initial precipitating event presented more intense diffusion changes. No differences were seen comparing left and right HS. Age at epilepsy onset, disease duration and seizure frequency were not associated with DTI findings. CONCLUSIONS This is one of the largest series of TLE-HS patients evaluating CC white matter fiber integrity by DTI, which allowed us to study how some clinical characteristics, such as seizure frequency, disease duration and lesion side, are related to CC integrity. Occurrence of febrile seizure was the only factor that had significant impact on tract integrity. Diffusion changes were not restricted to the posterior part of the CC; we observed the same changes for the anterior part of the CC. Diffusion changes were characterized by an increase in RD, while the AD remained intact for all regions of the CC.
Collapse
Affiliation(s)
- Katarina P Lyra
- Department of Radiology and Oncology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil; LIM44-Laboratory of Magnetic Resonance in Neuroimaging, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Khallil T Chaim
- Department of Radiology and Oncology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil; LIM44-Laboratory of Magnetic Resonance in Neuroimaging, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Claudia C Leite
- Department of Radiology and Oncology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil; LIM44-Laboratory of Magnetic Resonance in Neuroimaging, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Eun J Park
- Department of Radiology and Oncology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil; LIM44-Laboratory of Magnetic Resonance in Neuroimaging, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Celi S Andrade
- Department of Radiology and Oncology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil; LIM44-Laboratory of Magnetic Resonance in Neuroimaging, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Valmir Passarelli
- Department of Neurology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Rosa M F Valério
- Department of Neurology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Carmen L Jorge
- Department of Neurology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Luiz H M Castro
- Department of Neurology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Maria C G Otaduy
- Department of Radiology and Oncology, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil; LIM44-Laboratory of Magnetic Resonance in Neuroimaging, Clinics Hospital, School of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Developmental trajectory of the corpus callosum from infancy to the juvenile stage: Comparative MRI between chimpanzees and humans. PLoS One 2017; 12:e0179624. [PMID: 28654656 PMCID: PMC5487015 DOI: 10.1371/journal.pone.0179624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/01/2017] [Indexed: 11/25/2022] Open
Abstract
How brains develop during early life is one of the most important topics in neuroscience because it underpins the neuronal functions that mature during this period. A comparison of the neurodevelopmental patterns among humans and nonhuman primates is essential to infer evolutional changes in neuroanatomy that account for higher-order brain functions, especially those specific to humans. The corpus callosum (CC) is the major white matter bundle that connects the cerebral hemispheres, and therefore, relates to a wide variety of neuronal functions. In humans, the CC area rapidly expands during infancy, followed by relatively slow changes. In chimpanzees, based on a cross-sectional study, slow changes in the CC area during the juvenile stage and later have also been reported. However, little is known about the developmental changes during infancy. A longitudinal study is also required to validate the previous cross-sectional observations about the chimpanzee CC. The present longitudinal study of magnetic resonance imaging scans demonstrates that the CC development in chimpanzees and humans is characterized by a rapid increase during infancy, followed by gradual increase during the juvenile stage. Several differences between the two species were also identified. First, there was a tendency toward a greater increase in the CC areas during infancy in humans. Second, there was a tendency toward a greater increase in the rostrum during the juvenile stage in chimpanzees. The rostral body is known to carry fibers between the bilateral prefrontal and premotor cortices, and is involved in behavior planning and control, verbal working memory, and number conception. The rostrum is known to carry fibers between the prefrontal cortices, and is involved in attention control. The interspecies differences in the developmental trajectories of the rostral body and the rostrum might be related to evolutional changes in the brain systems.
Collapse
|
31
|
Rudisch J, Butler J, Izadi H, Birtles D, Green D. Developmental Characteristics of Disparate Bimanual Movement Skills in Typically Developing Children. J Mot Behav 2017. [PMID: 28632103 DOI: 10.1080/00222895.2016.1271302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mastery of many tasks in daily life requires role differentiated bimanual hand use with high spatiotemporal cooperation and minimal interference. The authors investigated developmental changes in the performance of a disparate bimanual movement task requiring sequenced movements. Age groups were attributed to changes in CNS structures critical for bimanual control such as the corpus callosum (CC) and the prefrontal cortex; young children (5-6 years old), older children (7-9 years old), and adolescents (10-16 years old). Results show qualitative changes in spatiotemporal sequencing between the young and older children which typically marks a phase of distinct reduction of growth and myelination of the CC. Results show qualitative changes in spatiotemporal sequencing between the young and older children, which coincides with distinct changes in the growth rate and myelination of the CC. The results further support the hypothesis that CC maturation plays an important role in the development of bimanual skills.
