1
|
Banerjee T, Sarkar A, De A, Sar S, Mandal A, Panda P, Halder AK, Karmakar S, Ghosh N. Toxicological evaluation of Artocarpus lacucha ethyl acetate extract: in vitro and in vivo assessment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119804. [PMID: 40228589 DOI: 10.1016/j.jep.2025.119804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artocarpus lacucha Buch. -Ham. (syn. Artocarpus lakoocha) (A. lacucha), is a tropical fruit tree and a member of the Moraceae family. Fruit, bark, foliage, and roots of A. lacucha are broadly utilized in folklore medicine to treat various metabolic and gastrointestinal disorders. The bark of A. lacucha has demonstrated antimicrobial and antinociceptive effects. AIM OF THE STUDY The study investigated the toxicity of A. lacucha ethyl acetate bark extract (AL-EAE) employing both in vitro and in vivomodels. MATERIALS AND METHODS AL-EAE was extracted by soxhlation of powdered bark. The phytochemical fingerprint of AL-EAE was established employing LC-MS technique. The presence of heavy metals was determined by atomic absorption spectroscopy (AAS). Cytotoxicity of AL-EAE (3.9-250 μg/mL) was evaluated by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney cells (HEK293). The acute oral toxicity of AL-EAE was ascertained by administering 500, 1000, and 2000 mg/kg B.W. doses in rats of both sexes. Rats were treated with AL-EAE orally at 200, 400, and 600 mg/kg B.W. doses on a daily basis for 28 days in order to evaluate subacute toxicity. Clinical and toxicological parameters were noted after every 24 h. After the course of treatment, the safety of AL-EAE was evaluated by investigating various biochemical, haematological, and histopathological markers. RESULTS LC-MS analysis indicates the presence of phenols and flavonoids in A. lacucha bark extracts. AAS analysis revealed the safety limits of heavy metals in AL-EAE as recommended by ICH. AL-EAE was not found cytotoxic in HEK293 cells (IC50 more than 250 μg/mL). No adverse clinical syndromes or mortality were observed in the acute toxicity study. The alterations in body weight (B.W.) and relative organ weights (ROWs) were found to be non-significant. In the sub-acute toxicity assessment, changes in food intake and mild diarrhoea were observed at 600 mg/kg/day B.W. Changes in ROWs at 600 mg/kg/day and B.W. at 400 and 600 mg/kg/day dose were observed. However, significant alterations in biochemical (TG, VLDL, AST, and ALP) and haematological (haemoglobin, MCHC, eosinophils, monocyte) parameters were observed at 400 and 600 mg/kg/day B.W. doses. Histopathological studies illustrated significant inflammation in the liver, pancreas, and spleen at 600 mg/kg/day B.W. doses. CONCLUSION The findings demonstrated that AL-EAE did not possess cytotoxicity in vitro. In both acute and subacute toxicity studies, AL-EAE was shown to be nontoxic, where 400 mg/kg/day was the no-observed-adverse-effect level (NOAEL) dosage in rodents.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Akash De
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Shuvam Sar
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Avishek Mandal
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Parthasarathi Panda
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, WB, India.
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, WB, India.
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
2
|
Huang HT, Lin YC, Zhang LJ, Liaw CC, Chen HY, Hsueh MT, Kuo YH. Anti-Inflammatory and anti-proliferative oleanane-type triterpene glycosides from the vine of Momordica cochinchinensis. Nat Prod Res 2019; 35:2707-2714. [PMID: 31533481 DOI: 10.1080/14786419.2019.1666383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This research isolated two new oleanane-type triterpene glycosides, named mocochinosides A (1) and B (2), together with ten known compounds as chikusetsusaponin IVa ethyl ester (3), momordin Ib (4), momordin IIb (5), momordin II (6), calenduloside G (7), calenduloside H (8), elatoside A (9), elatoside C (10), calendulaglycoside C 6'-O-7-butyl ester (11), and hederagenin 3-O-β-D-glucuronopyranoside (12) and characterized them from the vines of Momordica cochinchinensis. The new structures of both glycosides 1-2 were elucidated by spectroscopic analysis including 2 D NMR and MS, followed by an analysis of their anti-inflammatory and cytotoxic activities. Compounds 1, 4, and 11 showed moderate inhibitions for NO production on RAW264.7 macrophages induced by LPS at IC50 5.41 ∼ 11.28 μM. Compounds 3, 4, and 7 (IC50 8.42 ∼ 19.74 μM) exhibited potential anti-proliferative activities against both of WiDr and MCF-7 human tumor cell lines.
