1
|
Kawahara M, Kato-Negishi M, Tanaka KI. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023; 15:2067. [PMID: 37432185 PMCID: PMC10180548 DOI: 10.3390/nu15092067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
2
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 PMCID: PMC9188502 DOI: 10.1007/s00702-022-02505-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J. Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 DOI: 10.1007/s00702-022-025055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 05/26/2023]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Antineuroinflammatory Effect of Amburana cearensis and Its Molecules Coumarin and Amburoside A by Inhibiting the MAPK Signaling Pathway in LPS-Activated BV-2 Microglial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6304087. [PMID: 35528510 PMCID: PMC9072078 DOI: 10.1155/2022/6304087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Microglia plays an important role in the neuroinflammatory response, identified as one of the major factors in the development and progression of neurodegenerative diseases. Amburana cearensis and its bioactive compounds, including coumarin (CM), vanillic acid (VA), and amburoside A (AMB), exert antioxidant, anti-inflammatory, and neuroprotective activities, on 6-OHDA-induced neurotoxicity in rat mesencephalic cells determined by our group. The present study investigated the anti-inflammatory effect of the dry extract from A. cearensis (DEAC), CM, AMB, and VA on lipopolysaccharide- (LPS-) stimulated microglial cells and elucidated the possible molecular mechanism of action. The DEAC was characterized by HPLC-PDA (chemical markers: CM, AMB, and VA). The BV-2 microglial cell line was pretreated with increasing concentrations of DEAC, CM, AMB, or VA in the presence or absence of LPS to evaluate the toxicity and anti-inflammatory activity. The cytotoxicity of DEAC, CM, AMB, or VA on BV-2 cells was evaluated by the MTT test, the free radical scavenging activity of test drugs was investigated, and the nitric oxide (NO) production was determined using the Griess reagent, while cytokine levels were measured by ELISA. The expressions of toll-like receptor 4 (TLR-4), nuclear factor kappa B (NF-κB), MAPK members (JNK and ERK1/2), and iNOS were determined through Western blot analysis. DEAC, CM, AMB, or VA (5-100 μg/mL) did not induce any detectable cytotoxicity in BV-2 cells. All test drugs (100 μg/mL) showed free radical scavenging activity (hydroxyl and superoxide radicals); however, only DEAC, CM, and AMB (5-100 μg/mL) significantly reduced NO production. DEAC (100 μg/mL), as well as CM (50 and 100 μg/mL) and AMB (25 μg/mL), reduced at least 50% of NO produced and markedly decrease the production of TNF-α and IL-6 but they did not significantly affect IL-10 levels. Only DEAC (100 μg/mL) and AMB (25 μg/mL) reduced the expression of iNOS, and they did not affect arginase activity. DEAC (100 μg/mL) suppressed the activation of the MAPKs JNK and ERK1/2 in LPS-activated BV-2 cells but it did not suppress the expression of TLR-4 nor the phosphorylation of NF-κB. In conclusion, DEAC, CM, and AMB exerted anti-inflammatory activity in LPS-activated microglial cells as observed by the reduction in the production of inflammatory mediators and the expression of iNOS. We identified the MAPK signaling pathway as a probable mechanism of action to the anti-inflammatory effects observed.
Collapse
|
5
|
Korzhevskii DE, Kirik OV, Guselnikova VV, Tsyba DL, Fedorova EA, Grigorev IP. Changes in cytoplasmic and extracellular neuromelanin in human substantia nigra with normal aging. Eur J Histochem 2021; 65. [PMID: 34468106 PMCID: PMC8419629 DOI: 10.4081/ejh.2021.3283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 01/26/2023] Open
Abstract
Neuromelanin (NM) is a dark polymer pigment produced in certain populations of catecholaminergic neurons in the brain. It is present in various areas of the human brain, most often in the substantia nigra (SN) pars compacta and the locus coeruleus, the main centers of dopaminergic and noradrenergic innervation, respectively. Interest in NM has revived in recent years due to the alleged link between NM and the particular vulnerability of NM-containing neurons to neurodegeneration. The aim of this work was to study the structural, cytochemical, and localization features of cytoplasmic and extracellular NM (eNM) in the human SN pars compacta during normal aging. Sections of human SN from young/middle-aged adults (25 to 51 years old, n=7) and older adults (60 to 78 years old, n=5), all of which had no neurological disorders, were stained histochemically for metals (Perls’ reaction, Mayer's hematoxylin) and immunohistochemically for tyrosine hydroxylase (TH), Iba- 1, and CD68. It was shown that dopaminergic neurons in SN pars compacta differ in the amount of NM and the intensity of TH-immunoreactivity. The number of NM-containing neurons with decreased TH-immunoreactivity positively correlates with age. eNM is present in SN pars compacta in both young/middle-aged and older adults. The number of eNM accumulations increases with aging. Cytoplasmic and eNM are predominantly not stained using histochemical methods for detecting metals in people of all ages. We did not detect the appearance of amoeboid microglia in human SN pars compacta with aging, but we found an age-related increase in microglial phagocytic activity. The absence of pronounced microgliosis, as well as a pronounced loss of NM-containing neurons, indicate the absence of neuroinflammation in human SN pars compacta during normal aging.
Collapse
Affiliation(s)
- Dmitrii E Korzhevskii
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Olga V Kirik
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Valeriia V Guselnikova
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Darya L Tsyba
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Elena A Fedorova
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Igor P Grigorev
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| |
Collapse
|
6
|
Li M, Hu J, Yuan X, Shen L, Zhu L, Luo Q. Hepcidin Decreases Rotenone-Induced α-Synuclein Accumulation via Autophagy in SH-SY5Y Cells. Front Mol Neurosci 2020; 13:560891. [PMID: 33177988 PMCID: PMC7596286 DOI: 10.3389/fnmol.2020.560891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder, and the hallmarks of this disease include iron deposition and α-synuclein (α-syn) aggregation. Hepcidin could reduce iron in the central and peripheral nervous systems. Here, we hypothesized that hepcidin could further decrease α-syn accumulation via reducing iron. Therefore, rotenone or α-syn was introduced into human neuroblastoma SH-SY5Y cells to imitate the pathological progress of PD in vitro. This study investigated the clearance effects of hepcidin on α-syn induced by a relatively low concentration of rotenone exposure or α-syn overexpression to elucidate the potential clearance pathway involved in this process. We demonstrated that SH-SY5Y cell viability was impaired after rotenone treatment in a dose-dependent manner. α-syn expression and iron content increased under a low concentration rotenone (25 nM for 3 days) treatment in SH-SY5Y cells. Pre-treatment with hepcidin peptide suppressed the abovementioned effects of rotenone. However, hepcidin did not affect treatment with rotenone under high iron conditions. Hepcidin also played a role in reducing α-syn accumulation in rotenone and α-syn overexpression conditions. We identified that the probable clearance effect of hepcidin on α-syn was mediated by the autophagy pathway using pretreatment with autophagy inhibitors (3-MA and CQ) and detection of autophagy protein markers (LC3II/I and p62). In conclusion, hepcidin eliminated α-syn expression via the autophagy pathway in rotenone-treated and α-syn overexpression SH-SY5Y cells. This study highlights that hepcidin may offer a potential therapeutic perspective in α-syn accumulation diseases.