Collapse
Affiliation(s)
- Julian Rudisch
- a Department of Sport and Health Sciences , Faculty of Health and Life Sciences, Oxford Brookes University , Oxford , United Kingdom
| | - Jenny Butler
- a Department of Sport and Health Sciences , Faculty of Health and Life Sciences, Oxford Brookes University , Oxford , United Kingdom
| | - Hooshang Izadi
- b Department of Mechanical Engineering and Mathematical Sciences , Faculty of Technology Design and Environment, Oxford Brookes University , Oxford , United Kingdom
| | - Deirdre Birtles
- c School of Psychology, University of East London , London , United Kingdom
| | - Dido Green
- a Department of Sport and Health Sciences , Faculty of Health and Life Sciences, Oxford Brookes University , Oxford , United Kingdom
| |
Collapse
|
32
|
Määttä S, Könönen M, Kallioniemi E, Lakka T, Lintu N, Lindi V, Ferreri F, Ponzo D, Säisänen L. Development of cortical motor circuits between childhood and adulthood: A navigated TMS-HdEEG study. Hum Brain Mapp 2017; 38:2599-2615. [PMID: 28218489 PMCID: PMC6866783 DOI: 10.1002/hbm.23545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
Motor functions improve during childhood and adolescence, but little is still known about the development of cortical motor circuits during early life. To elucidate the neurophysiological hallmarks of motor cortex development, we investigated the differences in motor cortical excitability and connectivity between healthy children, adolescents, and adults by means of navigated suprathreshold motor cortex transcranial magnetic stimulation (TMS) combined with high-density electroencephalography (EEG). We demonstrated that with development, the excitability of the motor system increases, the TMS-evoked EEG waveform increases in complexity, the magnitude of induced activation decreases, and signal spreading increases. Furthermore, the phase of the oscillatory response to TMS becomes less consistent with age. These changes parallel an improvement in manual dexterity and may reflect developmental changes in functional connectivity. Hum Brain Mapp 38:2599-2615, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Määttä
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
| | - Mervi Könönen
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
- Department of Clinical RadiologyKuopio University HospitalKuopioFinland
| | - Elisa Kallioniemi
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalKuopioFinland
- Kuopio Research Institute of Exercise MedicineKuopioFinland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
| | - Virpi Lindi
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
| | - Florinda Ferreri
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of NeurologyUniversity Campus BiomedicoRomeItaly
| | - David Ponzo
- Department of NeurologyUniversity Campus BiomedicoRomeItaly
| | - Laura Säisänen
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
| |
Collapse
|
33
|
Sakai T, Komaki Y, Hata J, Okahara J, Okahara N, Inoue T, Mikami A, Matsui M, Oishi K, Sasaki E, Okano H. Elucidation of developmental patterns of marmoset corpus callosum through a comparative MRI in marmosets, chimpanzees, and humans. Neurosci Res 2017; 122:25-34. [PMID: 28400206 DOI: 10.1016/j.neures.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022]
Abstract
The corpus callosum (CC) is present in all primate brains and is the major white matter tract connecting the cerebral hemispheres for integration of sensory, motor and higher-order cognitive information. The midsagittal area of the CC has frequently been used as a sensitive biomarker of brain development. Although the marmoset has been considered as an alternative non-human primate model for neuroscience research, the developmental patterns of the CC have not been explored. The present longitudinal study of magnetic resonance imaging demonstrated that marmosets show a rapid increase of CC during infancy, followed by a slow increase during the juvenile stage, as observed in chimpanzees and humans. Marmosets also show a tendency toward a greater increase in CC during late infancy and the juvenile stage, as observed in humans, but not in chimpanzees. However, several differences between marmosets and humans were identified. There was a tendency toward a greater maturation of the human CC during early infancy. Furthermore, there was a tendency toward a greater increase during late infancy and the juvenile stage in marmosets, compared to that observed in chimpanzees and humans. These differences in the developmental trajectories of the CC may be related to evolutional changes in social behavior.
Collapse
Affiliation(s)
- Tomoko Sakai
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama 351-0198, Japan
| | - Junko Okahara
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama 351-0198, Japan
| | - Norio Okahara
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan
| | - Takashi Inoue
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan
| | - Akichika Mikami
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Faculty of Nursing and Rehabilitation, Chubu Gakuin University, Seki, Gifu 504-0837, Japan
| | - Mie Matsui
- Department of Cognitive Science, Institute of Liberal Arts and Science, Kanazawa University, Ishikawa 920-1192, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Sasaki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama 351-0198, Japan; Advanced Research Center, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
34
|
Ajina S, Bridge H. Blindsight and Unconscious Vision: What They Teach Us about the Human Visual System. Neuroscientist 2016; 23:529-541. [PMID: 27777337 DOI: 10.1177/1073858416673817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system.
