1
|
Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C. Genetic Insights into the Molecular Pathophysiology of Depression in Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1138. [PMID: 37374342 DOI: 10.3390/medicina59061138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Parkinson's disease (PD) is a clinically heterogeneous disorder with poorly understood pathological contributing factors. Depression presents one of the most frequent non-motor PD manifestations, and several genetic polymorphisms have been suggested that could affect the depression risk in PD. Therefore, in this review we have collected recent studies addressing the role of genetic factors in the development of depression in PD, aiming to gain insights into its molecular pathobiology and enable the future development of targeted and effective treatment strategies. Materials and Methods: we have searched PubMed and Scopus databases for peer-reviewed research articles published in English (pre-clinical and clinical studies as well as relevant reviews and meta-analyses) investigating the genetic architecture and pathophysiology of PD depression. Results: in particular, polymorphisms in genes related to the serotoninergic pathway (sodium-dependent serotonin transporter gene, SLC6A4, tryptophan hydrolase-2 gene, TPH2), dopamine metabolism and neurotransmission (dopamine receptor D3 gene, DRD3, aldehyde dehydrogenase 2 gene, ALDH2), neurotrophic factors (brain-derived neurotrophic factor gene, BDNF), endocannabinoid system (cannabinoid receptor gene, CNR1), circadian rhythm (thyrotroph embryonic factor gene, TEF), the sodium-dependent neutral amino acid transporter B(0)AT2 gene, SLC6A15), and PARK16 genetic locus were detected as altering susceptibility to depression among PD patients. However, polymorphisms in the dopamine transporter gene (SLC6A3), monoamine oxidase A (MAOA) and B (MAOB) genes, catechol-O-methyltransferase gene (COMT), CRY1, and CRY2 have not been related to PD depression. Conclusions: the specific mechanisms underlying the potential role of genetic diversity in PD depression are still under investigation, however, there is evidence that they may involve neurotransmitter imbalance, mitochondrial impairment, oxidative stress, and neuroinflammation, as well as the dysregulation of neurotrophic factors and their downstream signaling pathways.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Selangor, Malaysia
| | | | - Sokratis G Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
2
|
Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E. Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci 2023; 17:1137957. [PMID: 37009000 PMCID: PMC10061032 DOI: 10.3389/fnbeh.2023.1137957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Endocannabinoids (eCBs) and the expanded endocannabinoid system (ECS)-"endocannabinoidome", consists of the endogenous ligands, eCBs, their canonical and non-canonical receptor subtypes, and their synthesizing and metabolizing enzymes. This system modulates a wide range of body functions and acts as a retrograde signaling system within the central nervous system (CNS) by inhibition of classical transmitters, and plays a vital modulatory function on dopamine, a major neurotransmitter in the CNS. Dopamine is involved in different behavioral processes and contributes to different brain disorders-including Parkinson's disease, schizophrenia, and drug addiction. After synthesis in the neuronal cytosol, dopamine is packaged into synaptic vesicles until released by extracellular signals. Calcium dependent neuronal activation results in the vesicular release of dopamine and interacts with different neurotransmitter systems. The ECS, among others, is involved in the regulation of dopamine release and the interaction occurs either through direct or indirect mechanisms. The cross-talk between the ECS and the dopaminergic system has important influence in various dopamine-related neurobiological and pathologic conditions and investigating this interaction might help identify therapeutic targets and options in disorders of the CNS associated with dopamine dysregulation.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ana Canseco-Alba
- Direction de Investigacion, Instituto Nacional de Neurologia y Neurocircirugia “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Sitzia G, Abrahao KP, Liput D, Calandra GM, Lovinger DM. Distinct mechanisms of CB1 and GABA B receptor presynaptic modulation of striatal indirect pathway projections to mouse globus pallidus. J Physiol 2023; 601:195-209. [PMID: 36412169 PMCID: PMC10107704 DOI: 10.1113/jp283614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Presynaptic modulation is a fundamental process regulating synaptic transmission. Striatal indirect pathway projections originate from A2A-expressing spiny projection neurons (iSPNs), targeting the globus pallidus external segment (GPe) and control the firing of the tonically active GPe neurons via GABA release. It is unclear if and how the presynaptic G-protein-coupled receptors (GPCRs), GABAB and CB1 receptors modulate iSPN-GPe projections. Here we used an optogenetic platform to study presynaptic Ca2+ and GABAergic transmission at iSPN projections, using a genetic strategy to express the calcium sensor GCaMP6f or the excitatory channelrhodopsin (hChR2) on iSPNs. We found that P/Q-type calcium channels are the primary voltage-gated Ca2+ channel (VGCC) subtype controlling presynaptic calcium and GABA release at iSPN-GPe projections. N-type and L-type VGCCs also contribute to GABA release at iSPN-GPe synapses. GABAB receptor activation resulted in a reversible inhibition of presynaptic Ca2+ transients (PreCaTs) and an inhibition of GABAergic transmission at iSPN-GPe synapses. CB1 receptor activation did not inhibit PreCaTs but inhibited GABAergic transmission at iSPN-GPe projections. CB1 effects on GABAergic transmission persisted in experiments where NaV and KV 1 were blocked, indicating a VGCC- and KV 1-independent presynaptic mechanism of action of CB1 receptors. Taken together, presynaptic modulation of iSPN-GPe projections by CB1 and GABAB receptors is mediated by distinct mechanisms. KEY POINTS: P/Q-type are the predominant voltage-gated Ca2+ channels controlling presynaptic Ca2+ and GABA release on the striatal indirect pathway projections. GABAB receptors modulate iSPN-GPe projections via a VGCC-dependent mechanism. CB1 receptors modulate iSPN-GPe projections via a VGCC-independent mechanism.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
- Molecular Neurophysiology LaboratoryDepartment of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Karina Possa Abrahao
- Departamento de PsicobiologiaUniversidade Federal de São PauloSão PauloSao PauloBrazil
| | - Daniel Liput
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
| | - Gian Marco Calandra
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐UniversitätMunichGermany
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
4
|
Urbi B, Corbett J, Hughes I, Owusu MA, Thorning S, Broadley SA, Sabet A, Heshmat S. Effects of Cannabis in Parkinson's Disease: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2022; 12:495-508. [PMID: 34958046 DOI: 10.3233/jpd-212923] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The legalization of cannabis in many countries has allowed many Parkinson's disease (PD) patients to turn to cannabis as a treatment. As such there is a growing interest from the PD community to be properly guided by evidence regarding potential treatment benefits of cannabis. This systematic review and meta-analysis aims to compile the best available evidence to help guide patients and their family, clinicians and researchers make informed decisions. A systematic search of the literature was conducted in June 2021. Five randomized controlled studies and eighteen non-randomized studies investigated cannabis treatment in PD patients. No compelling evidence was found to recommend the use of cannabis in PD patients. However, a potential benefit was identified with respect to alleviation of PD related tremor, anxiety, pain, improvement of sleep quality and quality of life. Given the relative paucity of well-designed randomized studies, there is an identified need for further investigation, particularly in these areas.
Collapse
Affiliation(s)
- Berzenn Urbi
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia.,School of Medicine, Griffith University, QLD, Australia
| | - Joel Corbett
- Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Ian Hughes
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Maame Amma Owusu
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Sarah Thorning
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Simon A Broadley
- School of Medicine, Griffith University, QLD, Australia.,Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Arman Sabet
- School of Medicine, Griffith University, QLD, Australia.,Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Saman Heshmat
- School of Medicine, Griffith University, QLD, Australia.,UQCCR, Centre for Clinical Research, University of Queensland, QLD Australia
| |
Collapse
|
5
|
Wang M, Liu H, Ma Z. Roles of the Cannabinoid System in the Basal Ganglia in Parkinson’s Disease. Front Cell Neurosci 2022; 16:832854. [PMID: 35264932 PMCID: PMC8900732 DOI: 10.3389/fncel.2022.832854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease usually caused by neuroinflammation, oxidative stress and other etiologies. Recent studies have found that the cannabinoid system present in the basal ganglia has a strong influence on the progression of PD. Altering the cannabinoid receptor activation status by modulating endogenous cannabinoid (eCB) levels can exert an anti-movement disorder effect. Therefore, the development of drugs that modulate the endocannabinoid system may be a novel strategy for the treatment of PD. However, eCB regulation is complex, with diverse cannabinoid receptor functions and the presence of dopaminergic, glutamatergic, and γ-aminobutyric signals interacting with cannabinoid signaling in the basal ganglia region. Therefore, the study of eCB is challenging. Here, we have described the function of the cannabinoid system in the basal ganglia and its association with PD in three parts (eCBs, cannabinoid receptors, and factors regulating the cannabinoid metabolism) and summarized the mechanisms of action related to the cannabinoid analogs currently aimed at treating PD. The shortcomings identified from previous studies and the directions that should be explored in the future will provide insights into new approaches and ideas for the future development of cannabinoid-based drugs and the treatment of PD.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
| | - Huayuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zegang Ma
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
- *Correspondence: Zegang Ma,
| |
Collapse
|
6
|
Burgaz S, García C, Gómez-Cañas M, Rolland A, Muñoz E, Fernández-Ruiz J. Neuroprotection with the Cannabidiol Quinone Derivative VCE-004.8 (EHP-101) against 6-Hydroxydopamine in Cell and Murine Models of Parkinson's Disease. Molecules 2021; 26:molecules26113245. [PMID: 34071302 PMCID: PMC8198479 DOI: 10.3390/molecules26113245] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The 3-hydroxyquinone derivative of the non-psychotrophic phytocannabinoid cannabigerol, so-called VCE-003.2, and some other derivatives have been recently investigated for neuroprotective properties in experimental models of Parkinson's disease (PD) in mice. The pharmacological effects in those models were related to the activity on the peroxisome proliferator-activated receptor-γ (PPAR-γ) and possibly other pathways. In the present study, we investigated VCE-004.8 (formulated as EHP-101 for oral administration), the 3-hydroxyquinone derivative of cannabidiol (CBD), with agonist activity at the cannabinoid receptor type-2 (CB2) receptor in addition to its activity at the PPAR-γ receptor. Studies were conducted in both in vivo (lesioned-mice) and in vitro (SH-SY5Y cells) models using the classic parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). Our data confirmed that the treatment with VCE-004.8 partially reduced the loss of tyrosine hydroxylase (TH)-positive neurons measured in the substantia nigra of 6-OHDA-lesioned mice, in parallel with an almost complete reversal of the astroglial (GFAP) and microglial (CD68) reactivity occurring in this structure. Such neuroprotective effects attenuated the motor deficiencies shown by 6-OHDA-lesioned mice in the cylinder rearing test, but not in the pole test. Next, we explored the mechanism involved in the beneficial effect of VCE-004.8 in vivo, by analyzing cell survival in cultured SH-SY5Y cells exposed to 6-OHDA. We found an important cytoprotective effect of VCE-004.8 at a concentration of 10 µM, which was completely reversed by the addition of antagonists, T0070907 and SR144528, aimed at blocking PPAR-γ and CB2 receptors, respectively. The treatment with T0070907 alone only caused a partial reversal, whereas SR144528 alone had no effect, indicating a major contribution of PPAR-γ receptors in the cytoprotective effect of VCE-004.8 at 10 µM. In summary, our data confirmed the neuroprotective potential of VCE-004.8 in 6-OHDA-lesioned mice, and in vitro studies confirmed a greater relevance for PPAR-γ receptors rather than CB2 receptors in these effects.