Collapse
Affiliation(s)
- Meiqi Li
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianan Hu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoyu Yuan
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Lihua Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Li Zhu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qianqian Luo
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
7
|
Kawahara M, Kato-Negishi M, Tanaka K. Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics 2018; 9:619-633. [PMID: 28516990 DOI: 10.1039/c7mt00046d] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that disruption of metal homeostasis contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease, prion diseases, Lewy body diseases, and vascular dementia. Conformational changes of disease-related proteins (amyloidogenic proteins), such as β-amyloid protein, prion proteins, and α-synuclein, are well-established contributors to neurotoxicity and to the pathogenesis of these diseases. Recent studies have demonstrated that these amyloidogenic proteins are metalloproteins that bind trace elements, including zinc, iron, copper, and manganese, and play significant roles in the maintenance of metal homeostasis. We present a current review of the role of trace elements in the functions and toxicity of amyloidogenic proteins, and propose a hypothesis integrating metal homeostasis and the pathogenesis of neurodegenerative diseases that is focused on the interactions among metals and between metals and amyloidogenic proteins at the synapse, considering that these amyloidogenic proteins and metals are co-localized at the synapse.
Collapse
Affiliation(s)
- M Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | |
Collapse
|
8
|
Lang AE, Espay AJ. Disease Modification in Parkinson's Disease: Current Approaches, Challenges, and Future Considerations. Mov Disord 2018; 33:660-677. [DOI: 10.1002/mds.27360] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology; University of Toronto; Toronto Ontario Canada
| | - Alberto J. Espay
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati Ohio USA
| |
Collapse
|
9
|
Zhao S, Rangaprakash D, Venkataraman A, Liang P, Deshpande G. Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI. Front Aging Neurosci 2017; 9:211. [PMID: 28729831 PMCID: PMC5498531 DOI: 10.3389/fnagi.2017.00211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 01/17/2023] Open
Abstract
Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD.
Collapse
Affiliation(s)
- Sinan Zhao
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn UniversityAuburn, AL, United States
| | - D Rangaprakash
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn UniversityAuburn, AL, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los AngelesLos Angeles, CA, United States
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Johns Hopkins UniversityBaltimore, MD, United States
| | - Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijing, China.,Key Laboratory for Neurodegenerative Diseases, Ministry of EducationBeijing, China
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn UniversityAuburn, AL, United States.,Department of Psychology, Auburn UniversityAuburn, AL, United States.,Alabama Advanced Imaging Consortium, Auburn University and University of Alabama BirminghamAuburn, AL, United States
| |
Collapse
|
10
|
Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease? ACS Chem Neurosci 2017; 8:702-711. [PMID: 28233992 DOI: 10.1021/acschemneuro.7b00034] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 1967, L-dopa was introduced as part of the pharmacological therapy of Parkinson's disease (PD) and, in spite of extensive research, no additional effective drugs have been discovered to treat PD. This brings forward the question: why have no new drugs been developed? We consider that one of the problems preventing the discovery of new drugs is that we still have no information on the pathophysiology of the neurodegeneration of the neuromelanin-containing nigrostriatal dopaminergic neurons. Currently, it is widely accepted that the degeneration of dopaminergic neurons, i.e., in the substantia nigra pars compacta, involves mitochondrial dysfunction, the formation of neurotoxic oligomers of alpha-synuclein, the dysfunction of protein degradation systems, neuroinflammation, and oxidative and endoplasmic reticulum stress. However, the initial trigger of these mechanisms in the nigrostriatal system is still unknown. It has been reported that aminochrome induces the majority of these mechanisms involved in the neurodegeneration process. Aminochrome is formed within the cytoplasm of neuromelanin-containing dopaminergic neurons during the oxidation of dopamine to neuromelanin. The oxidation of dopamine to neuromelanin is a normal and harmless process, because healthy individuals have intact neuromelanin-containing dopaminergic neurons. Interestingly, aminochrome-induced neurotoxicity is prevented by two enzymes: DT-diaphorase and glutathione transferase M2-2, which explains why melanin-containing dopaminergic neurons are intact in healthy human brains.
Collapse
Affiliation(s)
- Andrea Herrera
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Patricia Muñoz
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Harry W. M. Steinbusch
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
11
|
Mizuno D, Kawahara M. Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at the Synapse. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
12
|
Sukhorukova EG, Alekseeva OS, Korzhevsky DE. Catecholaminergic neurons of mammalian brain and neuromelanin. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014050020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Fiandaca MS, Federoff HJ. Using viral-mediated gene delivery to model Parkinson's disease: Do nonhuman primate investigations expand our understanding? Exp Neurol 2014; 256:117-25. [DOI: 10.1016/j.expneurol.2013.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/08/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022]
|
14
|
Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem Rev 2014; 114:5057-115. [DOI: 10.1021/cr400407a] [Citation(s) in RCA: 3219] [Impact Index Per Article: 292.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yanlan Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Kelong Ai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Lehui Lu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
15
|
Jellinger KA. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:1-47. [PMID: 24209432 DOI: 10.1016/b978-0-12-410502-7.00002-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders are featured by a variety of pathological conditions that share similar critical processes, such as oxidative stress, free radical activity, proteinaceous aggregations, mitochondrial dysfunctions, and energy failure. They are mediated or triggered by an imbalance of metal ions leading to changes of critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. Their causes are multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper, and other trace metals. They are present at elevated levels in Alzheimer disease, Parkinson disease, multisystem atrophy, etc., while in other neurodegenerative disorders, copper, zinc, aluminum, and manganese are involved. This chapter will review the recent advances of the role of metals in the pathogenesis and pathophysiology of major neurodegenerative diseases and discuss the use of chelating agents as potential therapies for metal-related disorders.
Collapse
|
16
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A. ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments. J Phys Chem B 2011; 115:12234-46. [PMID: 21919526 PMCID: PMC3198543 DOI: 10.1021/jp206347u] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/14/2011] [Indexed: 11/29/2022]
Abstract
Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 10(5) and 8.16 × 10(5) M(-1) s(-1), in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger.
Collapse
Affiliation(s)
- Cristina Iuga
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, México
| | - J. Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México
| | - Annik Vivier-Bunge
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México
| |
Collapse
|
18
|
Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, Gracio JJDA, Toniazzo V, Ruch D. Dopamine-melanin film deposition depends on the used oxidant and buffer solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2819-25. [PMID: 21332218 DOI: 10.1021/la104981s] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The deposition of "polydopamine" films, from an aqueous solution containing dopamine or other catecholamines, constitutes a new and versatile way to functionalize solid-liquid interfaces. Indeed such films can be deposited on almost all kinds of materials. Their deposition kinetics does not depend markedly on the surface chemistry of the substrate, and the films can reach thickness of a few tens of nanometers in a single reaction step. Up to now, even if a lot is known about the oxidation mechanism of dopamine in solution, only little information is available to describe the deposition mechanism on surfaces either by oxidation in solution or by electrodeposition. The deposition kinetics of melanin was only investigated from dopamine solutions using oxygen or ammonium persulfate as an oxidant and from a tris(hydroxymethyl) aminomethane (Tris) containing buffer solutions at pH 8.5. Many other oxidants could be used, and the buffer agent containing a primary amine group may influence the deposition process. Herein we show that the deposition kinetics of melanin from dopamine containing buffers at pH 8.5 can be markedly modified using Cu(2+) instead of O2 as an oxidant: the deposition kinetics remains linear up to thicknesses of more than 70 nm, whereas the film growth stops at 45 ± 5 nm in the presence of 02. In addition, the films prepared from Cu(2+) containing solutions display an absorption spectrum with defined peaks at 320 and 370 nm, which are absent in the spectra of films prepared in oxygenated solutions. The replacement of Tris buffer by phosphate buffer also has a marked effect on the melanin deposition kinetics.