Collapse
Affiliation(s)
- Sara Ajina
- 1 Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Holly Bridge
- 1 Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Alexander B, Murray AL, Loh WY, Matthews LG, Adamson C, Beare R, Chen J, Kelly CE, Rees S, Warfield SK, Anderson PJ, Doyle LW, Spittle AJ, Cheong JLY, Seal ML, Thompson DK. A new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas. Neuroimage 2016; 147:841-851. [PMID: 27725314 DOI: 10.1016/j.neuroimage.2016.09.068] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 12/01/2022] Open
Abstract
Investigating neonatal brain structure and function can offer valuable insights into behaviour and cognition in healthy and clinical populations; both at term age, and longitudinally in comparison with later time points. Parcellated brain atlases for adult populations are readily available, however warping infant data to adult template space is not ideal due to morphological and tissue differences between these groups. Several parcellated neonatal atlases have been developed, although there remains strong demand for manually parcellated ground truth data with detailed cortical definition. Additionally, compatibility with existing adult atlases is favourable for use in longitudinal investigations. We aimed to address these needs by replicating the widely-used Desikan-Killiany (2006) adult cortical atlas in neonates. We also aimed to extend brain coverage by complementing this cortical scheme with basal ganglia, thalamus, cerebellum and other subcortical segmentations. Thus, we have manually parcellated these areas volumetrically using high-resolution neonatal T2-weighted MRI scans, and initial automated and manually edited tissue classification, providing 100 regions in all. Linear and nonlinear T2-weighted structural templates were also generated. In this paper we provide manual parcellation protocols, and present the parcellated probability maps and structural templates together as the Melbourne Children's Regional Infant Brain (M-CRIB) atlas.
Collapse
Affiliation(s)
- Bonnie Alexander
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Andrea L Murray
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Wai Yen Loh
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Lillian G Matthews
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Department of Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chris Adamson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Richard Beare
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Jian Chen
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Claire E Kelly
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Sandra Rees
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Simon K Warfield
- Department of Radiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Alicia J Spittle
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, Australia; Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
| | - Jeanie L Y Cheong
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Marc L Seal
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Deanne K Thompson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
36
|
Principal Component Analysis of Working Memory Variables during Child and Adolescent Development. THE SPANISH JOURNAL OF PSYCHOLOGY 2016; 19:E62. [PMID: 27692027 DOI: 10.1017/sjp.2016.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Correlation and Principal Component Analysis (PCA) of behavioral measures from two experimental tasks (Delayed Match-to-Sample and Oddball), and standard scores from a neuropsychological test battery (Working Memory Test Battery for Children) was performed on data from participants between 6-18 years old. The correlation analysis (p 1), the scores of the first extracted component were significantly correlated (p < .05) to most behavioral measures, suggesting some commonalities of the processes of age-related changes in the measured variables. The results suggest that this first component would be related to age but also to individual differences during the cognitive maturation process across childhood and adolescence stages. The fourth component would represent the speed-accuracy trade-off phenomenon as it presents loading components with different signs for reaction times and errors.
Collapse
|
37
|
Westerhausen R, Fjell AM, Krogsrud SK, Rohani DA, Skranes JS, Håberg AK, Walhovd KB. Selective increase in posterior corpus callosum thickness between the age of 4 and 11 years. Neuroimage 2016; 139:17-25. [DOI: 10.1016/j.neuroimage.2016.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/03/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022] Open
|
38
|
Holst-Wolf JM, Yeh IL, Konczak J. Development of Proprioceptive Acuity in Typically Developing Children: Normative Data on Forearm Position Sense. Front Hum Neurosci 2016; 10:436. [PMID: 27621702 PMCID: PMC5002403 DOI: 10.3389/fnhum.2016.00436] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/15/2016] [Indexed: 11/23/2022] Open
Abstract
This study mapped the development of proprioception in healthy, typically developing children by objectively measuring forearm position sense acuity. We assessed position sense acuity in a cross-sectional sample of 308 children (5–17 years old; M/F = 127/181) and a reference group of 26 healthy adults (18–25 years old; M/F = 12/14) using a body-scalable bimanual manipulandum that allowed forearm flexion/extension in the horizontal plane. The non-dominant forearm was passively displaced to one of three target positions. Then participants actively matched the target limb position with their dominant forearm. Each of three positions was matched five times. Position error (PE), calculated as the mean difference between the angular positions of the matching and reference arms, measured position sense bias or systematic error. The respective standard deviation of the differences between the match and reference arm angular positions (SDPdiff) indicated position sense precision or random error. The main results are as follows: First, systematic error, measured by PE, did not change significantly from early childhood to late adolescence (Median PE at 90° target: −2.85° in early childhood; −2.28° in adolescence; and 1.30° in adults). Second, response variability as measured by SDPdiff significantly decreased with age (Median SDPdiff at 90° target: 9.66° in early childhood; 5.30° in late adolescence; and 3.97° in adults). The data of this large cross-sectional sample of children document that proprioceptive development in typically developing children is characterized as an age-related improvement in precision, not as a development or change in bias. In other words, it is the reliability of the perceptual response that improves between early childhood and adulthood. This study provides normative data against which position sense acuity in pediatric patient populations can be compared. The underlying neurophysiological processes that could explain the observed proprioceptive development include changes in the tuning of muscle spindles at the spinal level, the maturation of supraspinal somatosensory pathways and the development of interhemispheric callosal connections responsible for the transfer of somatosensory information.
