1
|
Development of a stereotaxic device for low impact implantation of neural constructs or pieces of neural tissues into the mammalian brain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:651236. [PMID: 24587986 PMCID: PMC3920921 DOI: 10.1155/2014/651236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022]
Abstract
Implanting pieces of tissue or scaffolding material into the mammalian central nervous system (CNS) is wrought with difficulties surrounding the size of tools needed to conduct such implants and the ability to maintain the orientation and integrity of the constructs during and after their transplantation. Here, novel technology has been developed that allows for the implantation of neural constructs or intact pieces of neural tissue into the CNS with low trauma. By “laying out” (instead of forcibly expelling) the implantable material from a thin walled glass capillary, this technology has the potential to enhance neural transplantation procedures by reducing trauma to the host brain during implantation and allowing for the implantation of engineered/dissected tissues or constructs in such a way that their orientation and integrity are maintained in the host. Such technology may be useful for treating various CNS disorders which require the reestablishment of point-to-point contacts (e.g., Parkinson's disease) across the adult CNS, an environment which is not normally permissive to axonal growth.
Collapse
|
2
|
Fricker RA, Kuiper JH, Gates MA. Transplanting intact donor tissue enhances dopamine cell survival and the predictability of motor improvements in a rat model of Parkinson's disease. PLoS One 2012; 7:e47169. [PMID: 23056602 PMCID: PMC3467221 DOI: 10.1371/journal.pone.0047169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
Primary cell transplantation is currently the gold standard for cell replacement in Parkinson's disease. However, the number of donors needed to treat a single patient is high, and the functional outcome is sometimes variable. The present work explores the possibility of enhancing the viability and/or functionality of small amounts of ventral mesencephalic (VM) donor tissue by reducing its perturbation during preparation and implantation. Briefly, unilaterally lesioned rats received either: (1) an intact piece of half an embryonic day 13 (E13) rat VM; (2) dissociated cells from half an E13 rat VM; or (3) no transplant. D-amphetamine- induced rotations revealed that animals receiving pieces of VM tissue or dissociated cells showed significant improvement in ipsilateral rotation 4 weeks post transplantation. By 6 weeks post transplantation, animals receiving pieces of VM tissue showed a trend for further improvement, while those receiving dissociated cells remained at their 4 week scores. Postmortem cell counts showed that the number of dopaminergic neurons in dissociated cell transplants was significantly lower than that surviving in transplants of intact tissue. When assessing the correlation between the number of dopamine cells in each transplant, and the improvement in rotation bias in experimental animals, it was shown that transplants of whole pieces of VM tissue offered greater predictability of graft function based on their dopamine cell content. Such results suggest that maintaining the integrity of VM tissue during implantation improves dopamine cell content, and that the dopamine cell content of whole tissue grafts offers a more predictable outcome of graft function in an animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Rosemary A. Fricker
- Keele University, School of Life Sciences, Institute for Science and Technology in Medicine, Keele, United Kingdom
| | - Jan Herman Kuiper
- Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
- RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Monte A. Gates
- Keele University, School of Life Sciences, Institute for Science and Technology in Medicine, Keele, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Badayan I, Cudkowicz ME. Is it too soon for mesenchymal stem cell trials in people with ALS? ACTA ACUST UNITED AC 2009; 9:321-2. [PMID: 18819027 DOI: 10.1080/17482960802425559] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting primarily the motor neurons. Stem cell therapy is under development as a possible treatment approach. A pilot study of intraspinal injections of mesenchymal stem cells (MSC) was conducted in 9 participants. We review this paper, the rationale, preclinical data and study design.
Collapse
Affiliation(s)
- Irina Badayan
- Neurology Clinical Trials Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
4
|
Stem Cells and Organ Replacement. Artif Organs 2009. [DOI: 10.1007/978-1-84882-283-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
|
6
|
Abstract
Motor dysfunctions in Parkinson's disease are considered to be primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Pharmacological therapies based on the principle of dopamine replacement are extremely valuable, but suffer from two main drawbacks: troubling side effects (e.g. dyskinesia) and loss of efficacy with disease progression. Transplantation of embryonic dopaminergic neurons has emerged as a therapeutic alternative. Enthusiasm following the success of the initial open-label trials has been dampened by the negative outcome of double-blind placebo controlled trials. Additionally, the emergence of graft-related dyskinesia indicates that the experimental grafting procedure requires further refinement before it can be developed into a therapy. Shortage of embryonic donor tissue limits large-scale clinical transplantation trials. We review three of the most attractive tissue sources of dopaminergic neurons for cell replacement therapy: human embryonic ventral mesencephalic tissue, embryonic and adult multipotent region-specific stem cells and embryonic stem cells. Recent developments in embryonic stem cell research and on their implications for a future transplantation therapy in Parkinson's disease are described. Finally, we discuss how human embryonic stem cells can be differentiated into dopaminergic neurons, and issues such as the numbers of dopaminergic neurons required for success and the risk for teratoma formation after implantation.