Collapse
Affiliation(s)
- Hung-Tse Huang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi Lin
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Li-Jie Zhang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan.,Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Hsin-Yen Chen
- Taitung District Agricultural Research and Extension Station, Council of Agriculture, Taitung, Taiwan
| | - Ming-Tung Hsueh
- Taitung District Agricultural Research and Extension Station, Council of Agriculture, Taitung, Taiwan
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel) 2017; 9:toxins9100314. [PMID: 29023422 PMCID: PMC5666361 DOI: 10.3390/toxins9100314] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.
Collapse
|
4
|
Yu JS, Kim JH, Lee S, Jung K, Kim KH, Cho JY. Src/Syk-Targeted Anti-Inflammatory Actions of Triterpenoidal Saponins from Gac (Momordica cochinchinensis) Seeds. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:459-473. [PMID: 28367713 DOI: 10.1142/s0192415x17500288] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Momordica cochinchinensis Spreng (family Cucurbitaceae), also known as gac, or red melon, is an edible Southeast Asian fruit valued for its nutritional and medicinal properties. Specifically, Momordicae Semen, the seeds of the gac fruit, is used in traditional Chinese medicine to treat boils, rheumatic pain, muscle spasm, hemorrhoids, and hemangiomas. In this study, a chemical investigation into a gac seed ethanol (EtOH) extract resulted in the identification of three triterpenoidal saponins (1-3), which were investigated for their anti-inflammatory effects. Among the saponins, momordica saponin I (compound 3) reduced the production of nitric oxide (NO) in LPS-activated RAW264.7 cells without inducing cytotoxicity. The mRNA levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by momordica saponin I. Additionally, the translocation of p65 and p50 (subunits of the transcription factor NF-[Formula: see text]B) into the nucleus was remarkably inhibited. Furthermore, the phosphorylation levels of inflammatory signaling proteins (I[Formula: see text]B[Formula: see text], Src, and Syk) known to be upstream regulatory molecules of p65 were decreased under momordica saponin I-treated conditions. The molecular targets of momordica saponin I were confirmed in overexpression experiments and through immunoblot analyses with Src and Syk. This study provides evidence that momordica saponin I could be beneficial in treating inflammatory diseases, and should be considered a bioactive immunomodulatory agent with anti-inflammatory properties.
Collapse
Affiliation(s)
- Jae Sik Yu
- * School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun Ho Kim
- † Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seulah Lee
- * School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kiwon Jung
- ‡ Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Seongnam 13488, Republic of Korea
| | - Ki Hyun Kim
- * School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae Youl Cho
- † Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
5
|
Yuan H, Du Q, Sturm MB, Schramm VL. Soapwort Saporin L3 Expression in Yeast, Mutagenesis, and RNA Substrate Specificity. Biochemistry 2015; 54:4565-74. [PMID: 26091305 DOI: 10.1021/acs.biochem.5b00405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saporin L3 from Saponaria officinalis (soapwort) leaves is a type 1 ribosome-inactivating protein. It catalyzes the hydrolysis of oligonucleotide adenylate N-ribosidic bonds to release adenine from rRNA. Depurination sites include both adenines in the GAGA tetraloop of short sarcin-ricin stem-loops and multiple adenines within eukaryotic rRNA, tRNAs, and mRNAs. Multiple Escherichia coli vector designs for saporin L3 expression were attempted but demonstrated high toxicity even during plasmid maintenance and selection in E. coli nonexpression strains. Saporin L3 is >10(3) times more efficient at RNA deadenylation on short GAGA stem-loops than saporin S6, the saporin isoform currently used in immunotoxin clinical trials. We engineered a construct for the His-tagged saporin L3 to test for expression in Pichia pastoris when it is linked to the protein export system for the yeast α-mating factor. DNA encoding saporin L3 was cloned into a pPICZαB expression vector and expressed in P. pastoris under the alcohol dehydrogenase AOX1 promoter. A fusion protein of saporin L3 containing the pre-pro-sequence of the α-mating factor, the c-myc epitope, and the His tag was excreted from the P. pastoris cells and isolated from the culture medium. Autoprocessing of the α-mating factor yielded truncated saporin L3 (amino acids 22-280), the c-myc epitope, and the His tag expressed optimally as a 32 kDa construct following methanol induction. Saporin L3 was also expressed with specific alanines and/or serines mutated to cysteine. Native and Cys mutant saporins are kinetically similar. The recombinant expression of saporin L3 and its mutants permits the production and investigation of this high-activity ribosome-inactivating protein.