Collapse
Affiliation(s)
- Jessica M Holst-Wolf
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA
| | - I-Ling Yeh
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
39
|
Rodríguez-Martínez EI, Ruiz-Martínez FJ, Barriga Paulino CI, Gómez CM. Frequency shift in topography of spontaneous brain rhythms from childhood to adulthood. Cogn Neurodyn 2016; 11:23-33. [PMID: 28174610 DOI: 10.1007/s11571-016-9402-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/13/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022] Open
Abstract
It has been described that the frequency ranges at which theta, mu and alpha rhythms oscillate is increasing with age. The present report, by analyzing the spontaneous EEG, tries to demonstrate whether there is an increase with age in the frequency at which the cortical structures oscillate. A topographical approach was followed. The spontaneous EEG of one hundredand seventy subjects was recorded. The spectral power (from 0.5 to 45.5 Hz) was obtained by means of the Fast Fourier Transform. Correlations of spatial topographies among the different age groups showed that older groups presented the same topographical maps as younger groups, but oscillating at higher frequencies. The results suggest that the same brain areas oscillate at lower frequencies in children than in older groups, for a broad frequency range. This shift to a higher frequency with age would be a trend in spontaneous brain rhythm development.
Collapse
Affiliation(s)
- E I Rodríguez-Martínez
- Human Psychobiology Lab, Department of Experimental Psychology, University of Sevilla, Sevilla, Spain
| | - F J Ruiz-Martínez
- Human Psychobiology Lab, Department of Experimental Psychology, University of Sevilla, Sevilla, Spain
| | - C I Barriga Paulino
- Human Psychobiology Lab, Department of Experimental Psychology, University of Sevilla, Sevilla, Spain
| | - Carlos M Gómez
- Human Psychobiology Lab, Department of Experimental Psychology, University of Sevilla, Sevilla, Spain
| |
Collapse
|
40
|
Microstructural Changes in Absence Seizure Children: A Diffusion Tensor Magnetic Resonance Imaging Study. Pediatr Neonatol 2016; 57:318-25. [PMID: 26750405 DOI: 10.1016/j.pedneo.2015.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/22/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Absence seizures are a subtype of epileptic seizures clinically characterized by transient alterations in states of consciousness and by electroencephalography indicating diffuse spike-wave discharges (SWD). Conventional brain magnetic resonance imaging (MRI) is not routinely used to establish the diagnosis, but rather to rule out other diseases. The present study investigated tissue integrity in children with SWD epilepsy using diffusion tensor imaging (DTI). METHODS Magnetic resonance imaging (MRI)-DTI was conducted in 18 patients with absence seizures and 10 control participants. Brain areas were evaluated using diffusion maps, and fractional anisotropy (FA), mean diffusivity (MD), parallel diffusivity (λ||), and perpendicular diffusivity (λ⊥) values were extracted and analyzed. Tractography at the regions of abnormal diffusion indices was then reconstructed in each group, and tract symmetry was evaluated by an index of asymmetry (AI). Statistical analyses were performed using nonparametric Mann-Whitney U tests, with p values < 0.05 indicating statistical significance. RESULTS Compared to the control group, patients with SWD epilepsy had lower FA values and higher MD values at the genu of the corpus callosum. There was also a stronger negative correlation between MD and FA values at the genu of the corpus callosum in patients than in control participants. The AI for the fiber tracts through the genu of the corpus callosum in the SWD group was significantly higher than that of the control group, indicating that tract distribution was more asymmetric in patients with epilepsy. There were no significant differences between groups in diffusion indices for other brain areas. CONCLUSION We observed microstructural changes in the genu of the corpus callosum, as well as reduced FA values, increased λ⊥ values, increased MD values, and asymmetric distribution of fiber tracts, indicating that DTI is more sensitive than conventional MRI to detect brain abnormalities in children with absence seizures.