Collapse
Affiliation(s)
- Ana Sofia Correia
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
7
|
Yang M, Donaldson AE, Marshall CE, Shen J, Iacovitti L. Studies on the differentiation of dopaminergic traits in human neural progenitor cells in vitro and in vivo. Cell Transplant 2004; 13:535-47. [PMID: 15565866 PMCID: PMC1949040 DOI: 10.3727/000000004783983729] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The development of cell replacement therapies for the treatment of neurodegenerative disorders such as Parkinson's disease (PD) may depend upon the successful differentiation of human neural stem/progenitor cells into dopamine (DA) neurons. We show here that primary human neural progenitors (HNPs) can be expanded and maintained in culture both as neurospheres (NSPs) and attached monolayers where they develop into neurons and glia. When transplanted into the 6-hydroxydopamine-lesioned rat striatum, undifferentiated NSPs survive longer (60% graft survival at 8-16 weeks vs. 30% graft survival at 8-13 weeks) and migrate farther than their attached counterparts. While both NSP and attached cells continue to express neuronal traits after transplantation, the spontaneous expression of differentiated transmitter-related traits is not observed in either cell type. However, following predifferentiation in culture using a previously described cocktail of reagents, approximately 25% of HNPs can permanently express the DA enzyme tyrosine hydroxylase (TH), even following replating and removal of the DA differentiation cocktail. When these predifferentiated HNPs are transplanted into the brain, however, TH staining is not observed, either because expression is lost or TH-expressing cells preferentially die. Consistent with the latter view is a decrease in total cell survival and migration, and an enhanced glial response in these grafts. In contrast, we found that the overall survival of HNPs is improved when cells engraft near blood vessels or CSF compartments or when they are placed into an intact unlesioned brain, suggesting that there are factors, as yet unidentified, that can better support the development of engrafted HNPs.
Collapse
Affiliation(s)
- Ming Yang
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107
| | - Angela E. Donaldson
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107
| | - Cheryl E. Marshall
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107
| | - James Shen
- ScienCell Research Laboratories, 4050 Sorrento Valley Boulevard, San Diego, CA 92121
| | - Lorraine Iacovitti
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107
| |
Collapse
|
8
|
Polgar S, Morris ME, Reilly S, Bilney B, Sanberg PR. Reconstructive neurosurgery for Parkinson's disease: a systematic review and preliminary meta-analysis. Brain Res Bull 2003; 60:1-24. [PMID: 12725889 DOI: 10.1016/s0361-9230(03)00017-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This systematic review and meta-analysis aimed to identify the determinants for best practice and establish current benchmarks for recovery following reconstructive neurosurgery for people with Parkinson's disease. Eleven studies reporting results for 95 grafted patients were selected on the grounds of using optimal surgical techniques and the Core Assessment Program for Intracerebral Transplantation (CAPIT) protocol for data collection. Consistent trends demonstrating high levels of recovery were identified on most outcome measures. Determinants for best practice were identified as selecting younger patients; using low dose immunosuppression; bilateral grafting; and employing strategies to ensure the quantity and viability of the grafted cells. Secondary analysis of data demonstrated a correlation of rho=0.666 (P<0.05) between increases in striatal dopaminergic activity and UPDRS Motor (off) scores. Overall effect size 'd' was found to be 1.129 UPDRS Motor (off) condition and 0.719 for UPDRS Total (off) condition. The design of the studies and the variable standards for reporting the data precluded the use of more powerful and accurate meta-analyses. It was recommended that the creation of a collaborative database would improve the extraction of data and allow for more powerful statistical analyses for evaluating the overall harm and benefits associated with reconstructive neurosurgery.
