1
|
Villares R, Criado G, Juarranz Y, Lopez-Santalla M, García-Cuesta EM, Rodríguez-Frade JM, Leceta J, Lucas P, Pablos JL, Martínez-A C, Garin MI, Gomariz RP, Mellado M. Inhibitory Role of Growth Hormone in the Induction and Progression Phases of Collagen-Induced Arthritis. Front Immunol 2018; 9:1165. [PMID: 29887869 PMCID: PMC5980961 DOI: 10.3389/fimmu.2018.01165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Evidence indicates an intimate connection between the neuroendocrine and the immune systems. A number of in vitro and in vivo studies have demonstrated growth hormone (GH) involvement in immune regulation. The GH receptor is expressed by several leukocyte subpopulations, and GH modulates immune cell proliferation and activity. Here, we found that sustained GH expression protected against collagen-induced arthritis (CIA); in GH-transgenic C57BL/6 (GHTg) mice, disease onset was delayed, and its overall severity was decreased. The anti-collagen response was impaired in these mice, as were inflammatory cytokine levels. Compared to control arthritic littermates, immunized GHTg mice showed significantly lower RORγt (retinoic acid receptor-related orphan receptor gamma 2), IL-17, GM-CSF, IL-22, and IFNγ mRNA expression in draining lymph nodes, whereas there were no differences in IL-21, IL-6, or IL-2 mRNA levels. Data thus suggest that Th17/Th1 cell plasticity toward a pathological phenotype is reduced in these mice. Exogenous GH administration in arthritic DBA/1J mice reduced the severity of established CIA as well as the inflammatory environment, which also shows a GH effect on arthritis progression. These results indicate that GH prevents inflammatory joint destruction in CIA. Our findings demonstrate a modulatory GH role in immune system function that contributes to alleviating CIA symptoms and underlines the importance of endocrine regulation of the immune response.
Collapse
Affiliation(s)
- Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Gabriel Criado
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Eva M García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José M Rodríguez-Frade
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Javier Leceta
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José Luis Pablos
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
2
|
Veldhuis JD, Erickson D, Wigham J, Weist S, Miles JM, Bowers CY. Gender, sex-steroid, and secretagogue-selective recovery from growth hormone-induced feedback in older women and men. J Clin Endocrinol Metab 2011; 96:2540-7. [PMID: 21613353 PMCID: PMC3146792 DOI: 10.1210/jc.2011-0298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT GH negatively regulates its own secretion. How gender, sex steroids, and secretagogues modulate GH autofeedback is not known. HYPOTHESIS/OBJECTIVE Supplementation with sex steroids and/or a peptidyl secretagogue will enhance the escape of GH from autoinhibition, thus framing a mechanism for amplifying pulsatile GH secretion. SUBJECTS AND SETTING Ten healthy postmenopausal women and 10 comparably aged men participated at the Clinical-Translational Science Unit. DESIGN/INTERVENTIONS Randomly ordered, double-blind, prospective crossover treatment with placebo vs. testosterone (men) or placebo vs. estradiol (women). Autofeedback was imposed by an iv pulse of GH. Recovery of feedback inhibition was quantified during constant infusion of saline, GHRH, or GH-releasing peptide-2 (three peptide categories). OUTCOMES/RESULTS During negative feedback, total (integrated) GH recovery depended upon gender (P = 0.017), sex hormone (P < 0.001), and peptide category (P < 0.001). Mechanistic analysis revealed that feedback-suppressed nadir GH concentrations were determined by sex-steroid treatment (P = 0.018) but not by gender (P = 0.444). Peak GH escape was controlled by both treatment (P = 0.004) and gender (P = 0.003). Nadir GH and peak GH during feedback were enhanced by GHRH or GHRP-2 (P < 0.001 for both). Gender × peptide (P = 0.012 for nadir GH), treatment × peptide (P < 0.001 total and peak GH), and gender × treatment (P = 0.017 nadir GH) regulated GH recovery interactively. CONCLUSION Gender, sex-steroid supplementation, and secretagogue type confer distinct feedback-rescuing effects, introducing a new level of complexity in the control of pulsatile GH regulation.