Collapse
Affiliation(s)
- Falk Bernsmann
- Institut National de la Santé et de la Recherche Médicale , Unité 977 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
α-synuclein (αS) is a cellular protein mostly known for the association of its aggregated forms with a variety of diseases that include Parkinson's disease and Dementia with Lewy Bodies. While the role of αS in disease is well documented there is currently no agreement on the physiological function of the normal isoform of the protein. Here we provide strong evidence that αS is a cellular ferrireductase, responsible for reducing iron (III) to bio available iron (II). The recombinant form of the protein has a V(Max) of 2.72 nmols/min/mg and K(m) 23 µM. This activity is also evident in lysates from neuronal cell lines overexpressing αS. This activity is dependent on copper bound to αS as a cofactor and NADH as an electron donor. Overexpression of α-synuclein by cells significantly increases the percentage of iron (II) in cells. The common disease mutations associated with increased susceptibility to PD show no [corrected] differences in activity or iron (II) levels. This discovery may well provide new therapeutic targets for PD and Lewy body dementias.
Collapse
|
20
|
Gómez FJ, Aguirre P, Gonzalez-Billault C, Núñez MT. Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). J Neural Transm (Vienna) 2010; 118:421-31. [DOI: 10.1007/s00702-010-0489-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 12/31/2022]
|
21
|
Yu F, Chen S, Chen Y, Li H, Yang L, Chen Y, Yin Y. Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.08.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Abstract
The neurotoxin 6-hydroxydopamine (6-OHDA) continues to constitute a valuable topical tool used chiefly in modeling Parkinson's disease in the rat. The classical method of intracerebral infusion of 6-OHDA involving a massive destruction of nigrostriatal dopaminergic neurons, is largely used to investigate motor and biochemical dysfunctions in Parkinson's disease. Subsequently, more subtle models of partial dopaminergic degeneration have been developed with the aim of revealing finer motor deficits. The present review will examine the main features of 6-OHDA models, namely the mechanisms of neurotoxin-induced neurodegeneration as well as several behavioural deficits and motor dysfunctions, including the priming model, modeled by this means. An overview of the most recent morphological and biochemical findings obtained with the 6-OHDA model will also be provided, particular attention being focused on the newly investigated intracellular mechanisms at the striatal level (e.g., A(2A) and NMDA receptors, PKA, CaMKII, ERK kinases, as well as immediate early genes, GAD67 and peptides). Thanks to studies performed in the 6-OHDA model, all these mechanisms have now been hypothesised to represent the site of pathological dysfunction at cellular level in Parkinson's disease.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | | | | |
Collapse
|
23
|
Hautot D, Pankhurst QA, Morris CM, Curtis A, Burn J, Dobson J. Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim Biophys Acta Mol Basis Dis 2006; 1772:21-5. [PMID: 17097860 PMCID: PMC1993816 DOI: 10.1016/j.bbadis.2006.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 11/16/2022]
Abstract
Magnetometry analysis of brain tissue sub-samples from two neuroferritinopathy patients provides a preliminary indication that the amount of magnetic iron compounds associated with this rare disease is significantly larger than in age/sex-matched controls. The primary iron compounds contributing to the remnant magnetization of the tissue above 50 K and at body temperature are both blocked and superparamagnetic (SPM) biogenic magnetite (Fe3O4) and/or maghemite (gamma-Fe2O3). The concentration of SPM magnetite is significant and appears to be proportional to the concentration of ferritin, which varies with progression of the disease. The mutated ferritin protein appears to be responsible for the presence of iron oxide nano-particules, which in turn could be responsible for extensive damage in the brain.
Collapse
Affiliation(s)
- Dimitri Hautot
- Institute of Science and Technology in Medicine, Keele University, Stoke on Trent, and Institute for Aging and Health, Newcastle General Hospital, Newcastle upon Tyne, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Bocca B, Alimonti A, Senofonte O, Pino A, Violante N, Petrucci F, Sancesario G, Forte G. Metal changes in CSF and peripheral compartments of parkinsonian patients. J Neurol Sci 2006; 248:23-30. [PMID: 16765382 DOI: 10.1016/j.jns.2006.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Involvement of metals in the risk of developing Parkinson's disease (PD) has been suggested. In the present study, concentration of metals in cerebrospinal fluid (CSF), blood, serum, urine and hair of 91 PD patients and 18 controls were compared. METHODS Blood and hair were microwave digested, while CSF, serum and urine were water-diluted. Elements quantification was achieved by Inductively Coupled Plasma Atomic Emission Spectrometry and Sector Field Inductively Coupled Plasma Mass Spectrometry. RESULTS Some metal imbalances in PD were observed: i), in CSF, lower Fe and Si; ii), in blood, higher Ca, Cu, Fe, Mg and Zn; iii), in serum, lower Al and Cu; iv), in urine, lower Al and Mn, higher Ca and Fe; and v), in hair, lower Fe. The ROC analysis suggested that blood Ca, Fe, Mg and Zn were the best discriminators between PD and controls. In addition, hair Ca and Mg were at least 1.5 times higher in females than in males of patients and controls. A decrement with age of patients in hair and urine Ca and, with less extent, in urine Si was observed. Magnesium concentration in CSF decreased with the duration and severity of the disease. Elements were not influenced by the type of antiparkinsonian therapy. CONCLUSIONS Variation in elements with the disease do not exclude their involvement in the neurodegeneration of PD.
Collapse
Affiliation(s)
- B Bocca
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Joshi G, Sultana R, Tangpong J, Cole MP, St Clair DK, Vore M, Estus S, Butterfield DA. Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 2006; 39:1147-54. [PMID: 16298740 DOI: 10.1080/10715760500143478] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Adriamycin (ADR) is a chemotherapeutic agent useful in treating various cancers. ADR is a quinone-containing anthracycline chemotherapeutic and is known to produce reactive oxygen species (ROS) in heart. Application of this drug can have serious side effects in various tissues, including brain, apart from the known cardiotoxic side effects, which limit the successful use of this drug in treatment of cancer. Neurons treated with ADR demonstrate significant protein oxidation and lipid peroxidation. Patients under treatment with this drug often complain of forgetfulness, lack of concentration, dizziness (collectively called somnolence or sometimes called chemobrain). In this study, we tested the hypothesis that ADR induces oxidative stress in brain. Accordingly, we examined the in vivo levels of brain protein oxidation and lipid peroxidation induced by i.p. injection of ADR. We also measured levels of the multidrug resistance-associated protein (MRP1) in brain isolated from ADR- or saline-injected mice. MRP1 mediates ATP-dependent export of cytotoxic organic anions, glutathione S-conjugates and sulphates. The current results demonstrated a significant increase in levels of protein oxidation and lipid peroxidation and increased expression of MRP1 in brain isolated from mice, 72 h post i.p injection of ADR. These results are discussed with reference to potential use of this redox cycling chemotheraputic agent in the treatement of cancer and its chemobrain side effect in brain.