Collapse
Affiliation(s)
- S Polgar
- School of Public Health, Faculty of Health Science, La Trobe University, Bundoora, Vic. 3083, Australia.
| | | | | | | | | |
Collapse
|
9
|
Nahreini P, Andreatta C, Kumar B, Hanson A, Edwards-Prasad J, Freed CR, Prasad KN. Distinct patterns of gene expression induced by viral oncogenes in human embryonic brain cells. Cell Mol Neurobiol 2003; 23:27-42. [PMID: 12701882 PMCID: PMC11530198 DOI: 10.1023/a:1022541017085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The limited lifespan of human embryonic brain (HEB) cells hampers their therapeutic use for the treatment of neurodegenerative diseases. 2. Stable expression of SV40 large T antigen (LTA) or E6E7 genes of human papillomavirus type 16 significantly increased the lifespan of HEB cells, but did not induce transformation. 3. The extended lifespan was triggered by changes in the expression of antiproliferative genes. We found that changes in the expression of p16 (INK4a), p21 (WAFI), p14ARF, and p53 tumor suppressor gene, but not p27 (Kip1), differed between the LTA- and E6E7-HEB cells. 4. Despite the induction of p53 RNA, p53 protein was undetectable in HEB-E6E7 cells. In contrast, p53 protein was increased in HEB-LTA cells as compared with the parental cells. Expression of p21 was, however, reduced in both cell lines. 5. While p16 was decreased in HEB-E6E7 cells, its expression was increased in HEB-LTA cells. 6. Despite these changes, HEB cell lines showed neuron-like morphological differentiation when the intracellular level of cAMP was elevated. 7. This suggests that the mechanisms for inducing neuronal differentiation are still intact in HEB-E6E7 and HEB-LTA cells. More importantly, differentiation signals can override the effects of viral oncogenes in HEB cells.
Collapse
Affiliation(s)
- Piruz Nahreini
- Department of Radiology, Center for Vitamins and Cancer Research, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Segovia J. Gene therapy for Parkinson's disease: current status and future potential. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:135-46. [PMID: 12083948 DOI: 10.2165/00129785-200202020-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parkinson's disease appears to be a good candidate for gene therapy. The primary biochemical defect associated with the disease has been clearly determined as an absence of dopamine in the caudate-putamen, and the anatomical region where the neuropathologic hallmark of the disease, death of the nigral dopamine-producing neurons, occurs, remains circumscribed. Based on the biochemical and anatomical information gathered on Parkinson's disease, different gene therapy strategies have been devised to treat it. The first, and most explored strategy so far, consists in engineering cells to produce levodopa or dopamine so they will replace dopaminergic neurotransmission. Several types of cells have been employed in these experiments, and behavioral recovery has been reported in animal models of the disease. However, this approach cannot prevent neuronal death, nor reconstruct brain circuits. Another strategy is to protect cells by transferring genes that encode neurotrophic factors. Effort is now being concentrated into this research area, and promising results have recently been reported. Finally, an additional strategy aims at generating cells with a dopaminergic phenotype so they will be capable of replacing the missing dopaminergic neurons in biochemical, anatomical and functional terms. This has the potential to become an important constituent for an effective cure. Gene therapy holds significant promise for the treatment of neurodegenerative disorders, and Parkinson's disease treatment will benefit greatly from the knowledge and information arising from gene therapy research.
Collapse
Affiliation(s)
- José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, Mexico.
| |
Collapse
|
11
|
Zaman V, Shetty AK. Survival of fetal hippocampal CA3 cell grafts in the middle-aged and aged hippocampus: effect of host age and deafferentation. J Neurosci Res 2002; 70:190-9. [PMID: 12271468 DOI: 10.1002/jnr.10401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The potential application of neural transplantation to many neurodegenerative disorders at early stages of disease progression would involve middle-aged and aged persons. Hence, it is important to examine critically the extent of graft cell survival in both intact and partially deafferented middle-aged and aged brain. We investigated the degree of survival of 5'-bromodeoxyuridine (BrdU)-labeled fetal hippocampal CA3 cells after grafting into both intact hippocampus and partially deafferented hippocampus (i.e., hippocampus contralateral to intracerebroventricular administration of kainic acid) of middle-aged and aged Fischer 344 rats. Absolute cell survival within these grafts was rigorously analyzed using BrdU immunostaining of serial sections and the optical fractionator cell counting method. In the intact hippocampus, graft cell survival was 23% of injected cells for middle-aged rats and 18% for aged rats, which is consistent with the survival of fetal hippocampal cells in the intact young adult hippocampus reported earlier (Shetty and Turner [1995] Neuroscience 67:561-582). A partial deafferentation at the time of grafting significantly enhanced the degree of graft cell survival to 35% of injected cells in the middle-aged hippocampus and 27% in the aged hippocampus. However, the overall graft cell survival after deafferentation was significantly (30%) greater in the middle-aged hippocampus compared with the aged hippocampus. These results reveal that 1) the degree of survival of fetal neural cells in the intact mature brain remains constant with aging and 2) a partial deafferentation of the mature host brain at the time of grafting enhances survival of grafted fetal cells, regardless of the host age. However, the overall extent of graft cell survival after deafferentation depends on the age of the mature brain at the time of deafferentation.