Collapse
Affiliation(s)
- Sonia Burgaz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute on Neurochemistry Research, Complutense University, 28040 Madrid, Spain; (S.B.); (C.G.); (M.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Concepción García
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute on Neurochemistry Research, Complutense University, 28040 Madrid, Spain; (S.B.); (C.G.); (M.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - María Gómez-Cañas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute on Neurochemistry Research, Complutense University, 28040 Madrid, Spain; (S.B.); (C.G.); (M.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Alain Rolland
- Emerald Health Pharmaceuticals, San Diego, CA 92121, USA; (A.R.); (E.M.)
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, CA 92121, USA; (A.R.); (E.M.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute on Neurochemistry Research, Complutense University, 28040 Madrid, Spain; (S.B.); (C.G.); (M.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-913941450
| |
Collapse
|
7
|
Turner BD, Smith NK, Manz KM, Chang BT, Delpire E, Grueter CA, Grueter BA. Cannabinoid type 1 receptors in A2a neurons contribute to cocaine-environment association. Psychopharmacology (Berl) 2021; 238:1121-1131. [PMID: 33454843 PMCID: PMC8386588 DOI: 10.1007/s00213-021-05759-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE Cannabinoid type 1 receptors (CB1Rs) are widely expressed within the brain's reward circuits and are implicated in regulating drug induced behavioral adaptations. Understanding how CB1R signaling in discrete circuits and cell types contributes to drug-related behavior provides further insight into the pathology of substance use disorders. OBJECTIVE AND METHODS We sought to determine how cell type-specific expression of CB1Rs within striatal circuits contributes to cocaine-induced behavioral plasticity, hypothesizing that CB1R function in distinct striatal neuron populations would differentially impact behavioral outcomes. We crossed conditional Cnr1fl/fl mice and striatal output pathway cre lines (Drd1a -cre; D1, Adora2a -cre; A2a) to generate cell type-specific CB1R knockout mice and assessed their performance in cocaine locomotor and associative behavioral assays. RESULTS Both knockout lines retained typical locomotor activity at baseline. D1-Cre x Cnr1fl/fl mice did not display hyperlocomotion in response to acute cocaine dosing, and both knockout lines exhibited blunted locomotor activity across repeated cocaine doses. A2a-cre Cnr1fl/fl, mice did not express a preference for cocaine paired environments in a two-choice place preference task. CONCLUSIONS This study aids in mapping CB1R-dependent cocaine-induced behavioral adaptations onto distinct striatal neuron subtypes. A reduction of cocaine-induced locomotor activation in the D1- and A2a-Cnr1 knockout mice supports a role for CB1R function in the motor circuit. Furthermore, a lack of preference for cocaine-associated context in A2a-Cnr1 mice suggests that CB1Rs on A2a-neuron inhibitory terminals are necessary for either reward perception, memory consolidation, or recall. These results direct future investigations into CB1R-dependent adaptations underlying the development and persistence of substance use disorders.
Collapse
MESH Headings
- Animals
- Cocaine-Related Disorders/psychology
- Conditioning, Operant/drug effects
- Corpus Striatum/drug effects
- Environment
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Neurons/drug effects
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/genetics
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Reward
Collapse
Affiliation(s)
- Brandon D Turner
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nicholas K Smith
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kevin M Manz
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Betty T Chang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eric Delpire
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
- Anesthesiology Research Division, Vanderbilt University School of Medicine, 2213 Garland Avenue, P435H MRB IV, Nashville, TN, 37232-0413, USA.
| |
Collapse
|
8
|
Fuerte-Hortigón A, Gonçalves J, Zeballos L, Masa R, Gómez-Nieto R, López DE. Distribution of the Cannabinoid Receptor Type 1 in the Brain of the Genetically Audiogenic Seizure-Prone Hamster GASH/Sal. Front Behav Neurosci 2021; 15:613798. [PMID: 33841106 PMCID: PMC8024637 DOI: 10.3389/fnbeh.2021.613798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system modulates epileptic seizures by regulating neuronal excitability. It has become clear that agonist activation of central type I cannabinoid receptors (CB1R) reduces epileptogenesis in pre-clinical animal models of epilepsy. The audiogenic seizure-prone hamster GASH/Sal is a reliable experimental model of generalized tonic-clonic seizures in response to intense sound stimulation. However, no studies hitherto had investigated CB1R in the GASH/Sal. Although the distribution of CB1R has been extensively studied in mammalian brains, their distribution in the Syrian golden hamster brain also remains unknown. The objective of this research is to determine by immunohistochemistry the differential distribution of CB1R in the brains of GASH/Sal animals under seizure-free conditions, by comparing the results with wild-type Syrian hamsters as controls. CB1R in the GASH/Sal showed a wide distribution in many nuclei of the central nervous system. These patterns of CB1R-immunolabeling are practically identical between the GASH/Sal model and control animals, varying in the intensity of immunostaining in certain regions, being slightly weaker in the GASH/Sal than in the control, mainly in brain regions associated with epileptic networks. The RT-qPCR analysis confirms these results. In summary, our study provides an anatomical basis for further investigating CB1R in acute and kindling audiogenic seizure protocols in the GASH/Sal model as well as exploring CB1R activation via exogenously administered cannabinoid compounds.
Collapse
Affiliation(s)
- Alejando Fuerte-Hortigón
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Department of Neurology, Virgen Macarena Hospital, Sevilla, Spain
| | - Jaime Gonçalves
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Laura Zeballos
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Rubén Masa
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Burgaz S, García C, Gómez-Cañas M, Navarrete C, García-Martín A, Rolland A, Del Río C, Casarejos MJ, Muñoz E, Gonzalo-Consuegra C, Muñoz E, Fernández-Ruiz J. Neuroprotection with the cannabigerol quinone derivative VCE-003.2 and its analogs CBGA-Q and CBGA-Q-Salt in Parkinson's disease using 6-hydroxydopamine-lesioned mice. Mol Cell Neurosci 2020; 110:103583. [PMID: 33338634 DOI: 10.1016/j.mcn.2020.103583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The quinone derivative of the non-psychotropic cannabinoid cannabigerol (CBG), so-called VCE-003.2, has been recently investigated for its neuroprotective properties in inflammatory models of Parkinson's disease (PD) in mice. Such potential derives from its activity at the peroxisome proliferator-activated receptor-γ (PPAR-γ). In the present study, we investigated the neuroprotective properties of VCE-003.2 against the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA), in comparison with two new CBG-related derivatives, the cannabigerolic acid quinone (CBGA-Q) and its sodium salt CBGA-Q-Salt, which, similarly to VCE-003.2, were found to be active at the PPAR-γ receptor, but not at the cannabinoid CB1 and CB2 receptors. First, we investigated their cytoprotective properties in vitro by analyzing cell survival in cultured SH-SY5Y cells exposed to 6-OHDA. We found an important cytoprotective effect of VCE-003.2 at a concentration of 20 μM, which was not reversed by the blockade of PPAR-γ receptors with GW9662, supporting its activity at an alternative site (non-sensitive to classic antagonists) in this receptor. We also found CBGA-Q and CBGA-Q-Salt being cytoprotective in this cell assay, but their effects were completely eliminated by GW9662, thus indicating that they are active at the canonical site in the PPAR-γ receptor. Then, we moved to in vivo testing using mice unilaterally lesioned with 6-OHDA. Our data confirmed that VCE-003.2 administered orally (20 mg/kg) preserved tyrosine hydroxylase (TH)-positive nigral neurons against 6-OHDA-induced damage, whereas it completely attenuated the astroglial (GFAP) and microglial (CD68) reactivity found in the substantia nigra of lesioned mice. Such neuroprotective effects caused an important recovery in the motor deficiencies displayed by 6-OHDA-lesioned mice in the pole test and the cylinder rearing test. We also investigated CBGA-Q, given orally (20 mg/kg) or intraperitoneally (10 mg/kg, i.p.), having similar benefits compared to VCE-003.2 against the loss of TH-positive nigral neurons, glial reactivity and motor defects caused by 6-OHDA. Lastly, the sodium salt of CBGA-Q, given orally (40 mg/kg) to 6-OHDA-lesioned mice, also showed benefits at behavioral and histopathological levels, but to a lower extent compared to the other two compounds. In contrast, when given i.p., CBGA-Q-Salt (10 mg/kg) was poorly active. We also analyzed the concentrations of dopamine and its metabolite DOPAC in the striatum of 6-OHDA-lesioned mice after the treatment with the different compounds, but recovery in the contents of both dopamine and DOPAC was only found after the treatment with VCE-003.2. In summary, our data confirmed the neuroprotective potential of VCE-003.2 in 6-OHDA-lesioned mice, which adds to its previous activity found in an inflammatory model of PD (LPS-lesioned mice). Additional phytocannabinoid derivatives, CBGA-Q and CBGA-Q-Salt, also afforded neuroprotection in 6-OHDA-lesioned mice, but their effects were lower compared to VCE-003.2, in particular in the case of CBGA-Q-Salt. In vitro studies confirmed the relevance of PPAR-γ receptors for these effects.