Collapse
|
41
|
Jeong BS, Han DH, Kim SM, Lee SW, Renshaw PF. White matter connectivity and Internet gaming disorder. Addict Biol 2016; 21:732-42. [PMID: 25899390 DOI: 10.1111/adb.12246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Internet use and on-line game play stimulate corticostriatal-limbic circuitry in both healthy subjects and subjects with Internet gaming disorder (IGD). We hypothesized that increased fractional anisotropy (FA) with decreased radial diffusivity (RD) would be observed in IGD subjects, compared with healthy control subjects, and that these white matter indices would be associated with clinical variables including duration of illness and executive function. We screened 181 male patients in order to recruit a large number (n = 58) of IGD subjects without psychiatric co-morbidity as well as 26 male healthy comparison subjects. Multiple diffusion-weighted images were acquired using a 3.0 Tesla magnetic resonance imaging scanner. Tract-based spatial statistics was applied to compare group differences in diffusion tensor imaging (DTI) metrics between IGD and healthy comparison subjects. IGD subjects had increased FA values within forceps minor, right anterior thalamic radiation, right corticospinal tract, right inferior longitudinal fasciculus, right cingulum to hippocampus and right inferior fronto-occipital fasciculus (IFOF) as well as parallel decreases in RD value within forceps minor, right anterior thalamic radiation and IFOF relative to healthy control subjects. In addition, the duration of illness in IGD subjects was positively correlated with the FA values (integrity of white matter fibers) and negatively correlated with RD scores (diffusivity of axonal density) of whole brain white matter. In IGD subjects without psychiatric co-morbidity, our DTI results suggest that increased myelination (increased FA and decreased RD values) in right-sided frontal fiber tracts may be the result of extended game play.
Collapse
Affiliation(s)
- Bum Seok Jeong
- Laboratory of Clinical Neuroscience and Development; Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology; Korea
| | - Doug Hyun Han
- Department of Psychiatry; Chung Ang University Hospital; Korea
| | - Sun Mi Kim
- Department of Psychiatry; Chung Ang University Hospital; Korea
| | - Sang Won Lee
- Laboratory of Clinical Neuroscience and Development; Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology; Korea
| | | |
Collapse
|
42
|
Ajina S, Pestilli F, Rokem A, Kennard C, Bridge H. Human blindsight is mediated by an intact geniculo-extrastriate pathway. eLife 2015; 4. [PMID: 26485034 PMCID: PMC4641435 DOI: 10.7554/elife.08935] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/20/2015] [Indexed: 11/30/2022] Open
Abstract
Although damage to the primary visual cortex (V1) causes hemianopia, many patients retain some residual vision; known as blindsight. We show that blindsight may be facilitated by an intact white-matter pathway between the lateral geniculate nucleus and motion area hMT+. Visual psychophysics, diffusion-weighted magnetic resonance imaging and fibre tractography were applied in 17 patients with V1 damage acquired during adulthood and 9 age-matched controls. Individuals with V1 damage were subdivided into blindsight positive (preserved residual vision) and negative (no residual vision) according to psychophysical performance. All blindsight positive individuals showed intact geniculo-hMT+ pathways, while this pathway was significantly impaired or not measurable in blindsight negative individuals. Two white matter pathways previously implicated in blindsight: (i) superior colliculus to hMT+ and (ii) between hMT+ in each hemisphere were not consistently present in blindsight positive cases. Understanding the visual pathways crucial for residual vision may direct future rehabilitation strategies for hemianopia patients. DOI:http://dx.doi.org/10.7554/eLife.08935.001 Visual information from our eyes projects to a region at the back of the brain called the primary visual cortex, which is where the information is processed to allow us to see the world around us. If a person suffers a stroke that affects this primary visual cortex, he or she can become blind on one side. However, some people can still detect images within this ‘blind’ area, even if they are not consciously aware of it. This phenomenon is known as ‘blindsight’, but it remains unclear which pathways and structures in the brain might allow this information to be detected. Ajina et al. have now examined the brains of a large group of patients with damage to the visual cortex. The results for the patients with blindsight were compared to those without, and to a group of sighted control participants. This analysis identified a pathway that seems to underlie blindsight. This pathway (which runs between an area of the brain called the lateral geniculate nucleus and another called the motion area hMT+) was present in all patients with blindsight, but was missing or disrupted in those patients without blindsight. Ajina et al. then examined other pathways that had previously been suggested to support blindsight and revealed that they were unlikely to do so. This is because the suggested connections were not identifiable in all patients with blindsight, and were often intact in those patients without blindsight. So far, this work has addressed the structure of the pathways rather than their activity. Future work will attempt to determine whether it is possible to strengthen such pathways to improve visual ability. DOI:http://dx.doi.org/10.7554/eLife.08935.002
Collapse
Affiliation(s)
- Sara Ajina
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, Indiana University Network Science Institute, Indiana University, Bloomington, United States
| | - Ariel Rokem
- Department of Psychology, Stanford University, Stanford, United States.,eScience Institute, University of Washington, Seattle, United States
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Alcorta CS, Sosis R. Ritual, emotion, and sacred symbols : The evolution of religion as an adaptive complex. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2015; 16:323-59. [PMID: 26189836 DOI: 10.1007/s12110-005-1014-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 10/28/2004] [Indexed: 11/30/2022]