Collapse
Affiliation(s)
- Vandana Zaman
- Medical Research Service, Veterans Affairs Medical Center and Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
12
|
Riess P, Zhang C, Saatman KE, Laurer HL, Longhi LG, Raghupathi R, Lenzlinger PM, Lifshitz J, Boockvar J, Neugebauer E, Snyder EY, McIntosh TK. Transplanted Neural Stem Cells Survive, Differentiate, and Improve Neurological Motor Function after Experimental Traumatic Brain Injury. Neurosurgery 2002. [DOI: 10.1227/00006123-200210000-00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Riess P, Zhang C, Saatman KE, Laurer HL, Longhi LG, Raghupathi R, Lenzlinger PM, Lifshitz J, Boockvar J, Neugebauer E, Snyder EY, McIntosh TK. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 2002; 51:1043-52; discussion 1052-4. [PMID: 12234415 DOI: 10.1097/00006123-200210000-00035] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Accepted: 05/29/2002] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Using the neural stem cell (NSC) clone C17.2, we evaluated the ability of transplanted murine NSCs to attenuate cognitive and neurological motor deficits after traumatic brain injury. METHODS Nonimmunosuppressed C57BL/6 mice (n = 65) were anesthetized and subjected to lateral controlled cortical impact brain injury (n = 52) or surgery without injury (sham operation group, n = 13). At 3 days postinjury, all brain-injured animals were reanesthetized and randomized to receive stereotactic injection of NSCs or control cells (human embryonic kidney cells) into the cortex-hippocampus interface in either the ipsilateral or the contralateral hemisphere. One group of animals (n = 7) was killed at either 1 or 3 weeks postinjury to assess NSC survival in the acute posttraumatic period. Motor function was evaluated at weekly intervals for 12 weeks in the remaining animals, and cognitive (i.e., learning) deficits were assessed at 3 and 12 weeks after transplantation. RESULTS Brain-injured animals that received either ipsilateral or contralateral NSC transplants showed significantly improved motor function in selected tests as compared with human embryonic kidney cell-transplanted animals during the 12-week observation period. Cognitive dysfunction was unaffected by transplantation at either 3 or 12 weeks postinjury. Histological analyses showed that NSCs survive for as long as 13 weeks after transplantation and were detected in the hippocampus and/or cortical areas adjacent to the injury cavity. At 13 weeks, the NSCs transplanted ipsilateral to the impact site expressed neuronal (NeuN) or astrocytic (glial fibrillary acidic protein) markers but not markers of oligodendrocytes (2'3'cyclic nucleotide 3'-phosphodiesterase), whereas the contralaterally transplanted NSCs expressed neuronal but not glial markers (double-labeled immunofluorescence and confocal microscopy). CONCLUSION These data suggest that transplanted NSCs can survive in the traumatically injured brain, differentiate into neurons and/or glia, and attenuate motor dysfunction after traumatic brain injury.
Collapse
Affiliation(s)
- Peter Riess
- The Head Injury Center, Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Clarkson ED. Fetal tissue transplantation for patients with Parkinson's disease: a database of published clinical results. Drugs Aging 2002; 18:773-85. [PMID: 11735624 DOI: 10.2165/00002512-200118100-00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Over the past 13 years approximately 300 patients with Parkinson's disease have received transplants of human fetal dopamine cells in an attempt to reduce or control disease symptoms. Many of these patients have had improvements in their motor skills and a reduction in their daily levodopa administration. However, improvements are far from guaranteed and questions need to be answered before this technique can be widely applied. To help address some of these issues, a search of all the published results of patients with Parkinson's disease transplanted with human fetal tissue was conducted. This generated a database of 70 transplant recipients who had their levodopa administration and clinical benefit reported both prior to transplant and at least 6 months post-transplant. Furthermore, the number of years of disease onset prior to transplant was available for all recipients. This database was examined for motor improvement and reduction in levodopa dosage for up to 2 years post-transplant to determine the effects of time on transplant outcome. The database showed that most recipients had significant improvements in motor skills and levodopa administration, and that most benefits were observed in the first 6 months post-transplant. In addition, the database demonstrated that the number of years of disease onset prior to transplantation was not a predictor of patient outcome 1-year post-transplant. Current and future directions in fetal tissue transplantation research and replacements for fetal tissue are discussed.