Collapse
Affiliation(s)
- Sonia Burgaz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | | | - Carmen Del Río
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain
| | - María J Casarejos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eva Muñoz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
10
|
Wu MM, Thayer SA. HIV Tat Protein Selectively Impairs CB 1 Receptor-Mediated Presynaptic Inhibition at Excitatory But Not Inhibitory Synapses. eNeuro 2020; 7:ENEURO.0119-20.2020. [PMID: 32471847 PMCID: PMC7307634 DOI: 10.1523/eneuro.0119-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the success of antiretroviral therapy in suppressing viral load, nearly half of the 37 million people infected with HIV experience cognitive and motor impairments, collectively classified as HIV-associated neurocognitive disorders (HAND). In the CNS, HIV-infected microglia release neurotoxic agents that act indirectly to elicit excitotoxic synaptic injury. HIV trans-activator of transcription (Tat) protein is one such neurotoxin that is thought to play a major role in the neuropathogenesis of HAND. The endocannabinoid (eCB) system provides on-demand neuroprotection against excitotoxicity, and exogenous cannabinoids attenuate neurotoxicity in animal models of HAND. Whether this neuroprotective system is altered in the presence of HIV is unknown. Here, we examined the effects of Tat on the eCB system in rat primary hippocampal cultures. Using whole-cell patch-clamp electrophysiology, we measured changes in retrograde eCB signaling following exposure to Tat. Treatment with Tat significantly reduced the magnitude of depolarization-induced suppression of excitation (DSE) in a graded manner over the course of 48 h. Interestingly, Tat did not alter this form of short-term synaptic plasticity at inhibitory terminals. The Tat-induced decrease in eCB signaling resulted from impaired CB1 receptor (CB1R)-mediated presynaptic inhibition of glutamate release. This novel loss-of-function was particularly dramatic for low-efficacy agonists such as the eCB 2-arachidonoylglycerol (2-AG) and Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in marijuana. Our observation that HIV Tat decreases CB1R function in vitro suggests that eCB-mediated neuroprotection may be reduced in vivo; this effect of Tat may contribute to synaptodendritic injury in HAND.
Collapse
Affiliation(s)
- Mariah M Wu
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Stanley A Thayer
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
11
|
Umut G, Evren C, Atagun MI, Hisim O, Yilmaz Cengel H, Bozkurt M, Keskinkilic C. Impact of At Least 2 Years of Synthetic Cannabinoid Use on Cognitive and Psychomotor Functions Among Treatment-Seeking Male Outpatients. Cannabis Cannabinoid Res 2020; 5:164-171. [PMID: 32656348 DOI: 10.1089/can.2019.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction: Synthetic cannabinoid (SC) use, an important public health problem, is becoming increasingly widespread and leads to many medical and psychiatric problems. This study aimed to evaluate the impact of SC use on cognitive and psychomotor functions of patients. Materials and Methods: The participants (30 outpatients with SC use disorder and 33 healthy controls) were administered the Montreal Cognitive Assessment (MOCA) test, the Edinburgh Handedness Inventory (EHI), the Finger-Tapping Test (FTT), and the Adult Memory and Information Processing Battery-B form (AMIPB-B). Results: The SC users scored lower in AMIPB-B, MOCA. and FTT compared to the healthy controls. Conclusion: These findings suggest that SC might impair both cognitive and psychomotor functions. Therefore, outpatients with SC use disorder should be carefully evaluated for cognitive and psychomotor functions since neurological examinations and interventions may also be required in treatment programs for these cases.
Collapse
Affiliation(s)
- Gokhan Umut
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry Neurology and Neurosurgery, Istanbul, Turkey
| | - Cuneyt Evren
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry Neurology and Neurosurgery, Istanbul, Turkey
| | - Murat Ilhan Atagun
- Department of Psychiatry, Medicine Faculty, Yildirim Beyazit University, Ankara, Turkey
| | - Ozge Hisim
- Department of Psychiatry, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Hanife Yilmaz Cengel
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry Neurology and Neurosurgery, Istanbul, Turkey
| | - Muge Bozkurt
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry Neurology and Neurosurgery, Istanbul, Turkey
| | - Cahit Keskinkilic
- Deparment of Psychology, Bakirkoy Training and Research Hospital for Psychiatry Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
12
|
Morbiato E, Bilel S, Tirri M, Arfè R, Fantinati A, Savchuk S, Appolonova S, Frisoni P, Tagliaro F, Neri M, Grignolio S, Bertolucci C, Marti M. Potential of the zebrafish model for the forensic toxicology screening of NPS: A comparative study of the effects of APINAC and methiopropamine on the behavior of zebrafish larvae and mice. Neurotoxicology 2020; 78:36-46. [PMID: 32050087 DOI: 10.1016/j.neuro.2020.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
The increased diffusion of the so-called novel psychoactive substances (NPS) and their continuous change in structure andconceivably activity has led to the need of a rapid screening method to detect their biological effects as early as possible after their appearance in the market. This problem is very felt in forensic pathology and toxicology, so the preclinical study is fundamental in the approach to clinical and autopsy cases of difficult interpretation intoxication. Zebrafish is a high-throughput suitable model to rapidly hypothesize potential aversive or beneficial effects of novel molecules. In the present study, we measured and compared the behavioral responses to two novel neuroactive drugs, namely APINAC, a new cannabimimetic drug, and methiopropamine (MPA), a methamphetamine-like compound, on zebrafish larvae (ZL) and adult mice. By using an innovative statistical approach (general additive models), it was found that the spontaneous locomotor activity was impaired by the two drugs in both species: the disruption extent varied in a dose-dependent and time-dependent manner. Sensorimotor function was also altered: i) the visual object response was reduced in mice treated with APINAC, whereas it was not after exposure to MPA; ii) the visual placing responses were reduced after treatment with both NPS in mice. Furthermore, the visual motor response detected in ZL showed a reduction after treatment with APINAC during light-dark and dark-light transition. The same pattern was found in the MPA exposed groups only at the dark-light transition, while at the transition from light to dark, the individuals showed an increased response. In conclusion, the present study highlighted the impairment of spontaneous motor and sensorimotor behavior induced by MPA and APINAC administration in both species, thus confirming the usefulness of ZL as a model for a rapid behavioural-based drug screening.
Collapse
Affiliation(s)
- Elisa Morbiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Sabrine Bilel
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Institute of Public Health, Section of Legal Medicine, Catholic University, Rome, Italy
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Sergey Savchuk
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Svetlana Appolonova
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Paolo Frisoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Policlinico "G.B. Rossi", Verona, Italy; Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Margherita Neri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | | | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
13
|
Mascia MM, Carmagnini D, Defazio G. Cannabinoids and dystonia: an issue yet to be defined. Neurol Sci 2019; 41:783-787. [PMID: 31848779 DOI: 10.1007/s10072-019-04196-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023]
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures. Besides motor manifestations, patients with dystonia also display non-motor signs and symptoms including psychiatric and sensory disturbances. Symptomatic treatment of motor signs in dystonia largely relies on intramuscular botulinum toxin injections and, in selected cases, on deep brain stimulation. Oral medications and physical therapy offer a few benefits only in a minority of patients. Cannabinoids have been shown to be a complementary treatment in several neurological disorders but their usefulness in dystonia have not been systematically assessed. Given recent policy changes in favor of cannabis use in clinical practice and the request for alternative treatments, it is important to understand how cannabinoids may impact people with dystonia. Reviewing the evidence so far available and our own experience, cannabinoids seem to be effective in single cases but further studies are required to improve our understanding on their role as complementary treatment in dystonia.
Collapse
Affiliation(s)
- Marcello Mario Mascia
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy.
| | - Daniele Carmagnini
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| |
Collapse
|
14
|
Ferreira-Junior NC, Campos AC, Guimarães FS, Del-Bel E, Zimmermann PMDR, Brum Junior L, Hallak JE, Crippa JA, Zuardi AW. Biological bases for a possible effect of cannabidiol in Parkinson's disease. ACTA ACUST UNITED AC 2019; 42:218-224. [PMID: 31314869 PMCID: PMC7115443 DOI: 10.1590/1516-4446-2019-0460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Current pharmacotherapy of Parkinson’s disease (PD) is palliative and unable to modify the progression of neurodegeneration. Treatments that can improve patients’ quality of life with fewer side effects are needed, but not yet available. Cannabidiol (CBD), the major non-psychotomimetic constituent of cannabis, has received considerable research attention in the last decade. In this context, we aimed to critically review the literature on potential therapeutic effects of CBD in PD and discuss clinical and preclinical evidence supporting the putative neuroprotective mechanisms of CBD. We searched MEDLINE (via PubMed) for indexed articles published in English from inception to 2019. The following keywords were used: cannabis; cannabidiol and neuroprotection; endocannabinoids and basal ganglia; Parkinson’s animal models; Parkinson’s history; Parkinson’s and cannabidiol. Few studies addressed the biological bases for the purported effects of CBD on PD. Six preclinical studies showed neuroprotective effects, while three targeted the antidyskinetic effects of CBD. Three human studies have tested CBD in patients with PD: an open-label study, a case series, and a randomized controlled trial. These studies reported therapeutic effects of CBD on non-motor symptoms. Additional research is needed to elucidate the potential effectiveness of CBD in PD and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Nilson C Ferreira-Junior
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alline C Campos
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto (FORP), USP, Ribeirão Preto, SP, Brazil
| | | | | | - Jaime E Hallak
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| | - Antonio W Zuardi
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
15
|
Parks C, Giorgianni F, Jones BC, Beranova-Giorgianni S, Moore Ii BM, Mulligan MK. Comparison and Functional Genetic Analysis of Striatal Protein Expression Among Diverse Inbred Mouse Strains. Front Mol Neurosci 2019; 12:128. [PMID: 31178692 PMCID: PMC6543464 DOI: 10.3389/fnmol.2019.00128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/01/2019] [Indexed: 11/19/2022] Open
Abstract
C57BL/6J (B6) and DBA/2J (D2) inbred mouse strains are highly variable genetically and differ in a large number of behavioral traits related to striatal function, including depression, anxiety, stress response, and response to drugs of abuse. The genetic basis of these phenotypic differences are, however, unknown. Here, we present a comparison of the striatal proteome between B6 and D2 and relate differences at the protein level to strain differences at the mRNA level. We also leverage a recombinant inbred BXD population derived from B6 and D2 strains to investigate the role of genetic variation on the regulation of mRNA and protein levels. Finally, we test the hypothesis that differential protein expression contributes to differential behavioral responses between the B6 and D2 strain. We detected the expression of over 2,500 proteins in membrane-enriched protein fractions from B6 and D2 striatum. Of these, 160 proteins demonstrated significant differential expression between B6 and D2 strains at a 10% false discovery level, including COMT, GABRA2, and cannabinoid receptor 1 (CNR1)—key proteins involved in synaptic transmission and behavioral response. Similar to previous reports, there was little overlap between protein and transcript levels (25%). However, the overlap was greater (51%) for proteins demonstrating genetic regulation of cognate gene expression. We also found that striatal proteins with significantly higher or lower relative expression in B6 and D2 were enriched for dopaminergic and glutamatergic synapses and processes involved in synaptic plasticity [e.g., long-term potentiation (LTP) and long-term depression (LTD)]. Finally, we validated higher expression of CNR1 in B6 striatum and demonstrated greater sensitivity of this strain to the locomotor inhibiting effects of the CNR1 agonist, Δ9-tetrahydrocannabinol (THC). Our study is the first comparison of differences in striatal proteins between the B6 and D2 strains and suggests that alterations in the striatal proteome may underlie strain differences in related behaviors, such as drug response. Furthermore, we propose that genetic variants that impact transcript levels are more likely to also exhibit differential expression at the protein level.