Abstract
This paper considers religion in relation to four recurrent traits: belief systems incorporating supernatural agents and counterintuitive concepts, communal ritual, separation of the sacred and the profane, and adolescence as a preferred developmental period for religious transmission. These co-occurring traits are viewed as an adaptive complex that offers clues to the evolution of religion from its nonhuman ritual roots. We consider the critical element differentiating religious from non-human ritual to be the conditioned association of emotion and abstract symbols. We propose neurophysiological mechanisms underlying such associations and argue that the brain plasticity of human adolescence constitutes an "experience expectant" developmental period for ritual conditioning of sacred symbols. We suggest that such symbols evolved to solve an ecological problem by extending communication and coordination of social relations across time and space.
Collapse
Affiliation(s)
- Candace S Alcorta
- Department of Anthropology U-2176, University of Connecticut, 06269-2176, Storrs, CT.
| | - Richard Sosis
- Department of Anthropology U-2176, University of Connecticut, 06269-2176, Storrs, CT
| |
Collapse
|
44
|
Thompson DK, Lee KJ, van Bijnen L, Leemans A, Pascoe L, Scratch SE, Cheong J, Egan GF, Inder TE, Doyle LW, Anderson PJ. Accelerated corpus callosum development in prematurity predicts improved outcome. Hum Brain Mapp 2015; 36:3733-48. [PMID: 26108187 DOI: 10.1002/hbm.22874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To determine: (1) whether corpus callosum (CC) size and microstructure at 7 years of age or their change from infancy to 7 years differed between very preterm (VP) and full-term (FT) children; (2) perinatal predictors of CC size and microstructure at 7 years; and (3) associations between CC measures at 7 years or trajectories from infancy to 7 years and neurodevelopmental outcomes. EXPERIMENTAL DESIGN One hundred and thirty-six VP (gestational age [GA] <30 weeks and/or birth weight <1,250 g) and 33 FT children had usable magnetic resonance images at 7 years of age, and of these, 76 VP and 16 FT infants had usable data at term equivalent age. The CC was traced and divided into six sub-regions. Fractional anisotropy, mean, axial, radial diffusivity and volume were measured from tractography. Perinatal data were collected, and neurodevelopmental tests administered at 7 years' corrected age. PRINCIPAL OBSERVATIONS VP children had smaller posterior CC regions, higher diffusivity and lower fractional anisotropy compared with FT 7-year-olds. Reduction in diffusivity over time occurred faster in VP than FT children (P ≤ 0.002). Perinatal brain abnormality and earlier GA were associated with CC abnormalities. Microstructural abnormalities at 7 years or slower development of the CC were associated with motor dysfunction, poorer mathematics and visual perception. CONCLUSIONS This study is the first to demonstrate an accelerated trajectory of CC white matter diffusion following VP birth, associated with improved neurodevelopmental functioning. Findings suggest there is a window of opportunity for neurorestorative intervention to improve outcomes. Hum Brain Mapp 36:3733-3748, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine J Lee
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Loeka van Bijnen
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Alexander Leemans
- Imaging Science Institute, University Medical Center, Utrecht, Netherlands
| | - Leona Pascoe
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Shannon E Scratch
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Jeanie Cheong
- Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gary F Egan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Terrie E Inder
- Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pediatrics, Washington University in St Louis Medical School, St Louis, Missouri
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Pediatrics, Washington University in St Louis Medical School, St Louis, Missouri
| |
Collapse
|
45
|
Flindall JW, Gonzalez CL. Children’s bilateral advantage for grasp-to-eat actions becomes unimanual by age 10years. J Exp Child Psychol 2015; 133:57-71. [DOI: 10.1016/j.jecp.2015.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
|
46
|
Ansado J, Collins L, Fonov V, Garon M, Alexandrov L, Karama S, Evans A, Beauchamp MH. A new template to study callosal growth shows specific growth in anterior and posterior regions of the corpus callosum in early childhood. Eur J Neurosci 2015; 42:1675-84. [PMID: 25864842 DOI: 10.1111/ejn.12869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/28/2022]
Abstract
Most of the studies conducted on the development of the corpus callosum (CC) have been limited to a relatively simple assessment of callosal area, providing an estimation of the size of the CC in two dimensions rather than its actual measurement. The goal of this study was to revisit callosal development in childhood and adolescence by using a three-dimensional (3D) magnetic resonance imaging template of the CC that considers the horizontal width of the CC and compares this with the two-dimensional (2D) callosal area. We mapped callosal growth in a large sample of youths followed longitudinally (N = 370 at T1; N = 304 at T2; and N = 246 at T3). Both techniques were based on a five-section subdivision of the CC. The results obtained with the 3D method revealed that the rate of CC growth over a 4-year period in the rostrum, the genu, the anterior body and the splenium was significantly higher in the youngest age group (< 7 years) than in older groups, indicating an intense period of development in early childhood for the anterior and posterior parts of the CC. Similar results were obtained when 2D callosal area was used for the anterior and posterior parts of the CC. However, divergent results were found in the mid-body and the caudal body of the CC. As shown by differences between 2D estimations and actual 3D measurements of callosal growth, our study highlights the importance of considering the horizontal width in measuring developmental changes in the CC.