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Gan EH, Quinton R. Physiological Significance of the Rhythmic Secretion of Hypothalamic and Pituitary Hormones. PROGRESS IN BRAIN RESEARCH 2010; 181:111-26. [DOI: 10.1016/s0079-6123(08)81007-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Veldhuis JD, Hudson SB, Erickson D, Bailey JN, Reynolds GA, Bowers CY. Relative effects of estrogen, age, and visceral fat on pulsatile growth hormone secretion in healthy women. Am J Physiol Endocrinol Metab 2009; 297:E367-74. [PMID: 19470834 PMCID: PMC2724113 DOI: 10.1152/ajpendo.00230.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth hormone (GH) secretion is subject to complex regulation. How pre- and postmenopausal age (PRE, POST), estradiol (E(2)) availability, and abdominal visceral fat (AVF) jointly affect peptidyl-secretagogue drive of GH secretion is not known. To this end, healthy PRE (n = 20) and POST (n = 22) women underwent a low- vs. high-E(2) clamp before receiving a continuous intravenous infusion of GH-releasing hormone (GHRH) or GH-releasing peptide (GHRP-2). According to analysis of covariance, PRE and POST women achieved age-independent hypo- and euestrogenemia under respective low- and high-E(2) clamps. All four of age (P < 0.001), E(2) status (P = 0.006), secretagogue type (P < 0.001), and an age x peptide interaction (P = 0.014) controlled pulsatile GH secretion. Independently of E(2) status, POST women had lower GH responses to both GHRH (P = 0.028) and GHRP-2 (P < 0.001) than PRE women. Independently of age, GHRP-2 was more stimulatory than GHRH during low E(2) (P = 0.011) and high E(2) (P < 0.001). Stepwise forward-selection multivariate analysis revealed that computerized tomographic estimates of AVF explained 22% of the variability in GHRH action (P = 0.002), whereas age and E(2) together explained 60% of the variability in GHRP-2 drive (P < 0.001). These data establish that age, estrogen status, and AVF are triple covariates of continuous peptide-secretagogue drive of pulsatile GH secretion in women. Each factor must be controlled for to allow valid comparisons of GH-axis activity.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Departments of Internal Medicine, Endocrine Research Unit, Clinical Translational Research Unit, Mayo Medical and Graduate Schools of Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Age, sex steroids, and abdominal-visceral fat (AVF) jointly affect pulsatile growth hormone (GH) secretion. Pulsatile GH secretion in turn is controlled by GH-releasing hormone (GHRH), GH-releasing peptide (GHRP), and somatostatin. Marked stimulation of pulsatile GH secretion is achieved via GHRH-GHRP synergy. Nonetheless, how key modulators of GH secretion, such as age, sex steroids, and body mass index, modify GHRH-GHRP synergy is not known. The present strategy was to 1) infuse GHRH and GHRP-2 simultaneously to evoke synergy and 2) downregulate the gonadal axis with leuprolide and then restore placebo (Pl) or testosterone (T) to clamp the sex steroid milieu. Forty-seven men [18-74 yr of age, T = 7-1,950 ng/dl, estradiol (E(2)) = 5-79 pg/ml, insulin-like growth factor (IGF)-I = 115-817 microg/l, AVF = 11-349 cm(2)] were studied. GHRH-GHRP synergy correlated negatively with age and AVF (both P < 0.001) and positively with IGF-I (P < 0.001) and IGF-binding protein (IGFBP)-3 (P = 0.031). Unstimulated basal (nonpulsatile) GH secretion correlated positively with T (P = 0.015) and E(2) (P = 0.004) concentrations. Fasting pulsatile GH secretion varied negatively with age (P = 0.017) and positively with IGF-I (P = 0.002) and IGFBP-3 (P = 0.001). By stepwise forward-selection multivariate analyses, AVF, IGF-I, and IGFBP-3 together explained 60% of the variability in GHRH-GHRP synergy (P < 0.001), E(2) accounted for 17% of the variability in basal GH secretion (P = 0.007), and IGF-I explained 20% of the variability in fasting pulsatile GH secretion (P = 0.002). In conclusion, a paradigm examining GHRH-GHRP synergy under a sex steroid clamp reveals highly selective control of basal, pulsatile, and synergistic peptide-driven GH secretion by AVF, E(2), and IGF-I in healthy men.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