Collapse
Affiliation(s)
- E D Clarkson
- US Army Medical Research Institute in Chemical Defense, Aberdeen Proving Grounds, Maryland 21010-5400, USA.
| |
Collapse
|
15
|
SUGAYA KIMIO, OGAWA YOSHIHIDE, HATANO TADASHI, NISHIJIMA SAORI, NISHIZAWA OSAMU. MICTURITION IN THORACIC SPINAL CORD INJURED CATS WITH AUTOGRAFTING OF THE ADRENAL MEDULLA TO THE SACRAL SPINAL CORD. J Urol 2001. [DOI: 10.1016/s0022-5347(05)65628-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- KIMIO SUGAYA
- From the Departments of Urology, Faculty of Medicine, University of the Ryukyus, Okinawa and Shinshu University School of Medicine, Matsumoto, Japan
| | - YOSHIHIDE OGAWA
- From the Departments of Urology, Faculty of Medicine, University of the Ryukyus, Okinawa and Shinshu University School of Medicine, Matsumoto, Japan
| | - TADASHI HATANO
- From the Departments of Urology, Faculty of Medicine, University of the Ryukyus, Okinawa and Shinshu University School of Medicine, Matsumoto, Japan
| | - SAORI NISHIJIMA
- From the Departments of Urology, Faculty of Medicine, University of the Ryukyus, Okinawa and Shinshu University School of Medicine, Matsumoto, Japan
| | - OSAMU NISHIZAWA
- From the Departments of Urology, Faculty of Medicine, University of the Ryukyus, Okinawa and Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
16
|
MICTURITION IN THORACIC SPINAL CORD INJURED CATS WITH AUTOGRAFTING OF THE ADRENAL MEDULLA TO THE SACRAL SPINAL CORD. J Urol 2001. [DOI: 10.1097/00005392-200112000-00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
|
18
|
Hurelbrink CB, Barker RA. Prospects for the treatment of Parkinson's disease using neurotrophic factors. Expert Opin Pharmacother 2001; 2:1531-43. [PMID: 11825297 DOI: 10.1517/14656566.2.10.1531] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative condition that is characterised by a progressive loss of dopaminergic neurones of the substantia nigra pars compacta (SNpc) and the presence of alpha-synuclein cytoplasmic inclusions (Lewy bodies). Cardinal symptoms include tremor, bradykinesia, and rigidity, although cognitive and autonomic disturbances are not uncommon. Pharmacological treatment targeting the dopaminergic network is relatively effective at ameliorating these symptoms, especially in the early stages of the disease, but none of these therapies are curative and they generate their own problems. As dopaminergic neuronal death in PD occurs in a gradual manner, it is amenable to treatments that can either protect remaining dopaminergic neurones or prevent death of those neurones that have begun to die. Use of neurotrophic factors is a potential candidate, as various factors have been shown to increase dopaminergic neuronal survival in culture and promote survival and axonal growth in animal models of PD. Glial cell line-derived neurotrophic factor (GDNF) is currently the most effective substance that has been intensively studied and shown to have a specific 'dopaminotrophic' effect. This review will therefore focus on studies that have investigated GDNF and discuss the potential for neurotrophic factor treatment in PD.
Collapse
Affiliation(s)
- C B Hurelbrink
- Cambridge Centre for Brain Repair, Addenbrooke's Hospital, Cambridge CB2 2PY, UK.
| | | |
Collapse
|
19
|
Abstract
A number of changes have occurred in the management of Parkinson's disease in recent years, with the development of new therapeutic strategies based upon advances in pharmacotherapy and interventional procedures. The treatment of patients with Parkinson's disease is considered here with these advances in mind. Potential neuroprotective agents that might slow disease-progression are also considered, but at the present time these agents are more of academic interest than clinical relevance and their role remains to be established. Ablative surgery and stimulation procedures are also helpful in the management of Parkinson's disease, and the utility and limitations of these approaches are briefly summarized.
Collapse
Affiliation(s)
- M J Aminoff
- Department of Neurology, University of California, San Francisco 94143-0114, USA
| |
Collapse
|