Collapse
Affiliation(s)
- Jennyfer Ansado
- Ste-Justine Hospital Research Center, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, H3C 3J7, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
| | - Vladimir Fonov
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
| | - Mathieu Garon
- Ste-Justine Hospital Research Center, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | | | - Sherif Karama
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
| | - Alan Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
| | - Miriam H Beauchamp
- Ste-Justine Hospital Research Center, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | | |
Collapse
|
47
|
Jose D, Narayanaswamy JC, Agarwal SM, Kalmady SV, Venkatasubramanian G, Reddy YCJ. Corpus callosum abnormalities in medication-naïve adult patients with obsessive compulsive disorder. Psychiatry Res 2015; 231:341-5. [PMID: 25686521 DOI: 10.1016/j.pscychresns.2015.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 09/11/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Emerging evidence demonstrates widespread abnormalities involving white matter (WM) tracts connecting different cortical regions in obsessive-compulsive disorder (OCD). The corpus callosum (CC), the largest inter-hemispheric tract connecting the association cortices, has been shown to be affected in OCD. This study examines CC abnormalities in a large sample of medication-naïve OCD patients in comparison to matched healthy controls (HCs). We examined the mid-sagittal area of the CC in medication-naïve OCD patients (n=49) in comparison with age-, sex-, and handedness-matched HCs (n=38). Witelson's method was used to measure the sub-regions of the CC - namely, the genu, body, isthmus and splenium - with good inter-rater reliability. The area of the body of the CC and total CC area were significantly larger in OCD patients than in HCs after controlling for age, sex and intracranial area. The Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) compulsion score had a significant negative correlation with the areas of the isthmus and splenium of the CC in addition to the total CC area. The region-specific differences in the body of the CC and the region-specific association of severity score with posterior regions of the CC might be indicative of the involvement of additional areas like the dorsolateral prefrontal cortex, posterior parietal areas, occipital and association cortices in OCD that extend beyond the conventional orbito-fronto-striatal circuitry that is often posited to be involved in OCD.
Collapse
Affiliation(s)
- Dania Jose
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Janardhanan C Narayanaswamy
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Sri Mahavir Agarwal
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Sunil V Kalmady
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Ganesan Venkatasubramanian
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Y C Janardhan Reddy
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry and Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| |
Collapse
|
48
|
Tanaka-Arakawa MM, Matsui M, Tanaka C, Uematsu A, Uda S, Miura K, Sakai T, Noguchi K. Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study. PLoS One 2015; 10:e0118760. [PMID: 25790124 PMCID: PMC4366394 DOI: 10.1371/journal.pone.0118760] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/06/2015] [Indexed: 02/05/2023] Open
Abstract
Previous research has reported on the development trajectory of the corpus callosum morphology. However, there have been only a few studies that have included data on infants. The goal of the present study was to examine the morphology of the corpus callosum in healthy participants of both sexes, from infancy to early adulthood. We sought to characterize normal development of the corpus callosum and possible sex differences in development. We performed a morphometric magnetic resonance imaging (MRI) study of 114 healthy individuals, aged 1 month to 25 years old, measuring the size of the corpus callosum. The corpus callosum was segmented into seven subareas of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus and splenium. Locally weighted regression analysis (LOESS) indicated significant non-linear age-related changes regardless of sex, particularly during the first few years of life. After this increase, curve slopes gradually became flat during adolescence and adulthood in both sexes. Age of local maximum for each subarea of the corpus callosum differed across the sexes. Ratios of total corpus callosum and genu, posterior midbody, as well as splenium to the whole brain were significantly higher in females compared with males. The present results demonstrate that the developmental trajectory of the corpus callosum during early life in healthy individuals is non-linear and dynamic. This pattern resembles that found for the cerebral cortex, further suggesting that this period plays a very important role in neural and functional development. In addition, developmental trajectories and changes in growth do show some sex differences.