Collapse
Affiliation(s)
- Hongling Yuan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Matthew B Sturm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Schrot J, Weng A, Melzig MF. Ribosome-inactivating and related proteins. Toxins (Basel) 2015; 7:1556-615. [PMID: 26008228 PMCID: PMC4448163 DOI: 10.3390/toxins7051556] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs.
Collapse
Affiliation(s)
- Joachim Schrot
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Alexander Weng
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| |
Collapse
|
7
|
Iglesias R, Citores L, Di Maro A, Ferreras JM. Biological activities of the antiviral protein BE27 from sugar beet (Beta vulgaris L.). PLANTA 2015; 241:421-433. [PMID: 25326773 DOI: 10.1007/s00425-014-2191-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023]
Abstract
The ribosome inactivating protein BE27 displays several biological activities in vitro that could result in a broad action against several types of pathogens. Beetin 27 (BE27), a ribosome-inactivating protein (RIP) from sugar beet (Beta vulgaris L.) leaves, is an antiviral protein induced by virus and signaling compounds such as hydrogen peroxide and salicylic acid. Its role as a defense protein has been attributed to its RNA polynucleotide:adenosine glycosidase activity. Here we tested other putative activities of BE27 that could have a defensive role against pathogens finding that BE27 displays rRNA N-glycosidase activity against yeast and Agrobacterium tumefaciens ribosomes, DNA polynucleotide:adenosine glycosidase activity against herring sperm DNA, and magnesium-dependent endonuclease activity against the supercoiled plasmid PUC19 (nicking activity). The nicking activity could be a consequence of an unusual conformation of the BE27 active site, similar to that of PD-L1, a RIP from Phytolacca dioica L. leaves. Additionally, BE27 possesses superoxide dismutase activity, thus being able to produce the signal compound hydrogen peroxide. BE27 is also toxic to COLO 320 cells, inducing apoptosis in these cells by either activating the caspase pathways and/or inhibiting protein synthesis. The combined effect of these biological activities could result in a broad action against several types of pathogens such as virus, bacteria, fungi or insects.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | | | | | | |
Collapse
|
8
|
An SH. Quality Characteristics of Muffin Added with Bitter Melon (Momordica charantia L.) Powder. ACTA ACUST UNITED AC 2014. [DOI: 10.9724/kfcs.2014.30.5.499] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Abstract
The main results of the research performed in the last 30 years on ribosome-inactivating proteins (RIPs) are reviewed, with emphasis on the new, controversial and uncertain aspects. The nature, distribution, mechanism of action and properties of these proteins are briefly reported, together with their possible applications. A pattern appears of a still largely unexplored subject, whose role in nature is probably important, and not limited to the biology of plants, since RIPs have been found also in other organisms.
