1
|
Bianchi VJ, Weber JF, Waldman SD, Backstein D, Kandel RA. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes. Tissue Eng Part A 2017; 23:156-165. [DOI: 10.1089/ten.tea.2016.0262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vanessa J. Bianchi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Joanna F. Weber
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Stephen D. Waldman
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada
| | - David Backstein
- Division of Orthopaedics, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Pathology and Laboratory Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Murphy MK, Arzi B, Prouty SM, Hu JC, Athanasiou KA. Neocartilage integration in temporomandibular joint discs: physical and enzymatic methods. J R Soc Interface 2015; 12:rsif.2014.1075. [PMID: 25519993 DOI: 10.1098/rsif.2014.1075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Integration of engineered musculoskeletal tissues with adjacent native tissues presents a significant challenge to the field. Specifically, the avascularity and low cellularity of cartilage elicit the need for additional efforts in improving integration of neocartilage within native cartilage. Self-assembled neocartilage holds significant potential in replacing degenerated cartilage, though its stabilization and integration in native cartilage require further efforts. Physical and enzymatic stabilization methods were investigated in an in vitro model for temporomandibular joint (TMJ) disc degeneration. First, in phase 1, suture, glue and press-fit constructs were compared in TMJ disc intermediate zone defects. In phase 1, suturing enhanced interfacial shear stiffness and strength immediately; after four weeks, a 15-fold increase in stiffness and a ninefold increase in strength persisted over press-fit. Neither suture nor glue significantly altered neocartilage properties. In phase 2, the effects of the enzymatic stabilization regimen composed of lysyl oxidase, CuSO4 and hydroxylysine were investigated. A full factorial design was employed, carrying forward the best physical method from phase 1, suturing. Enzymatic stabilization significantly increased interfacial shear stiffness after eight weeks. Combined enzymatic stabilization and suturing led to a fourfold increase in shear stiffness and threefold increase in strength over press-fit. Histological analysis confirmed the presence of a collagen-rich interface. Enzymatic treatment additionally enhanced neocartilage mechanical properties, yielding a tensile modulus over 6 MPa and compressive instantaneous modulus over 1200 kPa at eight weeks. Suturing enhances stabilization of neocartilage, and enzymatic treatment enhances functional properties and integration of neocartilage in the TMJ disc. Methods developed here are applicable to other orthopaedic soft tissues, including knee meniscus and hyaline articular cartilage.
Collapse
Affiliation(s)
- Meghan K Murphy
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, William R. Pritchard Veterinary Medical Teaching Hospital, University of California Davis, Davis, CA, USA
| | - Shannon M Prouty
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA Department of Orthopaedic Surgery, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Murphy MK, DuRaine GD, Reddi A, Hu JC, Athanasiou KA. Inducing articular cartilage phenotype in costochondral cells. Arthritis Res Ther 2014; 15:R214. [PMID: 24330640 PMCID: PMC3979093 DOI: 10.1186/ar4409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Costochondral cells may be isolated with minimal donor site morbidity and are unaffected by pathologies of the diarthrodial joints. Identification of optimal exogenous stimuli will allow abundant and robust hyaline articular cartilage to be formed from this cell source. METHODS In a three factor, two level full factorial design, the effects of hydrostatic pressure (HP), transforming growth factor β1 (TGF-β1), and chondroitinase ABC (C-ABC), and all resulting combinations, were assessed in third passage expanded, redifferentiated costochondral cells. After 4 wks, the new cartilage was assessed for matrix content, superficial zone protein (SZP), and mechanical properties. RESULTS Hyaline articular cartilage was generated, demonstrating the presence of type II collagen and SZP, and the absence of type I collagen. TGF-β1 upregulated collagen synthesis by 175% and glycosaminoglycan synthesis by 75%, resulting in a nearly 200% increase in tensile and compressive moduli. C-ABC significantly increased collagen content, and fibril density and diameter, leading to a 125% increase in tensile modulus. Hydrostatic pressure increased fibril diameter by 30% and tensile modulus by 45%. Combining TGF-β1 with C-ABC synergistically increased collagen content by 300% and tensile strength by 320%, over control. No significant differences were observed between C-ABC/TGF-β1 dual treatment and HP/C-ABC/TGF-β1. CONCLUSIONS Employing biochemical, biophysical, and mechanical stimuli generated robust hyaline articular cartilage with a tensile modulus of 2 MPa and a compressive instantaneous modulus of 650 kPa. Using expanded, redifferentiated costochondral cells in the self-assembling process allows for recapitulation of robust mechanical properties, and induced SZP expression, key characteristics of functional articular cartilage.