6
|
Veldhuis JD, Keenan DM, Pincus SM. Motivations and methods for analyzing pulsatile hormone secretion. Endocr Rev 2008; 29:823-64. [PMID: 18940916 PMCID: PMC2647703 DOI: 10.1210/er.2008-0005] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 09/16/2008] [Indexed: 01/05/2023]
Abstract
Endocrine glands communicate with remote target cells via a mixture of continuous and intermittent signal exchange. Continuous signaling allows slowly varying control, whereas intermittency permits large rapid adjustments. The control systems that mediate such homeostatic corrections operate in a species-, gender-, age-, and context-selective fashion. Significant progress has been made in understanding mechanisms of adaptive interglandular signaling in vivo. Principal goals are to understand the physiological origins, significance, and mechanisms of pulsatile hormone secretion. Key analytical issues are: 1) to quantify the number, size, shape, and uniformity of pulses, nonpulsatile (basal) secretion, and elimination kinetics; 2) to evaluate regulation of the axis as a whole; and 3) to reconstruct dose-response interactions without disrupting hormone connections. This review will focus on the motivations driving and the methodologies used for such analyses.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Mayo Medical School, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
7
|
Farhy LS, Bowers CY, Veldhuis JD. Model-projected mechanistic bases for sex differences in growth hormone regulation in humans. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1577-93. [PMID: 17185408 DOI: 10.1152/ajpregu.00584.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Models of physiological systems facilitate rational experimental design, inference, and prediction. A recent construct of regulated growth hormone (GH) secretion interlinks the actions of GH-releasing hormone (GHRH), somatostatin (SRIF), and GH secretagogues (GHS) with GH feedback in the rat (Farhy LS, Veldhuis JD. Am J Physiol Regul Integr Comp Physiol 288: R1649–R1663, 2005). In contrast, no comparable formalism exists to explicate GH dynamics in any other species. The present analyses explore whether a unifying model structure can represent species- and sex-defined distinctions in the human and rodent. The consensus principle that GHRH and GHS synergize in vivo but not in vitro was explicable by assuming that GHS 1) evokes GHRH release from the brain, 2) opposes inhibition by SRIF both in the hypothalamus and on the pituitary gland, and 3) stimulates pituitary GH release directly and additively with GHRH. The gender-selective principle that GH pulses are larger and more irregular in women than men was conferrable by way of 4) higher GHRH potency and 5) greater GHS efficacy. The overall construct predicts GHRH/GHS synergy in the human only in the presence of SRIF when the brain-pituitary nexus is intact, larger and more irregular GH pulses in women, and observed gender differences in feedback by GH and the single and paired actions of GHRH, GHS, and SRIF. The proposed model platform should enhance the framing and interpretation of novel clinical hypotheses and create a basis for interspecies generalization of GH-axis regulation.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
8
|