Collapse
Affiliation(s)
- Gururaj Joshi
- Department of Chemistry, University of Kentucky, Lexington, 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Siddiq A, Ayoub IA, Chavez JC, Aminova L, Shah S, LaManna JC, Patton SM, Connor JR, Cherny RA, Volitakis I, Bush AI, Langsetmo I, Seeley T, Gunzler V, Ratan RR. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem 2005; 280:41732-43. [PMID: 16227210 PMCID: PMC2586128 DOI: 10.1074/jbc.m504963200] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases are a family of iron- and 2-oxoglutarate-dependent dioxygenases that negatively regulate the stability of several proteins that have established roles in adaptation to hypoxic or oxidative stress. These proteins include the transcriptional activators HIF-1alpha and HIF-2alpha. The ability of the inhibitors of HIF prolyl 4-hydroxylases to stabilize proteins involved in adaptation in neurons and to prevent neuronal injury remains unclear. We reported that structurally diverse low molecular weight or peptide inhibitors of the HIF prolyl 4-hydroxylases stabilize HIF-1alpha and up-regulate HIF-dependent target genes (e.g. enolase, p21(waf1/cip1), vascular endothelial growth factor, or erythropoietin) in embryonic cortical neurons in vitro or in adult rat brains in vivo. We also showed that structurally diverse HIF prolyl 4-hydroxylase inhibitors prevent oxidative death in vitro and ischemic injury in vivo. Taken together these findings identified low molecular weight and peptide HIF prolyl 4-hydroxylase inhibitors as novel neurological therapeutics for stroke as well as other diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Ambreena Siddiq
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
- Burke/Cornell Medical Research Institute, White Plains, New York 10605
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
| | - Issam A. Ayoub
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Juan C. Chavez
- Burke/Cornell Medical Research Institute, White Plains, New York 10605
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
- Department of Anatomy and Neurology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Leila Aminova
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Sapan Shah
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Joseph C. LaManna
- Department of Anatomy and Neurology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Stephanie M. Patton
- Department of Neurosurgery, George M. Leader Family Laboratory for Alzheimer Disease Research, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - James R. Connor
- Department of Neurosurgery, George M. Leader Family Laboratory for Alzheimer Disease Research, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Robert A. Cherny
- Department of Pathology, the University of Melbourne, Mental Health Research Institute of Victoria, Parkville 3052, Australia
| | - Irene Volitakis
- Department of Pathology, the University of Melbourne, Mental Health Research Institute of Victoria, Parkville 3052, Australia
| | - Ashley I. Bush
- Department of Pathology, the University of Melbourne, Mental Health Research Institute of Victoria, Parkville 3052, Australia
- Laboratory of Oxidation Biology, Genetics and Aging Research Unit, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | | | - Todd Seeley
- Fibrogen, Inc., South San Francisco, California 94080
| | | | - Rajiv R. Ratan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
- Burke/Cornell Medical Research Institute, White Plains, New York 10605
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
- To whom correspondence should be addressed: Burke/Cornell Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605. Tel.: 914−597−2851; Fax: 914−597−2225; E-mail: or
| |
Collapse
|
27
|
Halliday GM, Ophof A, Broe M, Jensen PH, Kettle E, Fedorow H, Cartwright MI, Griffiths FM, Shepherd CE, Double KL. α-Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease. Brain 2005; 128:2654-64. [PMID: 16000336 DOI: 10.1093/brain/awh584] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The distribution and tempo of neuronal loss in Parkinson's disease correlates poorly with the characteristic and more widely spread intracellular changes associated with the disease process (Lewy bodies and Lewy neurites). To determine early intracellular changes in regions where cell loss is most marked (dopaminergic A9 substantia nigra) versus regions with Lewy bodies but where cell loss is limited, we assessed 13 patients with definite Parkinson's disease at various disease stages in comparison with controls. Using immunohistochemistry for alpha-synuclein, we confirmed the concentration of this protein in the soma of normal A9 neurons and in Lewy body pathology in brainstem catecholamine neurons in Parkinson's disease. Analysis of the degree of cell loss in brainstem catecholamine cell groups revealed that only the A9 substantia nigra had consistent significant cell loss early in the disease course with greater A9 cell loss correlating with increasing disease duration. To assess the earliest intracellular changes differentiating neurons more likely to degenerate, pigmented A9 and A10 neurons with and without obvious pathology were targeted, cell size and pigment density measured, and intracellular changes in alpha-synuclein location and lipid components analysed at both the light and electron microscope levels. There were no changes observed in healthy A10 neurons in Parkinson's disease compared with controls. Pigmented A9 neurons in later stages of degeneration with obvious Lewy body formation had a significant reduction in intracellular pigment, as previously described. In contrast, A9 neurons of normal morphological appearance and no characteristic pathology in Parkinson's disease exhibited significantly increased pigment density associated with a concentration of alpha-synuclein to the lipid component of the pigment and a loss of associated cholesterol. These changes in vulnerable but apparently healthy A9 neurons occurred without any change in cell size or in the amount of intracellular pigment compared with controls. The increase in pigment density is consistent with previously reported increases associated with oxidation and iron loading, reactions known to precipitate alpha-synuclein. The selectivity of the changes observed in A9 nigral neurons suggests that these early intracellular changes predispose these neurons to more rapid cell loss in Parkinson's disease. The increased concentration of neuronal alpha-synuclein and pigment in normal A9 neurons may already predispose these neurons to precipitate alpha-synuclein around pigment-associated lipid under oxidative conditions. Overall, these changes may trigger a cascade of events leading to larger intracellular aggregates of alpha-synuclein and the dispersement of protective pigment to precipitate cell death in Parkinson's disease.
Collapse
Affiliation(s)
- Glenda M Halliday
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang J, Jiang H, Xie JX. Time dependent effects of 6-OHDA lesions on iron level and neuronal loss in rat nigrostriatal system. Neurochem Res 2005; 29:2239-43. [PMID: 15672545 DOI: 10.1007/s11064-004-7031-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The early changes in iron level and neuronal loss in rat nigrostriatal system were investigated using 6-hydroxydopamine (6-OHDA) unilaterally lesioned rats. The results showed that: 1, 3, 5, 7, and 14 days of postlesion, there was a progressive reduction in the density of the tyrosine hydroxylase immunoreactive (TH-ir) cells in the lesioned substantia nigra (SN). Iron level increased in the lesioned SN from 1-14 days following 6-OHDA lesions, but there were no differences in iron level among them. Only on 14 days of postlesion, did the DA release decrease in striatum (Str) of the lesioned side, while there were no changes in other groups. These results implied that the increased iron level in SN occured when there was a moderate reduction of DA neurons. However, the DA release in Str was unchanged until TH-ir cells were highly reduced due to the immense compensatory mechanism of the DA system.
Collapse
Affiliation(s)
- Jun Wang
- Department of Physiology, Medical College of Qingdao University, Qingdao 266021, PR China
| | | | | |
Collapse
|
29
|
Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson's disease. ACTA ACUST UNITED AC 2005; 134:57-66. [PMID: 15790530 DOI: 10.1016/j.molbrainres.2004.09.017] [Citation(s) in RCA: 269] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 09/13/2004] [Accepted: 09/21/2004] [Indexed: 12/21/2022]
Abstract
The biochemical and cellular changes that occur following administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) are remarkably similar to that seen in idiopathic Parkinson's disease (PD). In this review, we detail the molecular activities of this compound from peripheral intoxication through its various biotransformations. In addition, we detail the interplay that occurs between the different cellular compartments (neurons and glia) that eventually consort to kill substantia nigra pars compacta (SNpc) neurons.