Collapse
|
4
|
Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, Kawamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 2013; 55:309-18. [PMID: 23452121 DOI: 10.1111/dgd.12049] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs.
Collapse
Affiliation(s)
- Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Patil AS, Sable RB, Kothari RM. An update on transforming growth factor-β (TGF-β): sources, types, functions and clinical applicability for cartilage/bone healing. J Cell Physiol 2011; 226:3094-103. [PMID: 21344394 DOI: 10.1002/jcp.22698] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor-β (TGF-β) has been reviewed for its sources, types of isoforms, biochemical effects on cartilage formation/repair, and its possible clinical applications. Purification of three isoforms (TGF-β-1, β-2 and β-3) and their biochemical characterization revealed mainly their homo-dimer nature, with heterodimers in traces, each monomer comprised of 112 amino acids and MW. of 12 500 Da. While histo-chemical staining by a variety of dyes has revealed precise localization of TGF-β in tissues, immune-blot technique has thrown light on their expression as a function of age (neonatal vs. adult), as also on its quantum in an active and latent state. X-ray crystallographic studies and nuclear magnetic resonance (NMR) analysis have unraveled mysteries of their three-dimensional structures, essential for understanding their functions. Their similarities have led to interchangeability in assays, while differences have led to their specialized clinical applicability. For this purpose, their latent (inactive) form is changed to an active form through enzymatic processes of phosphorylation/glycosylation/transamination/proteolytic degradation. Their functions encompass differentiation and de-differentiation of chondrocytes, synthesis of collagen and proteoglycans (PGs) and thereby maintain homeostasis of cartilage in several degenerative diseases and repair through cell cycle signaling and physiological control. While several factors affecting their performance are already identified, their interplay and chronology of sequences of functions is yet to be understood. For its success in clinical applications, challenges in judicious dealing with the factors and their interplay need to be understood.
Collapse
Affiliation(s)
- A S Patil
- Department of Orthodontics and Dentofacial Orthopedics, Bharati Vidyapeeth Dental College and Hospital, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India.
| | | | | |
Collapse
|
6
|
Effect of bovine pituitary extract on the formation of neocartilage in chitosan/gelatin scaffolds. J Taiwan Inst Chem Eng 2010. [DOI: 10.1016/j.jtice.2009.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Kuo YC, Leou SN. Chondrogenesis of articular chondrocytes in hydroxyapatite/chitin/chitosan scaffolds supplemented with pituitary extract. Eng Life Sci 2010. [DOI: 10.1002/elsc.200900048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
8
|
Rahman MS, Tsuchiya T. In vitro culture of human chondrocytes (1): A novel enhancement action of ferrous sulfate on the differentiation of human chondrocytes. Cytotechnology 2008; 37:163-9. [PMID: 19002919 DOI: 10.1023/a:1020506821201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chondrogenic differentiation of mesenchymal cells is generally thought to be initiated by the inductive action of specific growth factors and depends on intimate cell-cell interactions. The aim of our investigation was to characterize the influences of basic fibroblast growth factor (bFGF) and ferroussulfate (FeSO(4)) on proliferation and differentiation of human articular chondrocytes (HAC). This is the first report of the effects of FeSO(4) on chondrogenesis of HAC. Multiplied chondrocytes of hip and shoulder joints were cultured in chondrocyte growth medium supplemented with bFGF, FeSO(4), or both bFGF + FeSO(4) for4weeks. A 20 mul aliquot of a cell suspension containing2 x 10(7) cells ml(-1) was delivered onto each well of 24-well tissue culture plates. Cells cultured with the growth medium only was used as a control. Alamar blue and alcian blue staining were done to determine the chondrocyte proliferation and differentiation, respectively, after 4 weeks. The samples exposed to bFGF, FeSO(4), and combination of both indicated sufficient cell proliferation similar to the control level. Differentiations of the HAC exposed to bFGF, FeSO(4),and bFGF + FeSO(4) were 1.2-, 2.0-, and 2.2-fold of the control, respectively. Therefore, chondrocyte differentiation was significantly enhanced by the addition of FeSO(4) andbFGF + FeSO(4). The combined effects of bFGF and FeSO(4) were additive, rather than synergistic. These results suggest that treatment with ferrous sulfate alone or in combination with basic fibroblast growth factor etc, is a powerful tool to promote the differentiation of HAC for the clinical application.