Collapse
Affiliation(s)
- Cory Parks
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Bob M Moore Ii
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
16
|
The expression of cannabinoid type 1 receptor and 2-arachidonoyl glycerol synthesizing/degrading enzymes is altered in basal ganglia during the active phase of levodopa-induced dyskinesia. Neurobiol Dis 2018; 118:64-75. [DOI: 10.1016/j.nbd.2018.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 01/24/2023] Open
|
17
|
Aymerich MS, Aso E, Abellanas MA, Tolon RM, Ramos JA, Ferrer I, Romero J, Fernández-Ruiz J. Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochem Pharmacol 2018; 157:67-84. [PMID: 30121249 DOI: 10.1016/j.bcp.2018.08.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) exerts a modulatory effect of important functions such as neurotransmission, glial activation, oxidative stress, or protein homeostasis. Dysregulation of these cellular processes is a common neuropathological hallmark in aging and in neurodegenerative diseases of the central nervous system (CNS). The broad spectrum of actions of cannabinoids allows targeting different aspects of these multifactorial diseases. In this review, we examine the therapeutic potential of the ECS for the treatment of chronic neurodegenerative diseases of the CNS focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. First, we describe the localization of the molecular components of the ECS and how they are altered under neurodegenerative conditions, either contributing to or protecting cells from degeneration. Second, we address recent advances in the modulation of the ECS using experimental models through different strategies including the direct targeting of cannabinoid receptors with agonists or antagonists, increasing the endocannabinoid tone by the inhibition of endocannabinoid hydrolysis, and activation of cannabinoid receptor-independent effects. Preclinical evidence indicates that cannabinoid pharmacology is complex but supports the therapeutic potential of targeting the ECS. Third, we review the clinical evidence and discuss the future perspectives on how to bridge human and animal studies to develop cannabinoid-based therapies for each neurodegenerative disorder. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to each disease and the multiple unexplored pathways in cannabinoid pharmacology that could be useful for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria S Aymerich
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain; Universidad de Navarra, CIMA, Programa de Neurociencias, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Spain.
| | - Ester Aso
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Miguel A Abellanas
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain; Universidad de Navarra, CIMA, Programa de Neurociencias, Pamplona, Spain
| | - Rosa M Tolon
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Jose A Ramos
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Isidre Ferrer
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Julian Romero
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Javier Fernández-Ruiz
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
18
|
Abstract
BACKGROUND The use of medical cannabis (MC) is controversial. Support for its benefits is based on small clinical series. OBJECTIVE The aim of this study was to report the results of a standardized interview study that retrospectively assessed the effects of MC on symptoms of Parkinson disease (PD) and its adverse effects in patients treated for at least 3 months. METHODS The survey used telephone interviews using a structured questionnaire based on subjective global impressions of change for various parkinsonian symptoms and yes/no questions on adverse effects. RESULTS Forty-seven nondemented patients with PD (40 men) participated. Their mean age was 64.2 ± 10.8 years, mean disease duration was 10.8 ± 8.3 years, median Hoehn and Yahr (H&Y) was stage III. The duration of MC use was 19.1 ± 17.0 months, and the mean daily dose was 0.9 ± 0.5 g. The delivery of MC was mainly by smoking cigarettes (38 cases, 80.9%). Effect size (r) improvement for falls was 0.89, 0.73 for pain relief, 0.64 for depression, 0.64 for tremor, 0.62 for muscle stiffness, and 0.60 for sleep. The most frequently reported adverse effects from MC were cough (34.9%) in those who used MC by smoking and confusion and hallucinations (reported by 17% each) causing 5 patients (10.6%) to stop treatment. CONCLUSIONS Medical cannabis was found to improve symptoms of PD in the initial stages of treatment and did not cause major adverse effects in this pilot, 2-center, retrospective survey. The extent of use and the reported effects lend support to further development of safer and more effective drugs derived from Cannabis sativa.
Collapse
|
19
|
Mastinu A, Premoli M, Ferrari-Toninelli G, Tambaro S, Maccarinelli G, Memo M, Bonini SA. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm Mol Biol Clin Investig 2018; 36:/j/hmbci.ahead-of-print/hmbci-2018-0013/hmbci-2018-0013.xml. [PMID: 29601300 DOI: 10.1515/hmbci-2018-0013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 12/26/2022]
Abstract
The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena. In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving. Moreover, cannabinoid agonists are able to reduce inflammatory response. In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made. Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.
Collapse
Affiliation(s)
- Andrea Mastinu
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Giulia Ferrari-Toninelli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy.,Istituto Clinico Città di Brescia, Brescia, Italy
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Wong SA, Randolph SH, Ivan VE, Gruber AJ. Acute Δ-9-tetrahydrocannabinol administration in female rats attenuates immediate responses following losses but not multi-trial reinforcement learning from wins. Behav Brain Res 2017; 335:136-144. [PMID: 28811178 DOI: 10.1016/j.bbr.2017.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Δ-9-Tetrahydrocannabinol (THC) is the main psychoactive component of marijuana and has potent effects on decision-making, including a proposed reduction in cognitive flexibility. We demonstrate here that acute THC administration differentially affects some of the processes that contribute to cognitive flexibility. Specifically, THC reduces lose-shift responding in which female rats tend to immediately shift choice responses away from options that result in reward omission on the previous trial. THC, however, did not impair the ability of rats to flexibly bias responses toward feeders with higher probability of reward in a reversal task. This response adaptation developed over several trials, suggesting that THC did not impair slower forms of reinforcement learning needed to choose among options with unequal utility. This dissociation of THC's effects on innate/rapid and learned/gradual decision-making processes was unexpected, but is supported by emerging evidence that lose-shift responding is mediated by neural mechanisms distinct from those involved in other forms of reinforcement learning. The present data suggest that, at least in some tasks, the apparent reductions in cognitive flexibility by THC may be explained by the immediate effects on loss sensitivity, rather than impairments of all processes used for choice adaptation.
Collapse
Affiliation(s)
- Scott A Wong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Sienna H Randolph
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Victorita E Ivan
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
21
|
Freundt-Revilla J, Kegler K, Baumgärtner W, Tipold A. Spatial distribution of cannabinoid receptor type 1 (CB1) in normal canine central and peripheral nervous system. PLoS One 2017; 12:e0181064. [PMID: 28700706 PMCID: PMC5507289 DOI: 10.1371/journal.pone.0181064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/26/2017] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid system is a regulatory pathway consisting of two main types of cannabinoid receptors (CB1 and CB2) and their endogenous ligands, the endocannabinoids. The CB1 receptor is highly expressed in the central and peripheral nervous systems (PNS) in mammalians and is involved in neuromodulatory functions. Since endocannabinoids were shown to be elevated in cerebrospinal fluid of epileptic dogs, knowledge about the species specific CB receptor expression in the nervous system is required. Therefore, we assessed the spatial distribution of CB1 receptors in the normal canine CNS and PNS. Immunohistochemistry of several regions of the brain, spinal cord and peripheral nerves from a healthy four-week-old puppy, three six-month-old dogs, and one ten-year-old dog revealed strong dot-like immunoreactivity in the neuropil of the cerebral cortex, Cornu Ammonis (CA) and dentate gyrus of the hippocampus, midbrain, cerebellum, medulla oblongata and grey matter of the spinal cord. Dense CB1 expression was found in fibres of the globus pallidus and substantia nigra surrounding immunonegative neurons. Astrocytes were constantly positive in all examined regions. CB1 labelled neurons and satellite cells of the dorsal root ganglia, and myelinating Schwann cells in the PNS. These results demonstrate for the first time the spatial distribution of CB1 receptors in the healthy canine CNS and PNS. These results can be used as a basis for further studies aiming to elucidate the physiological consequences of this particular anatomical and cellular distribution.
Collapse
Affiliation(s)
- Jessica Freundt-Revilla
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Kristel Kegler
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
22
|
Ossato A, Uccelli L, Bilel S, Canazza I, Di Domenico G, Pasquali M, Pupillo G, De Luca MA, Boschi A, Vincenzi F, Rimondo C, Beggiato S, Ferraro L, Varani K, Borea PA, Serpelloni G, De-Giorgio F, Marti M. Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Front Psychiatry 2017; 8:130. [PMID: 28824464 PMCID: PMC5543288 DOI: 10.3389/fpsyt.2017.00130] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB1 receptor blockade and dopamine (DA) D1/5 and D2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [123I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [3H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health.