Collapse
Affiliation(s)
- Richard Jay Smeyne
- Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, TN 39105, USA.
| | | |
Collapse
|
30
|
Forte G, Alimonti A, Violante N, Di Gregorio M, Senofonte O, Petrucci F, Sancesario G, Bocca B. Calcium, copper, iron, magnesium, silicon and zinc content of hair in Parkinson's disease. J Trace Elem Med Biol 2005; 19:195-201. [PMID: 16325536 DOI: 10.1016/j.jtemb.2005.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
The aetiology of Parkinson's disease (PD) is still unknown, but some hypotheses have focused on the imbalances in body levels of metals as co-factors of risk. To assess whether hair could be a reliable marker of possible changes, calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), silicon (Si) and zinc (Zn) were determined in hair from 81 patients affected by PD and 17 age-matched controls. Care was taken to eliminate external contamination of the hair by thorough washing. Digestion of the matrix was achieved by an acid-assisted microwave procedure. Quantification of the elements was performed by inductively coupled plasma atomic emission spectrometry. Results indicated significantly lower levels of Fe in the hair of patients (p=0.018) compared with controls. Ca and Mg levels were slightly lower while Zn levels were higher in patients, although these differences were not significant; neither were variations in Cu and Si. Ca and Mg were at least 1.5 times higher in females than in males in both controls and patients. In addition, Ca correlated positively with Mg in both groups and in both sexes (p-value always less than 0.03), and negatively with age in patients (p<0.01). Finally, element levels did not correlate with either the duration or the severity of the disease or with anti-Parkinson treatment.
Collapse
Affiliation(s)
- Giovanni Forte
- Dipartimento Ambiente e Connessa Prevenzione Primaria, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ide-Ektessabi A, Rabionet M. The Role of Trace Metallic Elements in Neurodegenerative Disorders: Quantitative Analysis Using XRF and XANES Spectroscopy. ANAL SCI 2005; 21:885-92. [PMID: 16038516 DOI: 10.2116/analsci.21.885] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present paper focuses on the analysis of trace metallic elements and their role in neurodegenerative disorders. The use of synchrotron radiation microbeams allows investigation of pathological tissues from Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis cases in a nondestructive manner and at cellular level. By employing X-ray absorption near edge structure (XANES) technique, the chemical state of the investigated elements can be determined, while energy-selective X-ray fluorescence spectroscopy provides the spatial distribution of each element in each oxidative state selectively. The investigated tissues (derived from human, monkey and mouse specimens) show distinct imbalances of metallic elements such as Zn and Cu as well as Fe(2+)/Fe(3+) redox pair, which point to oxidative stress as a crucial factor in the development or progress of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Ari Ide-Ektessabi
- Kyoto University International Innovation Center, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
32
|
Schröder JM. Ferritinopathy: diagnosis by muscle or nerve biopsy, with a note on other nuclear inclusion body diseases. Acta Neuropathol 2005; 109:109-14. [PMID: 15645266 DOI: 10.1007/s00401-004-0949-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/21/2004] [Indexed: 10/25/2022]
Abstract
Ferritinopathy (neuroferritinopathy) has recently been identified as an autosomal dominant, multisystem disease, mainly affecting the central nervous system. It is caused by mutations in exon 4 of the ferritin light chain gene on chromosome 19. Its fine structural hallmarks are granular nuclear inclusions in neurons, oligodendroglial and microglial cells with similar extracellular derivatives in the central nervous system, muscle, peripheral nerve, and skin. These pathognostic structures have previously been described in perivascular cells of muscle and nerve biopsy specimens in a case with an obviously identical disease, formerly described as 'granular nuclear inclusion body disease'. The nuclear inclusions, at the light microscopic level, are iron positive following histochemical iron reactions and immunoreactive for ferritin antibodies. At the electron microscopic level, in contrast to filamentous nuclear inclusions in 'neuronal intranuclear hyaline inclusion disease', dominant spinocerebellar atrophies and other trinucleotide repeat diseases, they are basically composed of granules measuring 5-15 nm. A moderate peak of iron detectable by energy dispersive microanalysis of the granular nuclear inclusions in ferritinopathy may also be significant. It is emphasized that ferritinopathy or 'granular nuclear inclusion body disease' can be diagnosed by a simple muscle or nerve biopsy without brain biopsy, autopsy, or molecular genetic testing of the considerable number of neurodegenerative diseases with possibly similar symptomatology.
Collapse
Affiliation(s)
- J Michael Schröder
- Department of Neuropathology, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, Germany.
| |
Collapse
|
33
|
Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR IN BIOMEDICINE 2004; 17:433-445. [PMID: 15523705 DOI: 10.1002/nbm.922] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The brain has an unusually high concentration of iron, which is distributed in an unusual pattern unlike that in any other organ. The physiological role of this iron and the reasons for this pattern of distribution are not yet understood. There is increasing evidence that several neurodegenerative diseases are associated with altered brain iron metabolism. Understanding these dysmetabolic conditions may provide important information for their diagnosis and treatment. For many years the iron distribution in the human brain could be studied effectively only under postmortem conditions. This situation was changed dramatically by the finding that T2-weighted MR imaging at high field strength (initially 1.5 T) appears to demonstrate the pattern of iron distribution in normal brains and that this imaging technique can detect changes in brain iron concentrations associated with disease states. Up to the present time this imaging capability has been utilized in many research applications but it has not yet been widely applied in the routine diagnosis and management of neurodegenerative disorders. However, recent advances in the basic science of brain iron metabolism, the clinical understanding of neurodegenerative diseases and in MRI technology, particularly in the availability of clinical scanners operating at the higher field strength of 3 T, suggest that iron-dependent MR imaging may soon provide biomarkers capable of characterizing the presence and progression of important neurological disorders. Such biomarkers may be of crucial assistance in the development and utilization of effective new therapies for Alzheimer's and Parkinson's diseases, multiple sclerosis and other iron-related CNS disorders which are difficult to diagnose and treat.
Collapse
Affiliation(s)
- John F Schenck
- General Electric Global Research Center, Schenectady, New York 12309, USA.
| | | |
Collapse
|
34
|
Abstract
Aluminum, a trivalent cation unable to undergo redox reactions, is shown to faciliate iron-initiated DOPA oxidation in the melanin pathway under acidic condition of pH 5.5, which is a favored medium for aluminum facilitation of iron-induced lipid peroxidation. In the process of oxidation of DOPA to melanin in the presence of the metal ions, Fe3+ and H2O2 oxidize DOPA to dopachrome (DC), then Al3+ catalyzes the conversion of DC to 5,6-dihydroxyindole (DHI) and finally Fe3+ oxidizes DHI to indole-5,6-quinone (IQ), which polymerizes immediately to melanochrome and melanin. The reactions involve the intermediate complexes of metal ions and DOPA or its derivative. The present results indicate that aluminum can enhance the oxidative stress on iron-mediated DOPA oxidation in melanin pathway under acidic condition through the cooperation of iron and aluminum ions.