Collapse
Affiliation(s)
- Megumi M. Tanaka-Arakawa
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mie Matsui
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| | - Chiaki Tanaka
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akiko Uematsu
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Uda
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kayoko Miura
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoko Sakai
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
49
|
Serafini G, Pompili M, Borgwardt S, Houenou J, Geoffroy PA, Jardri R, Girardi P, Amore M. Brain changes in early-onset bipolar and unipolar depressive disorders: a systematic review in children and adolescents. Eur Child Adolesc Psychiatry 2014; 23:1023-1041. [PMID: 25212880 DOI: 10.1007/s00787-014-0614-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/29/2014] [Indexed: 01/09/2023]
Abstract
Pediatric bipolar disorder (BD) and unipolar disorder (UD) share common symptomatic and functional impairments. Various brain imaging techniques have been used to investigate the integrity of brain white matter (WM) and gray matter (GM) in these disorders. Despite promising preliminary findings, it is still unclear whether these alterations may be considered as common trait markers or may be used to distinguish BD from UD. A systematic literature search of studies between 1980 and September 2013 which reported WM/GM changes in pediatric and adolescent BD/UD, as detected by diffusion tensor imaging and voxel-based analysis was conducted. Of the 34 articles judged as eligible, 17 fulfilled our inclusion criteria and were finally retained in this review. More abnormalities have been documented in the brains of children and adolescents with BD than UD. Reductions in the volume of basal ganglia and the hippocampus appeared more specific for pediatric UD, whereas reduced corpus callosum volume and increased rates of deep WM hyperintensities were more specific for pediatric BD. Seminal papers failed to address the possibility that the differences between unipolar and bipolar samples might be related to illness severity, medication status, comorbidity or diagnosis. UD and BD present both shared and distinctive impairments in the WM and GM compartments. More WM abnormalities have been reported in children and adolescents with bipolar disease than in those with unipolar disease, maybe as a result of a low number of DTI studies in pediatric UD. Future longitudinal studies should investigate whether neurodevelopmental changes are diagnosis-specific.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, IRCCS San Martino, Largo Rosanna Benzi 10, 16100, Genoa, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu F, Cao S, Liu J, Du Z, Guo Z, Ren C. Ultrasound measurement of the corpus callosum and neural development of premature infants. Neural Regen Res 2014; 8:2432-40. [PMID: 25206553 PMCID: PMC4146107 DOI: 10.3969/j.issn.1673-5374.2013.26.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/20/2013] [Indexed: 11/18/2022] Open
Abstract
Length and thickness of 152 corpus callosa were measured in neonates within 24 hours of birth. Using ultrasonic diagnostic equipment with a neonatal brain-specific probe, corpus callosum length and thickness of the genu, body, and splenium were measured on the standard mid-sagittal plane, and the anteroposterior diameter of the genu was measured in the coronal plane. Results showed that corpus callosum length as well as thickness of the genu and splenium increased with tional age and birth weight, while other measures did not. These three factors on the standard mid-sagittal plane are therefore likely to be suitable for real-time evaluation of corpus callosum velopment in premature infants using cranial ultrasound. Further analysis revealed that thickness of the body and splenium and the anteroposterior diameter of the genu were greater in male infants than in female infants, suggesting that there are sex differences in corpus callosum size during the neonatal period. A second set of measurements were taken from 40 premature infants whose gestational age was 34 weeks or less. Corpus callosum measurements were corrected to a gestational age of 40 weeks, and infants were grouped for analysis depending on the outcome of a neonatal behavioral neurological assessment. Compared with infants with a normal neurological assessment, corpus callosum length and genu and splenium thicknesses were less in those with abnormalities, indicating that corpus callosum growth in premature infants is associated with neurobehavioral development during the early extrauterine stage.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, NICU, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China
| | - Shikao Cao
- Department of Ultrasound, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China
| | - Jiaoran Liu
- Department of Ultrasound, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China
| | - Zhifang Du
- Department of Ultrasound, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China
| | - Zhimei Guo
- Department of Ultrasound, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China
| | - Changjun Ren
- Department of Pediatrics, NICU, the First Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|