Collapse
Affiliation(s)
- M S Rahman
- Division of Medical Devices, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya ku, 158-8501, Tokyo, Japan
| | | |
Collapse
|
9
|
Johns D, Athanasiou K. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage. Cell Tissue Res 2008; 333:439-47. [PMID: 18597118 PMCID: PMC2903961 DOI: 10.1007/s00441-008-0652-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022]
Abstract
Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-beta1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue.
Collapse
Affiliation(s)
- D.E. Johns
- Department of Bioengineering, Rice University, Houston, TX
| | | |
Collapse
|
10
|
Han F, Gilbert JR, Harrison G, Adams CS, Freeman T, Tao Z, Zaka R, Liang H, Williams C, Tuan RS, Norton PA, Hickok NJ. Transforming growth factor-beta1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation. Exp Cell Res 2007; 313:1518-32. [PMID: 17391668 PMCID: PMC1920702 DOI: 10.1016/j.yexcr.2007.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 01/09/2007] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-beta1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-beta1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-beta1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-beta1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression.
Collapse
Affiliation(s)
- Fei Han
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James R. Gilbert
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gerald Harrison
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher S. Adams
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Theresa Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhuliang Tao
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raihana Zaka
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hongyan Liang
- Department of Biochemistry & Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charlene Williams
- Department of Biochemistry & Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch, NIAMS, NIH, Bethesda, MD
| | - Pamela A. Norton
- Department of Biochemistry & Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Jefferson Center for Biomedical Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Kita M, Hanasono MM, Mikulec AA, Pollard JD, Kadleck JM, Koch RJ. Growth and growth factor production by human nasal septal chondrocytes in serum-free media. ACTA ACUST UNITED AC 2007; 20:489-95. [PMID: 17063744 DOI: 10.2500/ajr.2006.20.2927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tissue-engineered human cartilage offers vast possibilities as a source of graft implant material for reconstructive surgery. Serum-supplemented growth media is successful in supporting chondrocyte proliferation in vitro. Serum, however, contains exogenous growth factors that hamper the identification and quantification of growth factors autogenously produced by chondrocytes. We explore the possibility of using a commercially available serum-free medium UltraCULTURE as an alternative to modified Webber's medium (MWM), the standard media used in chondrocyte cell culture. METHODS Human nasal septal chondrocytes were grown in UltraCULTURE containing various concentrations of basic fibroblast growth factor (bFGF; 0, 1, 10, and 100 ng/mL) with or without insulin-like growth factor and compared with chondrocytes grown in MWM. Growth curves and transforming growth factor (TGF) beta 1 production were analyzed. RESULTS We found no differences in the ability to sustain cell viability in culture between the two base media types. We also found no statistically significant differences in TGF-beta 1 production by chondrocytes grown in either system. Finally, there were no statistically significant differences in chondrocyte proliferation between cultures supplemented with bFGF at 10 and 100 ng/mL. CONCLUSION UltraCULTURE media is a cost-effective, serum-free alternative to standard media with compatible growth characteristics. It offers specific advantages over standard serum-containing media for the precise measurement of autogenous growth factor production by cultured chondrocytes. Furthermore, UltraCULTURE's serum-free environment would be ideal for safely producing tissue-engineered cartilage grafts.
Collapse
Affiliation(s)
- Magdalena Kita
- Koch Laboratory, Division of Otolaryngology-Head and Neck Surgery, Stanford University Medical Center, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
12
|
Detamore MS, Athanasiou KA. Effects of growth factors on temporomandibular joint disc cells. Arch Oral Biol 2004; 49:577-83. [PMID: 15126139 DOI: 10.1016/j.archoralbio.2004.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/22/2022]
Abstract
The effects of growth factors on cartilaginous tissues are well documented. An exception is the temporomandibular joint (TMJ) disc, where data for growth factor effects on proliferation and biosynthesis are very limited. The purpose of this study was to quantify proliferation of and synthesis by TMJ disc cells cultured in monolayer with either platelet derived growth factor-AB (PDGF), basic fibroblast growth factor (bFGF) or insulin-like growth factor-I (IGF), at either a low (10 ng/ml) or high (100 ng/ml) concentration. Proliferation was assessed with a DNA quantitation technique, collagen synthesis was measured via a hydroxyproline assay, and GAG synthesis was determined with a dimethylmethylene blue dye binding assay at 14 days. Overall, the most beneficial growth factor was bFGF, which was most potent in increasing proliferation and GAG synthesis, and also effective in promoting collagen synthesis. At the high concentration, bFGF resulted in 96% more cells than the control and 30 to 45% more cells than PDGF and IGF. PDGF and bFGF were the most potent upregulators of GAG synthesis, producing 2-3 times more GAG than the control. IGF had no significant effect on GAG production, although at its higher concentration it increased collagen production by 4.5 times over the control. Collagen synthesis was promoted by bFGF at its lower concentration, with levels 4.2 times higher than the control, whereas PDGF had no significant effect on collagen production. In general, higher concentrations increased proliferation, whereas lower concentrations favoured biosynthesis.