Collapse
Affiliation(s)
- Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Licia Uccelli
- Morphology, Surgery and Experimental Medicine Department, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Micol Pasquali
- Physics and Hearth Science Department, University of Ferrara, Ferrara, Italy
| | - Gaia Pupillo
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Legnaro, Italy
| | | | - Alessandra Boschi
- Morphology, Surgery and Experimental Medicine Department, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Claudia Rimondo
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Fabio De-Giorgio
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Center for Neuroscience, Istituto Nazionale di Neuroscienze, Ferrara, Italy
| |
Collapse
|
23
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
24
|
Shohet A, Khlebtovsky A, Roizen N, Roditi Y, Djaldetti R. Effect of medical cannabis on thermal quantitative measurements of pain in patients with Parkinson's disease. Eur J Pain 2016; 21:486-493. [DOI: 10.1002/ejp.942] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/14/2022]
Affiliation(s)
- A. Shohet
- Movement Disorder Clinic; Department of Neurology; Rabin Medical Center - Beilinson Hospital; Petach Tikva Israel
- Sackler Faculty of Medicine; Tel Aviv University; Israel
| | - A. Khlebtovsky
- Movement Disorder Clinic; Department of Neurology; Rabin Medical Center - Beilinson Hospital; Petach Tikva Israel
- Sackler Faculty of Medicine; Tel Aviv University; Israel
| | - N. Roizen
- Movement Disorder Clinic; Department of Neurology; Rabin Medical Center - Beilinson Hospital; Petach Tikva Israel
- Sackler Faculty of Medicine; Tel Aviv University; Israel
| | - Y. Roditi
- Movement Disorder Clinic; Department of Neurology; Rabin Medical Center - Beilinson Hospital; Petach Tikva Israel
- Sackler Faculty of Medicine; Tel Aviv University; Israel
| | - R. Djaldetti
- Movement Disorder Clinic; Department of Neurology; Rabin Medical Center - Beilinson Hospital; Petach Tikva Israel
- Sackler Faculty of Medicine; Tel Aviv University; Israel
| |
Collapse
|
25
|
Mursaleen LR, Stamford JA. Drugs of abuse and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:209-17. [PMID: 25816790 DOI: 10.1016/j.pnpbp.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
Abstract
The term "drug of abuse" is highly contextual. What constitutes a drug of abuse for one population of patients does not for another. It is therefore important to examine the needs of the patient population to properly assess the status of drugs of abuse. The focus of this article is on the bidirectional relationship between patients and drug abuse. In this paper we will introduce the dopaminergic systems of the brain in Parkinson's and the influence of antiparkinsonian drugs upon them before discussing this synergy of condition and medication as fertile ground for drug abuse. We will then examine the relationship between drugs of abuse and Parkinson's, both beneficial and deleterious. In summary we will draw the different strands together and speculate on the future merit of current drugs of abuse as treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Leah R Mursaleen
- The Cure Parkinson's Trust, 120 Baker Street, London W1U 6TU, United Kingdom; Parkinson's Movement, 120 Baker Street, London W1U 6TU, United Kingdom; The University of Sussex, Life Sciences, Brighton BN1 9RH, United Kingdom
| | - Jonathan A Stamford
- The Cure Parkinson's Trust, 120 Baker Street, London W1U 6TU, United Kingdom; Parkinson's Movement, 120 Baker Street, London W1U 6TU, United Kingdom.
| |
Collapse
|
26
|
Abstract
The endocannabinoid system consists of endogenous cannabinoids (endocannabinoids), the enzymes that synthesize and degrade endocannabinoids, and the receptors that transduce the effects of endocannabinoids. Much of what we know about the function of endocannabinoids comes from studies that combine localization of endocannabinoid system components with physiological or behavioral approaches. This review will focus on the localization of the best-known components of the endocannabinoid system for which the strongest anatomical evidence exists.
Collapse
|
27
|
Chakraborty A, Anstice NS, Jacobs RJ, LaGasse LL, Lester BM, Wouldes TA, Thompson B. Prenatal exposure to recreational drugs affects global motion perception in preschool children. Sci Rep 2015; 5:16921. [PMID: 26581958 PMCID: PMC4652269 DOI: 10.1038/srep16921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/22/2015] [Indexed: 01/17/2023] Open
Abstract
Prenatal exposure to recreational drugs impairs motor and cognitive development; however it is currently unknown whether visual brain areas are affected. To address this question, we investigated the effect of prenatal drug exposure on global motion perception, a behavioural measure of processing within the dorsal extrastriate visual cortex that is thought to be particularly vulnerable to abnormal neurodevelopment. Global motion perception was measured in one hundred and forty-five 4.5-year-old children who had been exposed to different combinations of methamphetamine, alcohol, nicotine and marijuana prior to birth and 25 unexposed children. Self-reported drug use by the mothers was verified by meconium analysis. We found that global motion perception was impaired by prenatal exposure to alcohol and improved significantly by exposure to marijuana. Exposure to both drugs prenatally had no effect. Other visual functions such as habitual visual acuity and stereoacuity were not affected by drug exposure. Prenatal exposure to methamphetamine did not influence visual function. Our results demonstrate that prenatal drug exposure can influence a behavioural measure of visual development, but that the effects are dependent on the specific drugs used during pregnancy.
Collapse
Affiliation(s)
- Arijit Chakraborty
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Nicola S Anstice
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert J Jacobs
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Linda L LaGasse
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Barry M Lester
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Trecia A Wouldes
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Benjamin Thompson
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 Columbia Street West, Waterloo, Ontario, ON N2L, Canada
| |
Collapse
|
28
|
Grewen K, Salzwedel AP, Gao W. Functional Connectivity Disruption in Neonates with Prenatal Marijuana Exposure. Front Hum Neurosci 2015; 9:601. [PMID: 26582983 PMCID: PMC4631947 DOI: 10.3389/fnhum.2015.00601] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/18/2015] [Indexed: 01/17/2023] Open
Abstract
Prenatal marijuana exposure (PME) is linked to neurobehavioral and cognitive impairments; however, findings in childhood and adolescence are inconsistent. Type-1 cannabinoid receptors (CB1R) modulate fetal neurodevelopment, mediating PME effects on growth of functional circuitry sub-serving behaviors critical for academic and social success. The purpose of this study was to investigate the effects of prenatal marijuana on development of early brain functional circuitry prior to prolonged postnatal environmental influences. We measured resting state functional connectivity during unsedated sleep in infants at 2–6 weeks (+MJ: 20 with PME in combination with nicotine, alcohol, opiates, and/or selective serotonin reuptake inhibitors; −MJ: 23 exposed to the same other drugs without marijuana, CTR: 20 drug-free controls). Connectivity of subcortical seed regions with high fetal CB1R expression was examined. Marijuana-specific differences were observed in insula and three striatal connections: anterior insula–cerebellum, right caudate–cerebellum, right caudate–right fusiform gyrus/inferior occipital, left caudate–cerebellum. +MJ neonates had hypo-connectivity in all clusters compared with −MJ and CTR groups. Altered striatal connectivity to areas involved in visual spatial and motor learning, attention, and in fine-tuning of motor outputs involved in movement and language production may contribute to neurobehavioral deficits reported in this at-risk group. Disrupted anterior insula connectivity may contribute to altered integration of interoceptive signals with salience estimates, motivation, decision-making, and later drug use. Compared with CTRs, both +MJ and −MJ groups demonstrated hyper-connectivity of left amygdala seed with orbital frontal cortex and hypo-connectivity of posterior thalamus seed with hippocampus, suggesting vulnerability to multiple drugs in these circuits.
Collapse
Affiliation(s)
- Karen Grewen
- Department of Psychiatry, Neurobiology, and Psychology, University of North Carolina Chapel Hill , Chapel Hill, NC , USA
| | - Andrew P Salzwedel
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina Chapel Hill , Chapel Hill, NC , USA ; Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute, Cedars-Sinai Medical Cente , Los Angeles, CA , USA
| | - Wei Gao
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina Chapel Hill , Chapel Hill, NC , USA ; Department of Biomedical Sciences and Imaging, Biomedical Imaging Research Institute, Cedars-Sinai Medical Cente , Los Angeles, CA , USA
| |
Collapse
|
29
|
Arjmand S, Vaziri Z, Behzadi M, Abbassian H, Stephens GJ, Shabani M. Cannabinoids and Tremor Induced by Motor-related Disorders: Friend or Foe? Neurotherapeutics 2015; 12:778-87. [PMID: 26152606 PMCID: PMC4604184 DOI: 10.1007/s13311-015-0367-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia. In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases. In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Vaziri
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Behzadi
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Abbassian
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Gary J Stephens
- School of Pharmacy, University of Reading, Whiteknights, P.O. Box 228, Reading, RG6 6AJ, UK.