Collapse
Affiliation(s)
- Junwei Di
- Department of Chemistry, State Key Laboratory of Coordination Chemistry of China, Nanjing University, Nanjing 210093, P R China
| | | |
Collapse
|
35
|
Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson's disease. J Neurochem 2003; 86:1142-8. [PMID: 12911622 DOI: 10.1046/j.1471-4159.2003.01923.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Degeneration of dopaminergic neurones during Parkinson's disease is most extensive in the subpopulation of melanized-neurones located in the substantia nigra pars compacta. Neuromelanin is a dark pigment produced in the dopaminergic neurones of the human substantia nigra and has the ability to bind a variety of metal ions, especially iron. Post-mortem analyses of the human brain have established that oxidative stress and iron content are enhanced in association with neuronal death. As redox-active iron (free Fe2+ form) and other transition metals have the ability to generate highly reactive hydroxyl radicals by a catalytic process, we investigated the redox activity of neuromelanin (NM)-aggregates in a group of parkinsonian patients, who presented a statistically significant reduction (- 70%) in the number of melanized-neurones and an increased non-heme (Fe3+) iron content as compared with a group of matched-control subjects. The level of redox activity detected in neuromelanin-aggregates was significantly increased (+ 69%) in parkinsonian patients and was highest in patients with the most severe neuronal loss. This change was not observed in tissue in the immediate vicinity of melanized-neurones. A possible consequence of an overloading of neuromelanin with redox-active elements is an increased contribution to oxidative stress and intraneuronal damage in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Baptiste A Faucheux
- INSERM U.289, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, F-75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
36
|
Nölting B, Schälike W, Hampel P, Grundig F, Gantert S, Sips N, Bandlow W, Qi PX. Structural determinants of the rate of protein folding. J Theor Biol 2003; 223:299-307. [PMID: 12850450 DOI: 10.1016/s0022-5193(03)00091-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand the mechanism of protein folding and to assist rational design of fast-folding, non-aggregating and stable artificial enzymes, it is essential to determine the structural parameters which govern the rate constants of folding, kf. It has been found that -logkf is a linear function of the so-called chain topology parameter (CTP) within the range of 10(-1)s(-1)< or = kf < or =10(8)s(-1). The correlation between -logkf and CTP is much improved than using previously published contact order (CO) method. It has been further suggested that short sequence separations may be preferred for the establishment of stable interactions for the design of novel artificial enzymes and the modification of slow-folding proteins with aggregating intermediates.
Collapse
Affiliation(s)
- Bengt Nölting
- Prussian Private Institute of Technology at Berlin, Am Schlosspark 30, Berlin D-13187, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Junxia X, Hong J, Wenfang C, Ming Q. Dopamine release rather than content in the caudate putamen is associated with behavioral changes in the iron rat model of Parkinson's disease. Exp Neurol 2003; 182:483-9. [PMID: 12895460 DOI: 10.1016/s0014-4886(03)00123-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of intranigral iron injection on dopamine (DA) release and content in the caudate putamen (CPu) and their relationship to DA-related behavioral response were investigated in rats. Different concentrations of FeCl(3) (10, 20, and 40 microg) and saline were injected separately into the left substantia nigra. In some experiments, rats were pretreated with desferrioxamine or saline before iron injection. After 3 weeks, changes in behavioral response, DA release, and DA content in the CPu were determined. In all iron injection groups (10, 20, and 40 microg), DA content in the lesioned side of the brain was significantly decreased, showing a significant linear correlation (R(2) = 0.981, P = 0.01), and DA turnover ratio significantly increased (both P = 0.01, 0.01 and 0.001 vs unlesioned sides, respectively). However, injection dosages of 10 or 20 microg of iron did not lead to significant changes in DA release in the CPu or in behavioral response. At the 40-microg dosage, it was found that DA release in the lesioned side and rearing activity both were significantly reduced (all P = 0.01 vs unlesioned side or control) and apomorphine-induced rotation was observed. Pretreatment with desferrioxamine significantly inhibited the effect of iron on DA release and content. These results demonstrate that iron injection can damage dopaminergic neurons and suggest that DA release, rather than DA content, in the CPu is associated with DA-related behavioral changes in this PD model.
Collapse
Affiliation(s)
- Xie Junxia
- Department of Physiology, Qingdao University Medical College, People's 266021, Qingdao, Republic of China.
| | | | | | | |
Collapse
|
38
|
Cojocel C, Thomson MS. Impairment of the renal p-aminohippurate transport induced by 6-hydroxydopamine. J Pharm Pharmacol 2003; 55:669-74. [PMID: 12831510 DOI: 10.1211/002235703765344586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this study, the effects of 6-hydroxydopamine (6-OHDA) on renal p-aminohippurate transport were investigated in-vitro using rat renal cortical slices. Cisplatin, a known nephrotoxin, was used as positive control. Renal cortical slices were incubated for 60 min in a cisplatin-containing medium (0.83-5.0 microM) at 37 degrees C under a 100% O(2) atmosphere. In another series of experiments, renal cortical slices were incubated in a 3.33 microM cisplatin-containing medium for 15-120 min or in a cisplatin-free medium. Subsequently, for each series of experiments, kidney slices were incubated at 25 degrees C for 90 min in a media containing p-aminohippurate. In a further series of experiments, renal cortical slices were incubated for 60 min in a 6-OHDA containing medium (3.125-100 microM) at 37 degrees C under a 100% O(2) atmosphere. In another series of experiments, renal cortical slices were incubated in a 50 microM 6-OHDA-containing medium for 15-120 min or in 6-OHDA-free medium. Subsequently, for each series of experiments, kidney slices were incubated at 25 degrees C for 90 min in a media containing p-aminohippurate. The results of this study where slices were incubated in 6-OHDA- or cisplatin-containing media indicate that both 6-OHDA and cisplatin induced a time- and concentration-dependent decrease in p-aminohippurate accumulation by renal cortical slices. Therefore, similarly to cisplatin, 6-OHDA causes functional injury of renal proximal tubule cells, leading to impairment of transport processes across the cell membrane.
Collapse
Affiliation(s)
- C Cojocel
- Faculty of Medicine, Department of Pharmacology and Toxicology, Kuwait University, Safat, Kuwait.
| | | |
Collapse
|
39
|
Cojocel C, Thomson MS. Effect of 6-hydroxydopamine on gluconeogenesis in the rat renal cortex. Clin Exp Pharmacol Physiol 2003; 30:55-9. [PMID: 12542454 DOI: 10.1046/j.1440-1681.2003.03798.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. In the present study, the effects of 6-hydroxydopamine (6-OHDA) on renal gluconeogenesis were investigated in vitro using rat renal cortical slices. Cisplatin, a known nephrotoxin, was used as a positive control. The working hypothesis for the present study was that 6-OHDA, as a reactive oxygen species-producing agent, could inhibit renal gluconeogenesis. 2. 6-Hydroxydopamine is used for chemical sympathectomy because it selectively destroys adrenergic nerve endings. Long-term use of levodopa causes a variety of side-effects in parkinsonian patients. 6-Hydroxydopamine has been reported to be present in the urine of parkinsonian patients on levodopa medication. The renal toxicity of endogenously formed 6-OHDA is a matter of concern in these patients. 3. In one series of experiments, renal cortical slices were incubated for 60 min in medium containing 0.5, 1.0, 2.08, 5.15, 10.30 or 20.60 mg/mL 6-OHDA at 37 degrees C under a 100% O2 atmosphere. In another series of experiments, renal cortical slices were incubated in medium containing 10.30 mg/mL 6-OHDA for 15, 30, 45, 60, 90 or 120 min or in 6-OHDA-free medium. 4. In a second series of experiments, renal cortical slices were incubated for 60 min in medium containing 0.25, 0.50, 0.75, 1.0, 1.25 or 1.50 mg/mL cisplatin at 37 degrees C under a 100% O2 atmosphere. In another set of experiments, renal cortical slices were incubated in medium containing 1 mg/mL cisplatin for 15, 30, 45, 60, 90 or 120 min or in a cisplatin-free medium. 5. The results of the studies in which slices were incubated in 6-OHDA-containing media indicate that 6-OHDA induced a time- and concentration-dependent decrease in renal gluconeogenesis. Therefore, 6-OHDA causes functional injury of renal proximal tubule cells responsible for renal gluconeogenesis, thus leading to nephrotoxicity.