Collapse
Affiliation(s)
- Michael S Detamore
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | | |
Collapse
|
13
|
Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 2004; 320:914-9. [PMID: 15240135 DOI: 10.1016/j.bbrc.2004.06.029] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Indexed: 12/13/2022]
Abstract
During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-beta3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-beta3 and BMP-6 or TGF-beta3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction.
Collapse
Affiliation(s)
- Nitaya Indrawattana
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3-11-46 Nakoji, Amagasaki, Hyogo 661-0974, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Draper CE, Singh J, Adeghate E. Effects of age on morphology, protein synthesis and secretagogue-evoked secretory responses in the rat lacrimal gland. Mol Cell Biochem 2003; 248:7-16. [PMID: 12870649 DOI: 10.1023/a:1024159529257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigated changes in the morphology and protein synthesis and protein and peroxidase secretion due to peptidergic and aminergic stimulation from rat lacrimal gland acinar cells of 3-5, 9, 12, 20 and 24 month old rats. There was a marked reduction in the presence of Golgi apparatus in the acinar cells of glands from the 24 month old rats coupled to dilatation and degeneration of rough endoplasmic reticulum, when compared to that in the acinar cells of glands from 3-5 and 12 month old rats. Following incorporation of tritiated leucine for 360 min (6 h), the amount of newly synthesised protein in acinar cells of the 12 month old rats was significantly (p < 0.01) higher than that in the acinar cells of 3-5 month old animals. However, at 20 months the amount of newly synthesised protein in these acinar cells was significantly (p < 0.01) reduced to less than that in acinar cells of both the 3-5 and 12 month old animals. Immunohistochemical and immunofluorescence studies identified the presence of substance P (SP), vasoactive intestinal peptide (VIP), histamine and 5-hydroxytryptamine (5-HT) in the lacrimal glands of 3-5 month old rats. Stimulation by either SP, VIP, histamine or 5-HT resulted in significant increases in total protein output and peroxidase release from acinar cells of the 3-5 month old rats. However, all responses to the secretagogues were reduced with ageing from 3-5 to 24 months of age. The results indicate that ageing is associated with alteration in the ability of acinar cells to synthesise and secrete proteins.
Collapse
Affiliation(s)
- Clare E Draper
- Department of Biological Sciences, University of Central Lancashire, Preston, UK
| | | | | |
Collapse
|
15
|
Kaplan BA, Gorman CR, Gupta AK, Taylor SR, Iezzoni JC, Park SS. Effects of transforming growth factor Beta and insulinlike growth factor 1 on the biomechanical and histologic properties of tissue-engineered cartilage. ARCHIVES OF FACIAL PLASTIC SURGERY 2003; 5:96-101. [PMID: 12533149 DOI: 10.1001/archfaci.5.1.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the histologic and biomechanical properties of rabbit tissue-engineered cartilage exposed to insulinlike growth factor 1 and transforming growth factor beta. DESIGN Controlled study. SUBJECTS New Zealand white rabbits aged 3 to 4 weeks. INTERVENTION A mean of 3.42 million rabbit chondrocytes were placed onto 2 x 1-cm polyglycolic/poly-L-lactic acid mesh templates. One group (n = 21) was placed in complete medium for 4 days. The experimental group (n = 19) was placed into complete medium with insulinlike growth factor 1 (50 ng/mL) and transforming growth factor beta (1 ng/mL). After 96 hours the templates were removed and implanted into the dorsum of the donor rabbit. The templates were harvested after 8 weeks and subjected to gross, histologic, and biomechanical testing. RESULTS All samples showed histologic characteristics consistent with normal cartilage. No statistically significant differences were found with biomechanical testing between the control and experimental groups. CONCLUSION In spite of more promising results from earlier studies, these results do not support improved histologic features or mechanical performance with the addition of insulinlike growth factor 1 and transforming growth factor beta to the chondrocyte/template complex.