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
30
|
García C, Palomo-Garo C, Gómez-Gálvez Y, Fernández-Ruiz J. Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal ganglia. Br J Pharmacol 2015; 173:2069-79. [PMID: 26059564 DOI: 10.1111/bph.13215] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Endocannabinoids and their receptors play a modulatory role in the control of dopamine transmission in the basal ganglia. However, this influence is generally indirect and exerted through the modulation of GABA and glutamate inputs received by nigrostriatal dopaminergic neurons, which lack cannabinoid CB1 receptors although they may produce endocannabinoids. Additional evidence suggests that CB2 receptors may be located in nigrostriatal dopaminergic neurons, and that certain eicosanoid-related cannabinoids may directly activate TRPV1 receptors, which have been found in nigrostriatal dopaminergic neurons, thus allowing in both cases a direct regulation of dopamine transmission by specific cannabinoids. In addition, CB1 receptors form heteromers with dopaminergic receptors which provide another pathway to direct interactions between both systems, in this case at the postsynaptic level. Through these direct mechanisms or through indirect mechanisms involving GABA or glutamate neurons, cannabinoids may interact with dopaminergic transmission in the basal ganglia and this is likely to have important effects on dopamine-related functions in these structures (i.e. control of movement) and, particularly, on different pathologies affecting these processes, in particular, Parkinson's disease, but also dyskinesia, dystonia and other pathological conditions. The present review will address the current literature supporting these cannabinoid-dopamine interactions at the basal ganglia, with emphasis on aspects dealing with the physiopathological consequences of these interactions. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Concepción García
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina Palomo-Garo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Yolanda Gómez-Gálvez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
31
|
|
32
|
Ossato A, Vigolo A, Trapella C, Seri C, Rimondo C, Serpelloni G, Marti M. JWH-018 impairs sensorimotor functions in mice. Neuroscience 2015; 300:174-88. [PMID: 25987201 DOI: 10.1016/j.neuroscience.2015.05.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 02/01/2023]
Abstract
Naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) is a synthetic cannabinoid agonist illegally marketed in "Spice" and "herbal blend" for its psychoactive effect greater than those produced by cannabis. In rodents JWH-018 reproduces typical effects of (-)-Δ(9)-THC or Dronabinol® (Δ(9)-THC) such as hypothermia, analgesia, hypolocomotion and akinesia, while its effects on sensorimotor functions are still unknown. Therefore, the aim of the present study is to investigate the effect of acute administration of JWH-018 (0.01-6mg/kg i.p.) on sensorimotor functions in male CD-1 mice and to compare its effects with those caused by the administration of Δ(9)-THC (0.01-6mg/kg i.p.). A specific battery of behavioral tests were adopted to investigate effects of cannabinoid agonists on sensorimotor functions (visual, auditory, tactile) and neurological changes (convulsion, myoclonia, hyperreflexia) while video-tracking analysis was used to study spontaneous locomotion. JWH-018 administration inhibited sensorimotor responses at lower doses (0.01-0.1mg/kg), reduced spontaneous locomotion at intermediate/high doses (1-6mg/kg) and induced convulsions, myoclonia and hyperreflexia at high doses (6mg/kg). Similarly, administration of Δ(9)-THC reduced sensorimotor responses in mice but it did not inhibit spontaneous locomotion and it did not induce neurological alterations. All behavioral effects and neurological alterations were prevented by the administration of the selective CB1 receptor antagonist/inverse agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (AM 251). For the first time these data demonstrate that JWH-018 impairs sensorimotor responses in mice. This aspect should be carefully evaluated to better understand the potential danger that JWH-018 may pose to public health, with particular reference to decreased performance in driving and hazardous works.
Collapse
Affiliation(s)
- A Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - A Vigolo
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - C Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - C Seri
- Italian National Early Warning System, Drug Policies Department, Presidency of the Council of Ministers, Verona Coordination Unit, Italy
| | - C Rimondo
- Italian National Early Warning System, Drug Policies Department, Presidency of the Council of Ministers, Verona Coordination Unit, Italy; Department of Public Health and Community Medicine, University of Verona, Italy
| | - G Serpelloni
- Italian National Early Warning System, Drug Policies Department, Presidency of the Council of Ministers, Verona Coordination Unit, Italy
| | - M Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy; Center for Neuroscience and Istituto Nazionale di Neuroscienze, Italy.
| |
Collapse
|
33
|
Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct 2014; 220:2721-38. [PMID: 24972960 PMCID: PMC4549378 DOI: 10.1007/s00429-014-0823-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 06/10/2014] [Indexed: 11/21/2022]
Abstract
Although type 1 cannabinoid receptors (CB1Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas the expression is markedly reduced in dyskinetic animals. Moreover, an in situ proximity ligation assay was used to qualitatively assess the presence of CB1Rs and CB2Rs, as well as CB1R–CB2R heteromers within basal ganglia output neurons in all animal groups (control, parkinsonian and dyskinetic macaques). A marked reduction in the number of CB1Rs, CB2Rs and CB1R–CB2R heteromers was found in dyskinetic animals, mimicking the observed reduction in CB1R and CB2R mRNA expression levels. The fact that chronic levodopa treatment disrupted CB1R–CB2R heteromeric complexes should be taken into consideration when designing new drugs acting on cannabinoid receptor heteromers.
Collapse
|
34
|
Blume LC, Bass CE, Childers SR, Dalton GD, Roberts DCS, Richardson JM, Xiao R, Selley DE, Howlett AC. Striatal CB1 and D2 receptors regulate expression of each other, CRIP1A and δ opioid systems. J Neurochem 2013; 124:808-20. [PMID: 23286559 DOI: 10.1111/jnc.12139] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 11/30/2022]
Abstract
Although biochemical and physiological evidence suggests a strong interaction between striatal CB1 cannabinoid (CB1 R) and D2 dopamine (D2 R) receptors, the mechanisms are poorly understood. We targeted medium spiny neurons of the indirect pathway using shRNA to knockdown either CB1 R or D2 R. Chronic reduction in either receptor resulted in deficits in gene and protein expression for the alternative receptor and concomitantly increased expression of the cannabinoid receptor interacting protein 1a (CRIP1a), suggesting a novel role for CRIP1a in dopaminergic systems. Both CB1 R and D2 R knockdown reduced striatal dopaminergic-stimulated [(35) S]GTPγS binding, and D2 R knockdown reduced pallidal WIN55212-2-stimulated [(35) S]GTPγS binding. Decreased D2 R and CB1 R activity was associated with decreased striatal phosphoERK. A decrease in mRNA for opioid peptide precursors pDYN and pENK accompanied knockdown of CB1 Rs or D2 Rs, and over-expression of CRIP1a. Down-regulation in opioid peptide mRNAs was followed in time by increased DOR1 but not MOR1 expression, leading to increased [D-Pen2, D-Pen5]-enkephalin-stimulated [(35) S]GTPγS binding in the striatum. We conclude that mechanisms intrinsic to striatal medium spiny neurons or extrinsic via the indirect pathway adjust for changes in CB1 R or D2 R levels by modifying the expression and signaling capabilities of the alternative receptor as well as CRIP1a and the DELTA opioid system.
Collapse
Affiliation(s)
- Lawrence C Blume
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tebano MT, Martire A, Popoli P. Adenosine A(2A)-cannabinoid CB(1) receptor interaction: an integrative mechanism in striatal glutamatergic neurotransmission. Brain Res 2012; 1476:108-18. [PMID: 22565012 DOI: 10.1016/j.brainres.2012.04.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/12/2022]
Abstract
The striatum is a subcortical area involved in sensorimotor, cognitive and emotional processes. Adenosine A(2A) receptors (A(2A)Rs) are highly expressed in the striatum, and their ability to establish functional and molecular interactions with many other receptors attributes to a pivotal role in the modulation and integration of striatal neurotransmission. This review will focus on the interaction between A(2A)Rs and cannabinoid CB(1) receptors (CB(1)Rs), taking it as a paradigmatic example of synaptic integration. Indeed, A(2A)Rs can exert an opposite (permissive vs. inhibitory) influence on CB1-dependent synaptic effect. These apparently irreconcilable functions could depend on a different role of pre- vs. postsynaptic A(2A)Rs, on their interaction with other receptors (namely adenosine A(1), metabotropic glutamate 5 and dopamine D2 receptors), and on whether A(2A)Rs form or not heteromers with CB(1)Rs. Besides providing a good example of the intricate pattern of events taking place in striatal synapses, the A(2A)/CB(1)R interaction proves very informative to understand the physiology of the basal ganglia and the mechanisms of related diseases. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Maria Teresa Tebano
- Section of Central Nervous System Pharmacology, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | |
Collapse
|
36
|
García C, Palomo-Garo C, García-Arencibia M, Ramos J, Pertwee R, Fernández-Ruiz J. Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ⁹-THCV in animal models of Parkinson's disease. Br J Pharmacol 2012; 163:1495-506. [PMID: 21323909 DOI: 10.1111/j.1476-5381.2011.01278.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous findings have indicated that a cannabinoid, such as Δ(9)-THCV, which has antioxidant properties and the ability to activate CB(2) receptors but to block CB(1) , might be a promising therapy for alleviating symptoms and delaying neurodegeneration in Parkinson's disease (PD). EXPERIMENTAL APPROACH The ability of Δ(9)-THCV to reduce motor inhibition and provide neuroprotection was investigated in rats lesioned with 6-hydroxydopamine and in mice lesioned with lipopolysaccharide (LPS). KEY RESULTS Acute administration of Δ(9)-THCV attenuated the motor inhibition caused by 6-hydroxydopamine, presumably through changes in glutamatergic transmission. Moreover, chronic administration of Δ(9)-THCV attenuated the loss of tyrosine hydroxylase-positive neurones caused by 6-hydroxydopamine in the substantia nigra, through an effect related to its antioxidant properties (it was reproduced by cannabidiol -enriched botanical extract). In addition, CB(2) receptor-deficient mice responded to 6-hydroxydopamine in a similar manner to wild-type animals, and CB(2) receptors were poorly up-regulated in the rat substantia nigra in response to 6-hydroxydopamine. By contrast, the substantia nigra of mice that had been injected with LPS exhibited a greater up-regulation of CB(2) receptors. In these animals, Δ(9)-THCV also caused preservation of tyrosine hydroxylase-positive neurones. This effect probably involved CB(2) receptors as it was also elicited by the selective CB(2) receptor agonist, HU-308, and CB(2) receptor-deficient mice were more vulnerable to LPS lesions. CONCLUSIONS AND IMPLICATIONS Given its antioxidant properties and its ability to activate CB(2) but to block CB(1) receptors, Δ(9)-THCV has a promising pharmacological profile for delaying disease progression in PD and also for ameliorating parkinsonian symptoms.