Alföldi P, Kapás L, Szentirmai E, Taishi P, Gardi J, Peterfi Z, Kacsóh B, Krueger JM. The somatotropic axis in sleep and thermoregulation: A tribute to Ferenc Obál, Jr. (1948–2004). J Therm Biol 2006. [DOI: 10.1016/j.jtherbio.2005.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Farhy LS, Veldhuis JD. Deterministic construct of amplifying actions of ghrelin on pulsatile growth hormone secretion. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1649-63. [PMID: 15718392 DOI: 10.1152/ajpregu.00451.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Virginia, Charlottesville, USA
| | | |
Collapse
|
10
|
Soares-Welch C, Farhy L, Mielke KL, Mahmud FH, Miles JM, Bowers CY, Veldhuis JD. Complementary secretagogue pairs unmask prominent gender-related contrasts in mechanisms of growth hormone pulse renewal in young adults. J Clin Endocrinol Metab 2005; 90:2225-32. [PMID: 15634714 PMCID: PMC1289271 DOI: 10.1210/jc.2004-1365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study examines the thesis that pulsatile GH secretion is controlled simultaneously by three principal signals; viz., GHRH, GH-releasing peptide (GHRP, ghrelin), and somatostatin (SS). According to this ensemble notion, no single regulatory peptide acts alone or can be interpreted in isolation. Therefore, to investigate gender-specific control of pulsatile GH secretion, we designed dual-effector stimulation paradigms in eight young men and six women as follows: 1) L-arginine/GHRH (to clamp low SS and high GHRH input); 2) L-arginine/GHRP-2 (to clamp low SS and high GHRP drive); 3) GHRH/GHRP-2 (to clamp high GHRH and high GHRP feedforward); vs. 4) saline (unclamped). Statistical comparisons revealed that: 1) fasting pulsatile GH secretion was 7.6-fold higher in women than men (P < 0.001); 2) L-arginine/GHRH and L-arginine/GHRP-2 evoked, respectively, 4.6- and 2.2-fold greater burst-like GH release in women than men (P < 0.001 and P = 0.015); and 3) GHRH/GHRP-2 elicited comparable GH secretion by gender. In the combined cohorts, estradiol concentrations positively predicted responses to L-arginine/GHRP-2 (r2= 0.49, P = 0.005), whereas testosterone negatively predicted those to L-arginine/GHRH (r2= 0.56, P = 0.002). Based upon a simplified biomathematical model of three-peptide control, the current outcomes suggest that women maintain greater GHRH potency, GHRP efficacy, and opposing SS outflow than men. This inference upholds recent clinical precedence and yields valid predictions of sex differences in self-renewable GH pulsatility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes D. Veldhuis
- Address all correspondence and requests for reprints to: Johannes D. Veldhuis, Division of Endocrinology and Metabolism, Departments of Internal Medicine and Pediatrics, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
11
|
Abstract
A significant portion of the total daily growth hormone (GH) secretion is associated with deep non-REM sleep (NREMS). GH secretion is stimulated by the hypothalamic neurohormone, GH-releasing hormone (GHRH). Exogenous GHRH promotes NREMS in various species. Suppression of endogenous GHRH (competitive antagonist, antibodies, somatostatinergic stimulation, high doses of GH or insulin-like growth factor) results in simultaneous inhibition of NREMS. Mutant and transgenic animals with a defect in GHRHergic activity display permanently reduced NREMS which cannot be reversed by means of GH supplementation. GHRH contents and mRNA levels in the hypothalamus correlate with sleep-wake activity during the diurnal cycle and sleep deprivation and recovery sleep. Stimulation of NREMS by GHRH is a hypothalamic action. GABAergic neurons in the anterior hypothalamus/preoptic region are candidates for mediating promotion of NREMS by GHRH. In contrast to NREMS, stimulation of REMS by GHRH is mediated by GH. Simultaneous stimulation of NREMS and GH secretion by GHRH may promote adjustment of tissue anabolism to sleep.
Collapse
Affiliation(s)
- Ferenc Obal
- Department of Physiology, A. Szent-Györgyi Medical Center, University of Szeged, 6720, Szeged, Hungary.