Collapse
Affiliation(s)
- Brian A Kaplan
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head & Neck Surgery, University of Virginia Medical Center, PO Box 800713, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
16
|
Grimaud E, Heymann D, Rédini F. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 2002; 13:241-57. [PMID: 12486877 DOI: 10.1016/s1359-6101(02)00004-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel approaches to treat osteoarthritis are required and progress in understanding the biology of cartilage disorders has led to the use of genes whose products stimulate cartilage repair or inhibit breakdown of the cartilaginous matrix. Among them, transforming growth factor-beta (TGF-beta) plays a significant role in promoting chondrocyte anabolism in vitro (enhancing matrix production, cell proliferation, osteochondrogenic differentiation) and in vivo (short-term intra-articular injections lead to increased bone formation and subsequent cartilage formation, beneficial effects on osteochondrogenesis). In vivo induction of the expression of TGF-beta and the use of gene transfer may provide a new approach for treatment of osteoarthritic lesions.
Collapse
Affiliation(s)
- Eva Grimaud
- Laboratoire de Physiopathologie de la Résorption Osseuse EE 99-01, Faculté de Médecine, University of Nantes, 1 rue Gaston Veil, 44035 Nantes, France
| | | | | |
Collapse
|
17
|
Ellsworth JL, Berry J, Bukowski T, Claus J, Feldhaus A, Holderman S, Holdren MS, Lum KD, Moore EE, Raymond F, Ren H, Shea P, Sprecher C, Storey H, Thompson DL, Waggie K, Yao L, Fernandes RJ, Eyre DR, Hughes SD. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage 2002; 10:308-20. [PMID: 11950254 DOI: 10.1053/joca.2002.0514] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to examine the effects of recombinant human Fgf18 on chondrocyte proliferation and matrix production in vivo and in vitro. In addition, the expressions of Fgf18 and Fgf receptors (Fgfr) in adult human articular cartilage were examined. METHODS Adenovirus-mediated transfer of Fgf18 into murine pinnae and addition of FGF18 to primary cultures of adult articular chondrocytes were used to assess the effects of FGF18 on chondrocytes. In situ hybridization was used to examine the expression of Fgf18 and Fgfr s in adult human articular cartilage. RESULTS Expression of Fgf18 by adenovirus-mediated gene transfer in murine pinnae resulted in a significant increase in chondrocyte number. Chondrocytes were identified by staining with toluidine blue and a monoclonal antibody directed against type II collagen. Fgf18, Fgfr 2-(IIIc), Fgfr 3-(IIIc), and Fgfr 4 mRNAs were detected within these cells by in situ hybridization. The nuclei of the chondrocytes stained with antibodies to PCNA and FGF receptor (FGFR) 2. Addition of FGF18 to the culture media of primary articular chondrocytes increased the proliferation of these cells and increased their production of extracellular matrix. To assess the receptor selectivity of FGF18, BaF3 cells stably expressing the genes for the major splice variants of Fgfr1-3 were used. Proliferation of cells expressing Fgfr 3-(IIIc) or Fgfr 2-(IIIc) was increased by incubation with FGF18. Using FGFR-Fc fusion proteins and BaF3 cells expressing Fgfr 3-(IIIc), only FGFR 3-(IIIc)-Fc, FGFR 2-(IIIc)-Fc or FGFR 4-Fc reduced FGF18-mediated cell proliferation. Expression of Fgf18, Fgfr 3-(IIIc) and Fgfr 2-(IIIc) mRNAs was localized to chondrocytes of human articular cartilage by in situ hybridization. CONCLUSION These data demonstrate that Fgf18 can act as a trophic factor for elastic chondrocytes and their progenitors in vivo and articular chondrocytes cultured in vitro. Expression of Fgf18 and the genes for two of its receptors in chondrocytes suggests that Fgf18 may play an autocrine role in the biology of normal articular cartilage.