Collapse
Affiliation(s)
- Fiorenzo Stirpe
- Dipartimento di Patologia Sperimentale, Università di Bologna, I-40125 Bologna, Italy.
| |
Collapse
|
10
|
Park SW, Vepachedu R, Sharma N, Vivanco JM. Ribosome-inactivating proteins in plant biology. PLANTA 2004; 219:1093-6. [PMID: 15605180 DOI: 10.1007/s00425-004-1357-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 07/12/2004] [Indexed: 05/24/2023]
Affiliation(s)
- Sang-Wook Park
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173, USA
| | | | | | | |
Collapse
|
11
|
Ngai PHK, Ng TB. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides 2004; 25:11-7. [PMID: 15003351 DOI: 10.1016/j.peptides.2003.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 11/25/2003] [Indexed: 11/16/2022]
Abstract
A 12 kDa ribonuclease preferential for poly U and with much lower activity toward poly A, poly G and poly C was isolated from fresh fruiting bodies of the mushroom Pleurotus sajor-caju. A purification procedure involving ion exchange chromatography on CM-cellulose, affinity chromatography on Red-Sepharose and Heparin-Sepharose, and fast protein liquid chromatography-gel filtration on Superdex 75 was used. The ribonuclease was adsorbed on all of the first three types of chromatographic media. It exhibited some activity toward herring sperm DNA and calf thymus DNA. The ribonuclease activity was unaffected in the presence of KCl (10 and 100 mM) and NaCl (100 mM and 1 M), but was strongly inhibited by CuSO4 (0.01 and 0.1 mM) and less potently inhibited by other divalent salts including MgCl2, CaCl2, ZnCl2, ZnSO4 and FeSO4. The optimal pH was 5.5 and the ribonuclease was stable up to 60 degrees C for 1 h. The ribonuclease inhibited mycelial growth in the fungi Fusarium oxysporum and Mycosphaerella arachidicola with an IC50 value of 95 and 72 microM, respectively. Out of the 12 species of bacteria tested, only Pseudomonas aeruginosa and Staphylococcus aureus were inhibited in growth by the ribonuclease. Viability of the tumor cells HepG2 (hepatoma) and L1210 (leukemia) was reduced with an IC50 of 0.22 and 0.1 microM, respectively in the presence of the ribonuclease. The ribonuclease inhibited translation in a cell-free rabbit reticulocyte lysate system with an IC50 of 158 nM and 3H-methyl-thymidine uptake by murine splenocytes with an IC50 of 65 nM.
Collapse
Affiliation(s)
- Patrick H K Ngai
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
12
|
Wang HX, Ng TB, Cheng CHK, Fong WP. Contamination of ribosome inactivating proteins with ribonucleases, separated by affinity chromatography on red sepharose. Prep Biochem Biotechnol 2003; 33:101-11. [PMID: 12784881 DOI: 10.1081/pb-120021435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Three preparations of type 1 ribosome inactivating proteins (RIPs), namely, agrostin, saporin, and luffin, were subjected to affinity chromatography on Red Sepharose and eluted with a linear concentration gradient of NaCl in 10 mM Tris-HCl buffer (pH 7.4). The eluate was assayed for ability to inhibit translation in a cell-free rabbit reticulocyte lysate system which measures RIP activity, and for ability to hydrolyze yeast transfer RNA which measures RNase activity. It was found that, in all three RIP preparations, the peak of RIP activity, which coincided with the peak of absorbance at 280 nm, was eluted earlier than the peak of RNase activity. It appears that RNase is a possible contaminant of ribosome inactivating protein preparations and that this contamination can be minimized by using Red Sepharose.