Collapse
Affiliation(s)
- C García
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Chung YC, Bok E, Huh SH, Park JY, Yoon SH, Kim SR, Kim YS, Maeng S, Park SH, Jin BK. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:6508-17. [PMID: 22079984 DOI: 10.4049/jimmunol.1102435] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons. Conversely, treatment with nonselective cannabinoid receptor agonists (WIN55,212-2 and HU210) led to increased survival of DA neurons in the SN, their fibers and dopamine levels in the striatum, and improved motor function. This neuroprotection by cannabinoids was accompanied by suppression of NADPH oxidase reactive oxygen species production and reduced expression of proinflammatory cytokines from activated microglia. Interestingly, cannabinoids protected DA neurons against 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia, but not in neuron-enriched mesencephalic cultures devoid of microglia. The observed neuroprotection and inhibition of microglial activation were reversed upon treatment with CB(1) receptor selective antagonists AM251 and/or SR14,716A, confirming the involvement of the CB(1) receptor. The present in vivo and in vitro findings clearly indicate that the CB(1) receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress. Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson's disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage.
Collapse
Affiliation(s)
- Young C Chung
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Effects of cannabinoid CB1 receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys. Neuropharmacology 2011; 60:418-22. [DOI: 10.1016/j.neuropharm.2010.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/05/2010] [Accepted: 10/18/2010] [Indexed: 01/19/2023]
|
39
|
The effects of cannabinoid drugs on abnormal involuntary movements in dyskinetic and non-dyskinetic 6-hydroxydopamine lesioned rats. Brain Res 2010; 1363:40-8. [DOI: 10.1016/j.brainres.2010.09.086] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 11/22/2022]
|
40
|
Moghaddam HF, Khodayar MJ, Abarghouei SMZ, Ardestani MS. Evaluation of the role of striatal cannabinoid CB1 receptors on movement activity of parkinsonian rats induced by reserpine. Saudi Pharm J 2010; 18:207-15. [PMID: 23960729 PMCID: PMC3730975 DOI: 10.1016/j.jsps.2010.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/28/2010] [Indexed: 10/18/2022] Open
Abstract
It has been observed cannabinoid CB1 receptor signalling and the levels of endocannabinoid ligands significantly increased in the basal ganglia and cerebrospinal fluids of Parkinson's disease (PD) patients. These evidences suggest that the blocking of cannabinoid CB1 receptors might be beneficial to improve movement disorders as a sign of PD. In this study, a dose-response study of the effects of intrastriatal injection of a cannabinoid CB1 receptor antagonist, AM251 and agonist, ACPA, on movement activity was performed by measuring the catalepsy of reserpinized and non-PD (normal) rats with bar test. Also the effect of co-administration the most effective dose of AM251 and several doses of ACPA were assessed. AM251 decreases the reserpine induced catalepsy in dose dependent manner and ACPA causes catalepsy in normal rats in dose dependant manner as well. AM251 significantly reverse the cataleptic effect in all three groups (1, 10, 100 ng/rat) that received ACPA. These results support this theory that cannabinoid CB1 receptor antagonists might be useful to alleviate movement disorder in PD. Also continuance of ACPA induced catalepsy in rats after AM251 injection can indicate that other neurotransmitters or receptors interfere in ACPA induced catalepsy. Based on the present finding there is an incomplete overlapping between cannabinoid CB1 receptor agonist and antagonist effects.
Collapse
Affiliation(s)
- Hadi Fathi Moghaddam
- Department of Physiology, School of Medicine & Physiology Research Center, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mehdi Shafiee Ardestani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research & Development Division and Hepatitis B Department, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
41
|
Bortolato M, Frau R, Bini V, Luesu W, Loriga R, Collu M, Gessa GL, Ennas MG, Castelli MP. Methamphetamine neurotoxicity increases brain expression and alters behavioral functions of CB₁ cannabinoid receptors. J Psychiatr Res 2010; 44:944-55. [PMID: 20378129 DOI: 10.1016/j.jpsychires.2010.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/14/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Cannabis is the most common secondary illicit substance in methamphetamine (METH) users, yet the outcomes of the concurrent consumption of both substances remain elusive. Capitalizing on recent findings on the implication of CB₁ cannabinoid receptors in the behavioral effects of METH, we hypothesized that METH-induced neurotoxicity may alter the brain expression of CB₁, thereby affecting its role in behavioral functions. To test this possibility, we subjected rats to a well-characterized model of METH neurotoxicity (4 mg/kg, subcutaneous × 4 injections, 2 h apart), and analyzed their CB₁ receptor brain expression three weeks later. METH exposure resulted in significant enhancements of CB₁ receptor expression across several brain regions, including prefrontal cortex, caudate-putamen, basolateral amygdala, CA1 hippocampal region and perirhinal cortex. In parallel, a different group of METH-exposed rats was used to explore the responsiveness to the potent cannabinoid agonist WIN 55,212-2 (WIN) (0.5-1 mg/kg, intraperitoneal), within several paradigms for the assessment of emotional and cognitive functions, such as open field, object exploration and recognition, and startle reflex. WIN induced anxiolytic-like effects in METH-exposed rats and anxiogenic-like effects in saline-treated controls. Furthermore, METH-exposed animals exhibited a significantly lower impact of WIN on the attenuation of exploratory behaviors and short-term (90 min) recognition memory. Conversely, METH neurotoxicity did not significantly affect WIN-induced reductions in locomotor activity, exploration time and acoustic startle. These results suggest that METH neurotoxicity may alter the vulnerability to select behavioral effects of cannabis, by inducing distinct regional variations in the expression of CB₁ receptors.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pietr MD, Knutsen PM, Shore DI, Ahissar E, Vogel Z. Cannabinoids reveal separate controls for whisking amplitude and timing in rats. J Neurophysiol 2010; 104:2532-42. [PMID: 20844105 DOI: 10.1152/jn.01039.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whisking is controlled by multiple, possibly functionally segregated, motor sensory-motor loops. While testing for effects of endocannabinoids on whisking, we uncovered the first known functional segregation of channels controlling whisking amplitude and timing. Channels controlling amplitude, but not timing, were modulated by cannabinoid receptor type 1 (CB1R). Systemic administration of CB1R agonist Δ(9)-tetrahydrocannabinol (Δ(9)-THC) reduced whisking spectral power across all tested doses (1.25-5 mg/kg), whereas whisking frequency was affected at only very high doses (5 mg/kg). Concomitantly, whisking amplitude and velocity were significantly reduced in a dose-dependent manner (25-43 and 26-50%, respectively), whereas cycle duration and bilateral synchrony were hardly affected (3-16 and 3-9%, respectively). Preadministration of CB1R antagonist SR141716A blocked Δ(9)-THC-induced kinematic alterations of whisking, and when administered alone, increased whisking amplitude and velocity but affected neither cycle duration nor synchrony. These findings indicate that whisking amplitude and timing are controlled by separate channels and that endocannabinoids modulate amplitude control channels.
Collapse
|
43
|
Dimitrov EL, Petrus E, Usdin TB. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception. Exp Neurol 2010; 226:68-83. [PMID: 20696160 DOI: 10.1016/j.expneurol.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/26/2010] [Accepted: 08/02/2010] [Indexed: 11/19/2022]
Abstract
Tuberoinfundibular peptide of 39 residues (TIP39) synthesizing neurons at the caudal border of the thalamus and in the lateral pons project to areas rich in its receptor, the parathyroid hormone 2 receptor (PTH2R). These areas include many involved in processing nociceptive information. Here we examined the potential role of TIP39 signaling in nociception using a PTH2R antagonist (HYWH) and mice with deletion of TIP39's coding sequence or PTH2R null mutation. Intracerebroventricular (icv) infusion of HYWH significantly inhibited nociceptive responses in tail-flick and hot-plate tests and attenuated the nociceptive response to hindpaw formalin injection. TIP39-KO and PTH2R-KO had increased response latency in the 55°C hot-plate test and reduced responses in the hindpaw formalin test. The tail-flick test was not affected in either KO line. Thermal hypoalgesia in KO mice was dose-dependently reversed by systemic administration of the cannabinoid receptor 1 (CB1) antagonist rimonabant, which did not affect nociception in wild-type (WT). Systemic administration of the cannabinoid agonist CP 55,940 did not affect nociception in KO mice at a dose effective in WT. WT mice administered HYWH icv, and both KOs, had significantly increased stress-induced analgesia (SIA). Rimonabant blocked the increased SIA in TIP39-KO, PTH2R-KO or after HYWH infusion. CB1 and FAAH mRNA were decreased and increased, respectively, in the basolateral amygdala of TIP39-KO mice. These data suggest that TIP39 signaling modulates nociception, very likely by inhibiting endocannabinoid circuitry at a supraspinal level. We infer a new central mechanism for endocannabinoid regulation, via TIP39 acting on the PTH2R in discrete brain regions.
Collapse
MESH Headings
- Amidohydrolases/metabolism
- Animals
- Cannabinoid Receptor Modulators/metabolism
- Formaldehyde
- In Situ Hybridization
- Injections, Intraventricular
- Injections, Spinal
- Male
- Mice
- Mice, Knockout
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Neuropeptides/administration & dosage
- Neuropeptides/pharmacology
- Nociceptors/drug effects
- Nociceptors/physiology
- Pain/pathology
- Pain/physiopathology
- Pain Measurement/drug effects
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Parathyroid Hormone, Type 2/biosynthesis
- Receptor, Parathyroid Hormone, Type 2/genetics
- Rimonabant
- Signal Transduction/physiology
- Stress, Psychological/psychology
- Synapses/physiology
- Vesicular Glutamate Transport Protein 2/biosynthesis
- Vesicular Glutamate Transport Protein 2/genetics
Collapse
Affiliation(s)
- Eugene L Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, 35 Convent Drive, Room 1B-213, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
44
|
Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16:e72-91. [PMID: 20406253 DOI: 10.1111/j.1755-5949.2010.00144.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endocannabinoids and their receptors, mainly the CB(1) receptor type, function as a retrograde signaling system in many synapses within the CNS, particularly in GABAergic and glutamatergic synapses. They also play a modulatory function on dopamine (DA) transmission, although CB(1) receptors do not appear to be located in dopaminergic terminals, at least in the major brain regions receiving dopaminergic innervation, e.g., the caudate-putamen and the nucleus accumbens/prefrontal cortex. Therefore, the effects of cannabinoids on DA transmission and DA-related behaviors are generally indirect and exerted through the modulation of GABA and glutamate inputs received by dopaminergic neurons. Recent evidence suggest, however, that certain eicosanoid-derived cannabinoids may directly activate TRPV(1) receptors, which have been found in some dopaminergic pathways, thus allowing a direct regulation of DA function. Through this direct mechanism or through indirect mechanisms involving GABA or glutamate neurons, cannabinoids may interact with DA transmission in the CNS and this has an important influence in various DA-related neurobiological processes (e.g., control of movement, motivation/reward) and, particularly, on different pathologies affecting these processes like basal ganglia disorders, schizophrenia, and drug addiction. The present review will address the current literature supporting these cannabinoid-DA interactions, with emphasis in aspects dealing with the neurochemical, physiological, and pharmacological/therapeutic bases of these interactions.