Collapse
Affiliation(s)
- J L Ellsworth
- ZymoGenetics, Inc., 1201 Eastlake Avenue East, Seattle, Washington 98102, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sonal D. Prevention of IGF-1 and TGFbeta stimulated type II collagen and decorin expression by bFGF and identification of IGF-1 mRNA transcripts in articular chondrocytes. Matrix Biol 2001; 20:233-42. [PMID: 11470399 DOI: 10.1016/s0945-053x(01)00140-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES the aim of this investigation was to establish whether the action of bFGF modulated the production of type II collagen, decorin and biglycan induced by IGF-1 or TGFbeta in porcine articular chondrocytes. In addition, the study would establish which multiple transcripts of IGF-1 were present in articular cartilage, and which growth factors influenced their expression. METHODS steady state levels of mRNA specific for IGF-1 and matrix proteins were extracted as total RNA from porcine articular chondrocytes and processed for Northern blot analysis. High-density cell monolayers were established in the presence of serum, then maintained in a serum-free state for up to 7 days with increasing doses of either IGF-1 or TGFbeta in the presence or absence of bFGF. RESULTS bFGF prevented the stimulation of type II collagen and decorin induced in the presence of IGF-1 or TGFbeta and up-regulated the production of biglycan in cultured chondrocytes without altering the gene expression of IGF-1. Four IGF-1 transcripts were found in cultured adherent chondrocytes, approximately 77% was present as a major 4.7kb transcript with lower levels of 7.6 (4%), 1.3 (11%) and 1.1 (8%) kb forms. CONCLUSIONS bFGF acts as an antagonist for the production of type II collagen and decorin and also acts as a strong inducer like IGF 1 and TGFbeta for the expression of biglycan in porcine cultured chondrocytes. The apparent lack of a dose and time effect on expression of the IGF-1 gene was surprising and may be due to the stability of the IGF-1 message.
Collapse
Affiliation(s)
- D Sonal
- Department of Matrix Biochemistry, Strangeways Research Laboratory, CB1, 8RN, Cambridge, UK.
| |
Collapse
|
19
|
Reeves KD, Hassanein K. Randomized, prospective, placebo-controlled double-blind study of dextrose prolotherapy for osteoarthritic thumb and finger (DIP, PIP, and trapeziometacarpal) joints: evidence of clinical efficacy. J Altern Complement Med 2000; 6:311-20. [PMID: 10976977 DOI: 10.1089/10755530050120673] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To determine the clinical benefit of dextrose prolotherapy (injection of growth factors or growth factor stimulators) in osteoarthritic finger joints. DESIGN Prospective randomized double-blind placebo-controlled trial. SETTINGS/LOCATION Outpatient physical medicine clinic. SUBJECTS Six months of pain history was required in each joint studied as well as one of the following: grade 2 or 3 osteophyte, grade 2 or 3 joint narrowing, or grade 1 osteophyte plus grade 1 joint narrowing. Distal interphalangeal (DIP), proximal interphalangeal (PIP), and trapeziometacarpal (thumb CMC) joints were eligible. Thirteen patients (with seventy-four symptomatic osteoarthitic joints) received active treatment, and fourteen patients (with seventy-six symptomatic osteoarthritic joints) served as controls. INTERVENTION One half milliliter (0.5 mL) of either 10% dextrose and 0.075% xylocaine in bacteriostatic water (active solution) or 0.075% xylocaine in bacteriostatic water (control solution) was injected on medial and lateral aspects of each affected joint. This was done at 0, 2, and 4 months with assessment at 6 months after first injection. OUTCOME MEASURES One-hundred millimeter (100 mm) Visual Analogue Scale (VAS) for pain at rest, pain with joint movement and pain with grip, and goniometrically-measured joint flexion. RESULTS Pain at rest and with grip improved more in the dextrose group but not significantly. Improvement in pain with movement of fingers improved significantly more in the dextrose group (42% versus 15% with a p value of .027). Flexion range of motion improved more in the dextrose group (p = .003). Side effects were minimal. CONCLUSION Dextrose prolotherapy was clinically effective and safe in the treatment of pain with joint movement and range limitation in osteoarthritic finger joints.
Collapse
Affiliation(s)
- K D Reeves
- Meadowbrook Rehabilitation Hospital, Gardner, Kansas, USA.
| | | |
Collapse
|
20
|
Fei X, Tan BK, Lee ST, Foo CL, Sun DF, Aw SE. Effect of fibrin glue coating on the formation of new cartilage. Transplant Proc 2000; 32:210-7. [PMID: 10701027 DOI: 10.1016/s0041-1345(99)00939-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- X Fei
- Department of Clinical Research, Singapore General Hospital, Singapore
| | | | | | | | | | | |
Collapse
|