Collapse
Affiliation(s)
- H X Wang
- Department of Microbiology, China Agricultural University, Beijing, P. R. China
| | | | | | | |
Collapse
|
13
|
Peumans WJ, Hao Q, Van Damme EJ. Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 2001; 15:1493-506. [PMID: 11427481 DOI: 10.1096/fj.00-0751rev] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many plants contain proteins that are capable of inactivating ribosomes and accordingly are called ribosome-inactivating proteins or RIPs. These typical plant proteins receive a lot of attention in biological and biomedical research because of their unique biological activities toward animal and human cells. In addition, evidence is accumulating that some RIPs play a role in plant defense and hence can be exploited in plant protection. To understand the mode of action of RIPs and to optimize their medical and therapeutical applications and their use as antiviral compounds in plant protection, intensive efforts have been made to unravel the enzymatic activities of RIPs and provide a structural basis for these activities. Though marked progress has been made during the last decade, the enzymatic activity of RIPs has become a controversial issue because of the concept that RIPs possess, in addition to their classical RNA N-glycosidase and polynucleotide:adenosine glycosidase activity, other unrelated enzymatic activities. Moreover, the presumed novel enzymatic activities, especially those related to diverse nuclease activities, are believed to play an important role in various biological activities of RIPs. However, both the novel enzymatic activities and their presumed involvement in the biological activities of RIPs have been questioned because there is evidence that the activities observed are due to contaminating enzymes. We offer a critical review of the pros and cons of the putative novel enzymatic activities of RIPs. Based on the available data, it is suggested that there is little conclusive evidence in support of the presumed activities and that in the past too little attention has been given to the purity of the RIP preparation. The antiviral activity and mode of action of RIPs in plants are discussed in view of their classical and presumed novel enzymatic activities.
Collapse
Affiliation(s)
- W J Peumans
- Laboratory of Phytopathology and Plant Protection, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | | | | |
Collapse
|
14
|
Nielsen K, Boston RS. RIBOSOME-INACTIVATING PROTEINS: A Plant Perspective. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:785-816. [PMID: 11337416 DOI: 10.1146/annurev.arplant.52.1.785] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate the universally conserved alpha-sarcin loop of large rRNAs. This depurination inactivates the ribosome, thereby blocking its further participation in protein synthesis. RIPs are widely distributed among different plant genera and within a variety of different tissues. Recent work has shown that enzymatic activity of at least some RIPs is not limited to site-specific action on the large rRNAs of ribosomes but extends to depurination and even nucleic acid scission of other targets. Characterization of the physiological effects of RIPs on mammalian cells has implicated apoptotic pathways. For plants, RIPs have been linked to defense by antiviral, antifungal, and insecticidal properties demonstrated in vitro and in transgenic plants. How these effects are brought about, however, remains unresolved. At the least, these results, together with others summarized here, point to a complex biological role. With genetic, genomic, molecular, and structural tools now available for integrating different experimental approaches, we should further our understanding of these multifunctional proteins and their physiological functions in plants.
Collapse
Affiliation(s)
- Kirsten Nielsen
- Department of Botany, North Carolina State University, Raleigh, North Carolina 27695-7612; e-mail: ;
| | | |
Collapse
|
15
|
Barbieri L, Valbonesi P, Govoni M, Pession A, Stirpe F. Polynucleotide:adenosine glycosidase activity of saporin-L1: effect on various forms of mammalian DNA. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:258-66. [PMID: 10899626 DOI: 10.1016/s0167-4838(00)00077-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Saporin-L1 from the leaves of Saponaria officinalis belongs to a group of plant polynucleotide:adenosine glycosidases, known as ribosome-inactivating proteins due to their property of depurinating the major rRNA. Previous experiments indicated that saporin-L1 and other ribosome-inactivating proteins depurinate also DNA [Barbieri et al. (1994) Nature 372, 324; and (1996) Biochem. J. 319, 507-513]. Here we describe the effects of highly purified nuclease-free saporin-L1 on mammalian nuclear and mitochondrial DNA. Saporin-L1 had less activity on mitochondrial DNA than on nuclear DNA. A low, although significant, depurination of both chromatin and whole nuclei was observed. Mitochondrial nucleic acids are heavily depurinated in intact mitochondria, although the contribute of mtDNA to the deadenylation events is not known. The kinetic constants for several substrates were determined.
Collapse
Affiliation(s)
- L Barbieri
- Dipartimento di Patologia Sperimentale, Università di Bologna, Via San Giacomo, 14, I-40126, Bologna, Italy.
| | | | | | | | | |
Collapse
|