Collapse
|
45
|
Walsh S, Mnich K, Mackie K, Gorman AM, Finn DP, Dowd E. Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson's disease in the rat. Brain Res Bull 2010; 81:543-8. [PMID: 20097273 DOI: 10.1016/j.brainresbull.2010.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/16/2009] [Accepted: 01/14/2010] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system is emerging as a potential alternative to the dopaminergic system for the treatment of Parkinson's disease. Like all emerging targets, validation of this system's potential for treating human Parkinsonism necessitates testing in animal models of the condition. However, if components of the endocannabinoid system are altered by the induction of a Parkinsonian state in animal models, this could have an impact on the interpretation of such preclinical experiments. This study sought to determine if expression of the CB(1) subtype of cannabinoid receptor is altered in the two most commonly used rat models of Parkinson's disease. Parkinsonian lesions were induced by stereotaxic injection of 6-hydroxydopamine into the axons (medial forebrain bundle) or terminals (striatum) of the nigrostriatal pathway. On days 1, 3, 7, 14 and 28 post-lesion, rats were sacrificed and brains were processed for tyrosine hydroxylase and CB(1) receptor immunohistochemistry. The CB(1) receptor was expressed strongly in the substantia nigra pars reticulata, minimally overlapping with tyrosine hydroxylase immunoreactivity in the pars compacta. Interestingly, while there was little change in CB(1) receptor expression following axonal lesion, expression of the receptor was significantly reduced following terminal lesion. Loss of CB(1) receptor expression in the pars reticulata correlated significantly with the loss of striatal and nigral volume after terminal lesion indicating this may have been due to 6-hydroxydopamine-induced non-specific damage of striatonigral neurons which are known to express CB(1) receptors. Thus, this result has implications for the choice of model and interpretation of studies used to investigate potential cannabinoid-based therapies for Parkinson's disease as well as striatonigral diseases such as Huntington's disease and Multiple Systems Atrophy.
Collapse
Affiliation(s)
- Sinéad Walsh
- Department of Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
46
|
Thomas BF. Neuroanatomical basis for therapeutic applications of cannabinoid receptor 1 antagonists. Drug Dev Res 2009. [DOI: 10.1002/ddr.20333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Sink KS, Segovia KN, Nunes EJ, Collins LE, Vemuri VK, Thakur G, Makriyannis A, Salamone JD. Intracerebroventricular administration of cannabinoid CB1 receptor antagonists AM251 and AM4113 fails to alter food-reinforced behavior in rats. Psychopharmacology (Berl) 2009; 206:223-32. [PMID: 19588124 PMCID: PMC4425366 DOI: 10.1007/s00213-009-1602-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Drugs that interfere with cannabinoid CB1 transmission suppress food-motivated behaviors and may be useful as appetite suppressants, but there is uncertainty about the locus of action for the feeding-suppression effects of these drugs. OBJECTIVE The present work was conducted to determine if two drugs that interfere with cannabinoid receptor transmission, AM251 and AM4113, have effects on food-reinforced behavior after administration into the lateral ventricle (intracerebroventricular (ICV)). RESULTS Although systemic administration of both drugs can suppress food-reinforced behavior, neither AM251 (40, 80, and 160 microg) nor AM4113 (60, 120, and 240 microg) administered at various times prior to testing produced any suppression of food-reinforced operant responding on a fixed-ratio 5 schedule. Because the modulation of locomotion by drugs that act on CB1 receptors is hypothesized to be a forebrain effect, these drugs also were assessed for their ability to reverse the locomotor suppression produced by the CB1 agonist AM411. ICV administration of either AM251 or AM4113 reversed the locomotor suppression induced by the CB1 agonist AM411 in the same dose range that failed to produce any effects on feeding. CONCLUSIONS This indicates that both AM4113 and AM251, when administered ICV, can interact with forebrain CB1 receptors and are efficacious on forebrain-mediated functions unrelated to feeding. These results suggest that CB1 neutral antagonists or inverse agonists may not be affecting food-reinforced behavior via interactions with forebrain CB1 receptors located in nucleus accumbens or hypothalamus and that lower brainstem or peripheral receptors may be involved.
Collapse
Affiliation(s)
- K. S. Sink
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA,Yerkes National Primate Center and the Center for Behavioral Neuroscience, Emory University, 954 Gatewood Drive, Atlanta, GA 30329, USA
| | - K. N. Segovia
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - E. J. Nunes
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - L. E. Collins
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - V. K. Vemuri
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - G. Thakur
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - A. Makriyannis
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - J. D. Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| |
Collapse
|
48
|
Psychomotor performance in relation to acute oral administration of Delta9-tetrahydrocannabinol and standardized cannabis extract in healthy human subjects. Eur Arch Psychiatry Clin Neurosci 2009; 259:284-92. [PMID: 19224107 DOI: 10.1007/s00406-009-0868-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
Abnormalities in psychomotor performance are a consistent finding in schizophrenic patients as well as in chronic cannabis users. The high levels of central cannabinoid (CB(1)) receptors in the basal ganglia, the cerebral cortex and the cerebellum indicate their implication in the regulation of motor activity. Based on the close relationship between cannabis use, the endogenous cannabinoid system and motor disturbances found in schizophrenia, we expected that administration of cannabinoids may change pattern of psychomotor activity like in schizophrenic patients. This prospective, double-blind, placebo-controlled cross-over study investigated the acute effects of cannabinoids on psychomotor performance in 24 healthy right-handed volunteers (age 27.9 +/- 2.9 years, 12 male) by comparing Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and standardized cannabis extract containing Delta(9)-THC and cannabidiol. Psychomotor performance was assessed by using a finger tapping test series. Cannabis extract, but not Delta(9)-THC, revealed a significant reduction of right-hand tapping frequencies that was also found in schizophrenia. As to the pure Delta(9)-THC condition, left-hand tapping frequencies were correlated with the plasma concentrations of the Delta(9)-THC metabolite 11-OH-THC. These effects are thought to be related to cannabinoid actions on CB(1) receptors in the basal ganglia, the cerebral cortex and the cerebellum. Our data further demonstrate that acute CB(1) receptor activation under the cannabis extract condition may also affect intermanual coordination (IMC) as an index of interhemispheric transfer. AIR-Scale scores as a measure of subjective perception of intoxication were dose-dependently related to IMC which was shown by an inverted U-curve. This result may be due to functional changes involving GABAergic and glutamatergic neurotransmission within the corpus callosum.
Collapse
|
49
|
Abstract
Cannabinoids and opioids produce antinociceptive synergy. Cannabinoids such as Delta-9-tetrahydrocannabinol (THC) release endogenous opioids and endocannabinoids such as anandamide (AEA) also alter endogenous opioid tone. Opioids and cannabinoids bind distinct receptors that co-localize in areas of the brain involved with the processing of pain signals. Therefore, it is logical to look at interactions of these two systems in the modulation of both acute and chronic pain. These drugs are often co-abused. In addition, the lack of continued effectiveness of opioids due to tolerance development limits the use of such drugs. The cost to society and patients in terms of dollars, loss of productivity, as well as quality of life, is staggering. This review summarizes the data indicating that with cannabinoid/opioid therapy one may be able to produce long-term antinociceptive effects at doses devoid of substantial side effects, while preventing the neuronal biochemical changes that accompany tolerance. The clinical utility of modulators of the endocannabinoid system as a potential mimic for THC-like drugs in analgesia and tolerance-sparing effects of opioids is a critical future direction also addressed in the review.
Collapse
Affiliation(s)
- Sandra P Welch
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0524, USA.
| |
Collapse
|
50
|
Fernández-Ruiz J. The endocannabinoid system as a target for the treatment of motor dysfunction. Br J Pharmacol 2009; 156:1029-40. [PMID: 19220290 DOI: 10.1111/j.1476-5381.2008.00088.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
There is evidence that cannabinoid-based medicines that are selective for different targets in the cannabinoid signalling system (e.g. receptors, inactivation mechanism, enzymes) might be beneficial in basal ganglia disorders, namely Parkinson's disease (PD) and Huntington's disease (HD). These benefits not only include the alleviation of specific motor symptoms [e.g. choreic movements with cannabinoid receptor type 1 (CB(1))/transient receptor potential vanilloid type 1 agonists in HD; bradykinesia with CB(1) antagonists and tremor with CB(1) agonists in PD], but also the delay of disease progression due to the neuroprotective properties demonstrated for cannabinoids (e.g. CB(1) agonists reduce excitotoxicity; CB(2) agonists limit the toxicity of reactive microglia; and antioxidant cannabinoids attenuate oxidative damage). In addition, extensive biochemical, anatomical, physiological and pharmacological studies have demonstrated that: (i) the different elements of the cannabinoid system are abundant in basal ganglia structures and they are affected by these disorders; (ii) the cannabinoid system plays a prominent role in basal ganglia function by modulating the neurotransmitters that operate in the basal ganglia circuits, both in healthy and pathological conditions; and (iii) the activation and/or inhibition of the cannabinoid system is associated with important motor responses that are maintained and even enhanced in conditions of malfunctioning and/or degeneration. In this article we will review the available data regarding the relationship between the cannabinoid system and basal ganglia activity, both in healthy and pathological conditions and will also try to identify future lines of research expected to increase current knowledge about the potential therapeutic benefits of targeting this system in PD, HD and other basal ganglia disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|