Collapse
Affiliation(s)
- C Cojocel
- Faculty of Medicine, Department of Pharmacology and Toxicology, Kuwait University, Safat, Kuwait.
| | | |
Collapse
|
40
|
Gerlach M, Double KL, Ben-Shachar D, Zecca L, Youdim MBH, Riederer P. Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease. Neurotox Res 2003; 5:35-44. [PMID: 12832223 DOI: 10.1007/bf03033371] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuromelanin (NM) is a granular, dark brown pigment produced in some but not all of the dopaminergic neurons of the human substantia nigra (SN). In Parkinson's disease (PD) the pigmented dopaminergic neurons of the SN degenerate, suggesting that this process is related to the presence of NM. As yet it is unknown whether NM in the parkinsonian brain differs from that found in healthy tissue and thus may fulfil a different role within this tissue. The function of NM within the pigmented neurons is unknown but other melanins are believed to play a protective role via attenuation of free radical damage. Experimental evidence suggests that NM may also exhibit this characteristic, possibly by direct inactivation of free radical species or via its ability to chelate transition metals, such as iron. NM has the ability to bind a variety of metals, seven per cent of isolated NM is reported to consist of Fe, Cu, Zn and Cr. Iron is of particular interest as this metal is highly concentrated within the SN. Up to 20 per cent of the total iron contained in the SN from normal subjects is bound within NM. Further, it was demonstrated that NM contains a protein component and that iron is bound to NM in the ferric form. Increased tissue iron found in the parkinsonian SN may saturate iron-chelating sites on NM, and a looser association between iron and NM may result in an increased, rather than decreased, production of free radical species. It is hypothesized that this redox-active iron could be released and involved in a Fenton-like reaction leading to an increased production of oxidative radicals. The resultant radical-mediated cytotoxicity may contribute to cellular damage observed in PD.
Collapse
Affiliation(s)
- Manfred Gerlach
- Clinical Neurochemistry, Department of Child and Youth Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstrasse 15, D-97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Double KL, Ben-Shachar D, Youdim MBH, Zecca L, Riederer P, Gerlach M. Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicol Teratol 2002; 24:621-8. [PMID: 12200193 DOI: 10.1016/s0892-0362(02)00218-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuromelanin (NM) is a dark-coloured pigment produced in the dopaminergic neurons of the human substantia nigra (SN). The function of NM within the pigmented neurons is unknown but other melanins are believed to play a protective role via attenuation of free radical damage. Experimental evidence suggests that NM may also exhibit this characteristic, possibly by directly inactivating free radical species or via its ability to chelate transition metals, such as iron. Increased tissue iron, however, may saturate iron-chelating sites on NM and a looser association between iron and NM may result in an increased, rather than decreased, production of free radical species. The death of NM-pigmented neurons in Parkinson's disease (PD) is associated with both a measurable increase in tissue iron concentrations and indices of free radical mediated damage, suggesting that NM is involved in the aetiology of this disorder. As yet, it is unknown whether NM in the parkinsonian brain differs to that found in healthy tissue and thus may fulfil a different role within this tissue.
Collapse
Affiliation(s)
- K L Double
- Prince of Wales Medical Research Institute, Barker Street, Randwick, Sydney NSW 2031, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci 2002. [PMID: 12122047 DOI: 10.1523/jneurosci.22-14-05848.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron is an essential element for cells but may also be an important cytotoxin. However, very little is known about iron transport, redox status, or toxicity specifically inside cells. In this study, we exploited the sensitivity of fura-2 to quenching by ferrous iron (Fe(2+)) to detect intracellular free iron ([Fe(2+)](i)) in neurons, astrocytes, and oligodendrocytes in primary culture. All cell types exposed to Fe(2+) in the presence of the ionophore pyrithione rapidly accumulated Fe(2+) to a similar extent. The heavy-metal chelators bipyridyl and N,N,N',N'-tetrakis(2-pyridalmethyl)ethyl-enediamine rapidly reversed the increase in [Fe(2+)](i), whereas desferrioxamine had little effect. Interestingly, the Fe(2+)-mediated quenching of fura-2 fluorescence was reversed in a concentration-dependent manner by hydrogen peroxide. This was likely caused by the oxidation of Fe(2+) to Fe(3+) inside the cell. Acute exposure of cells to Fe(2+) was only toxic when the metal was applied together with pyrithione, showing that Fe(2+) is only toxic when elevated inside cells. Interestingly, only neurons and oligodendrocytes were injured by this elevation in [Fe(2+)](i), whereas astrocytes were unaffected, although [Fe(2+)](i) was elevated to the same degree in each cell type. These studies provide a novel approach for detecting [Fe(2+)](i) in a manner sensitive to the redox state of the metal. These studies also provide a model system for the study of the toxic consequences of elevated [Fe(2+)](i) in neural cells.
Collapse
|
43
|
Walker BL, Tiong JW, Jefferies WA. Iron metabolism in mammalian cells. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 211:241-78. [PMID: 11597005 DOI: 10.1016/s0074-7696(01)11020-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Most living things require iron to exist. Iron has many functions within cells but is rarely found unbound because of its propensity to catalyze the formation of toxic free radicals. Thus the regulation of iron requirements by cells and the acquisition and uptake of iron into tissues in multicellular organisms is tightly regulated. In humans, understanding iron transport and utility has recently been advanced by a "great conjunction" of molecular genetics in simple organisms, identifying genes involved in genetic diseases of metal metabolism and by the application of traditional cell physiology approaches. We are now able to approach a rudimentary understanding of the "iron cycle" within mammals. In the future, this information will be applied toward modulating the outcome of therapies designed to overcome diseases involving metals.
Collapse
Affiliation(s)
- B L Walker
- Biomedical Research Centre, and Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
44
|
|
45
|
Méndez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Martín ME, Labandeira-García JL. Effect of iron and manganese on hydroxyl radical production by 6-hydroxydopamine: mediation of antioxidants. Free Radic Biol Med 2001; 31:986-98. [PMID: 11595383 DOI: 10.1016/s0891-5849(01)00679-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
6-Hydroxydopamine (6-OHDA) neurotoxicity has often been related to the generation of free radicals. Here we examined the effect of the presence of iron (Fe(2+) and Fe(3+)) and manganese and the mediation of ascorbate, L-cysteine (CySH), glutathione (GSH), and N-acetyl-CySH on hydroxyl radical (*OH) production during 6-OHDA autoxidation. In vitro, the presence of 800 nM iron increased (> 100%) the production of *OH by 5 microM 6-OHDA while Mn(2+) caused a significant reduction (72%). The presence of ascorbate (100 microM) induced a continuous generation of *OH while the presence of sulfhydryl reductants (100 microM) limited this production to the first minutes of the reaction. In general, the combined action of metal + antioxidant increased the *OH production, this effect being particularly significant (> 400%) with iron + ascorbate. In vivo, tyrosine hydroxylase immunohistochemistry revealed that intrastriatal injections of rats with 6-OHDA (30 nmol) + ascorbate (600 nmol), 6-OHDA + ascorbate + Fe(2+) (5 nmol), and 6-OHDA + ascorbate + Mn(2+) (5 nmol) caused large striatal lesions, which were markedly reduced (60%) by the substitution of ascorbate by CySH. Injections of Fe(2+) or Mn(2+) alone showed no significant difference to those of saline. These results clearly demonstrate the role of ascorbate as an essential element for the neurotoxicity of 6-OHDA, as well as the diminishing action of sulfhydryl reductants, and the negligible effect of iron and manganese on 6-OHDA neurotoxicity.
Collapse
Affiliation(s)
- E Méndez-Alvarez
- Grupo de Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
46
|
Abstract
Iron is the most important transitional metal in the body, as it is implicated in many metabolic processes, mostly related to its capacity as an electron donor/acceptor. Iron deficiency has been long been known to cause anaemia, iron excess to cause haemochromatosis. As excess free iron can cause oxidative damage, it is important that the levels of iron in the body are tightly regulated which appears to be done only by digestive absorption, as there is no known regulating mechanism for elimination of iron. The amount of free iron is also kept to a minimum thanks to binding to transferrin for transport, and to ferritin for storage. Recent research has put emphasis on the possible role of excess iron in the brain in several degenerative diseases. Iron deficiency in the central nervous system is known to cause motor impairment and cognitive deficits; more recently, it has been suggested that it may play a role in the pathophysiology of the restless leg syndrome. 2001 Harcourt Publishers Ltd
Collapse
|
47
|
Barzilai A, Melamed E, Shirvan A. Is there a rationale for neuroprotection against dopamine toxicity in Parkinson's disease? Cell Mol Neurobiol 2001; 21:215-35. [PMID: 11569535 PMCID: PMC11533828 DOI: 10.1023/a:1010991020245] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Parkinson's disease is a progressive neurological disease caused by rather selective degeneration of the dopaminergic neurons in the substantia nigra. Though subject to intensive research, the etiology of this nigral loss is still undetermined and treatment is basically symptomatic. The current major hypothesis is that nigral neuronal death in PD is due to excessive oxidative stress generated by auto and enzymatic oxidation of the endogenous neurotransmitter dopamine (DA), the formation of neuromelanin (NM) and the presence of a high concentration of iron. In this review article although we concisely describe the effects of NM and iron on neuronal survival, we mainly focus on the molecular mechanisms of DA-induced apoptosis. DA exerts its toxic effects through its oxidative metabolites either in vitro or in vivo The oxidative metabolites then activate a very intricate web of signals, which culminate in cell death. The signal transduction pathways and genes, which are associated with DA toxicity are described in detail.
Collapse
Affiliation(s)
- A Barzilai
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| | | | | |
Collapse
|
48
|
Caputa M, Rogalska J, Nowakowska A. Effect of temperature on postanoxic, potentially neurotoxic changes of plasma pH and free iron level in newborn rats. Brain Res Bull 2001; 55:281-6. [PMID: 11470328 DOI: 10.1016/s0361-9230(01)00474-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In asphyxiated newborns, iron, released from heme and ferritin and deposited in the brain, contributes to neurodegeneration. Because hypothermia provides neuroprotection, newborn mammals, showing reduced body temperature, might avoid iron-mediated neurotoxicity. However, hypothermia leads to acidosis, which induces hyperferremia. Therefore, we decided to study the effects of body temperature on plasma pH and iron levels in newborn rats exposed to a critical anoxia. Rectal temperature was kept at 33 degrees C (typical of neonates), reduced by 2 degrees C, or elevated to a level typical of healthy (37 degrees C) or febrile (39 degrees C) adults. Arterial blood samples were collected at 0, 10, 20, 30, and 120 min postanoxia. Control samples were obtained from normoxic, temperature-matched neonates. Anoxia tolerance time decreased progressively at rectal temperatures exceeding 33 degrees C. Neither pH nor plasma iron were significantly affected by anoxia at 33 degrees C. Although hypothermia (31 degrees C) resulted in acidosis in normoxic rats, both pH and iron levels were hardly influenced by anoxia. However, acidosis and hyperferremia, proportional to body temperature, developed at 37 and 39 degrees C. In conclusion, reduced body temperature is likely to protect asphyxiated newborns against iron-mediated brain injury.
Collapse
Affiliation(s)
- M Caputa
- Institute of General and Molecular Biology, Department of Animal Physiology, N. Copernicus University, Toruń, Poland.
| | | | | |
Collapse
|
49
|
Song JH, Harris MS, Shin SH. Effects of fetal bovine serum on ferrous ion-induced oxidative stress in pheochromocytoma (PC12) cells. Neurochem Res 2001; 26:407-14. [PMID: 11495352 DOI: 10.1023/a:1010907316475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ferrous ion (Fe2+) has been considered to be a cause of neuronal oxidative injury. Since body fluids contain protein and serum is an essential component of tissue culture medium, we have examined the role of serum protein on Fe2+-mediated oxidative stress using PC12 cells and rat cerebral cortices. Fe2+ or the combination of ascorbate and Fe2+ increased concentrations of thiobarbituric acid reactive substances (TBARS) in PC12 cells and cerebrocortical homogenates in medium (RPMI 1640), but did not increase TBARS when the medium was supplemented with 10% fetal bovine serum. Treatment with ascorbate/Fe2+ in serum-free medium reduced endogenous glutathione (GSH) concentration in PC12 cells. However, the medium supplemented with serum did not reduce GSH concentrations. PC12 cell death induced by ascorbate/Fe2+ was alleviated by increasing serum or bovine albumin concentrations in the medium. These observations indicated that oxidative injury caused by the transition metal ion could be lessened by adding fetal bovine serum to culture medium.
Collapse
Affiliation(s)
- J H Song
- Department of Physiology, Queen's University Kingston, Ontario, Canada
| | | | | |
Collapse
|
50
|
Lingor P, Unsicker K, Krieglstein K. GDNF and NT-4 protect midbrain dopaminergic neurons from toxic damage by iron and nitric oxide. Exp Neurol 2000; 163:55-62. [PMID: 10785444 DOI: 10.1006/exnr.2000.7339] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Free radical formation is considered to be a major cause of dopaminergic (DAergic) cell death in the substantia nigra leading to Parkinson's disease (PD). In this study we employed several radical donors including iron and sodium nitroprusside to induce toxic effects on DAergic neurons cultured from the embryonic rat midbrain floor. Overall cell survival was assessed by assaying LDH, and DAergic neuron survival was monitored by counting tyrosine hydroxylase-positive cells. Our data suggest that the DAergic neuron population is about fourfold more susceptible to free-radical-mediated damage than the total population of midbrain neurons. Application of the neurotrophic factors GDNF and NT-4, for which DAergic neurons have specific receptors, prior to toxin administration protected these neurons from toxin-mediated death, which, fully or in part, occurs under the signs of apoptosis. These findings underscore the importance of GDNF and NT-4 in designing future therapeutical concepts for PD.
Collapse
Affiliation(s)
- P Lingor
- Neuroanatomy, University of Heidelberg, INF 307, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|