| | | |
Collapse
|
12
|
Bowers CY, Granda R, Mohan S, Kuipers J, Baylink D, Veldhuis JD. Sustained elevation of pulsatile growth hormone (GH) secretion and insulin-like growth factor I (IGF-I), IGF-binding protein-3 (IGFBP-3), and IGFBP-5 concentrations during 30-day continuous subcutaneous infusion of GH-releasing peptide-2 in older men and women. J Clin Endocrinol Metab 2004; 89:2290-300. [PMID: 15126555 DOI: 10.1210/jc.2003-031799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We test the interlinked hypotheses that in healthy older adults: 1). i.v. injection of GH-releasing peptide-2 (GHRP-2) and GHRH synergizes more in aging women than men; 2). sc infusion of both GHRP-2 (1 microg/kg.h = 1) and GHRH (1, 3, or 10) for 24 h augments GH secretion more than either agonist alone; and 3). continuous sc delivery of GHRP-2 (1) for 30 d stimulates daily GH secretion and IGF-I, IGF-binding protein-3 (IGFBP-3), and IGFBP-5. Acute two-peptide synergy was 3-fold greater in young (n = 16) than older volunteers (n = 17; P < 0.025) and was 2.3-fold higher in elderly women than men (P < 0.025). The 24-h infusion of GHRP-2 (1) combined with GHRH (3 or 10) in men and with GHRH (10) in women drove GH secretion more than GHRH alone (P <or= 0.024). In the entire cohort (n = 11), GHRP-2/GHRH (1/10) stimulated GH secretion more than either GHRP-2 (1; P = 0.021) or GHRH (10; P = 0.012). The 30-d delivery of GHRP-2 (1; n = 17 subjects): 1). stimulated pulsatile, rhythmic, and entropic GH secretion by more than 3-fold on d 1 and more than 1.8-fold on d 14 and 30 (each P < 0.001 vs. saline); 2). elevated IGF-I to a stable plateau on d 1, 14, and 30 (P < 0.025 vs. baseline); and 3). increased IGFBP-3 (P < 0.01) and IGFBP-5 (P < 0.025) on d 14 and/or 30. Safety screening tests remained normal. In summary, in healthy elderly women and men: 1). acute synergy of GHRP-2 and GHRH is greater in the female; 2). 24-h combined GHRP-2 and GHRH drive is more effective than either agonist alone; and 3). 30-d stimulation with GHRP-2 sustains a physiologically activated somatotropic axis. We conclude that age, gender, stimulus duration, and secretagogue combination determine acute, intermediate, and extended responses of the somatotropic axis in the older adult.
Collapse
Affiliation(s)
- Cyril Y Bowers
- Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Conti E, Andreotti F, Sciahbasi A, Riccardi P, Marra G, Menini E, Ghirlanda G, Maseri A. Markedly reduced insulin-like growth factor-1 in the acute phase of myocardial infarction. J Am Coll Cardiol 2001; 38:26-32. [PMID: 11451284 DOI: 10.1016/s0735-1097(01)01367-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES We investigated whether insulin-like growth factor-1 (IGF-1) is reduced in the early phase of acute myocardial infarction (AMI) and whether such a decrease might influence prognosis. BACKGROUND Insulin-like growth factor-1 protects against insulin resistance and apoptosis. Although insulin resistance has been reported in AMI, IGF-1 levels have not been investigated. METHODS We measured serum IGF-1 in 23 patients with AMI within 24 h of symptom onset and in 11 matched controls. In the first 12 patients and controls, we also measured fasting insulin, diurnal growth hormone (GH) and insulin sensitivity (assessed as glucose disappearance or T/2 after an insulin bolus), and repeated IGF-1, insulin and GH after one year. In all patients, 90-day cardiovascular death, recurrent ischemia, reinfarction, revascularization and late malignant arrhythmias were assessed. RESULTS The AMI patients versus controls showed markedly reduced IGF-1 (115 +/- 112 vs. 615 +/- 300 ng/ml, p < 0.0001) and slower T/2 (-0.98 +/- 1.5 vs. -2.57 +/- 1.0 mg/dl/min, p = 0.01). Low IGF-1 often preceded the rise of myocardial necrosis markers. Patients with 90-day events (n = 12) versus those without had lower IGF-1 (47 +/- 54 vs. 189 +/- 110 ng/ml, p < 0.0001). Acute phase GH and insulin concentrations did not differ significantly from controls. After one year, the patients' IGF-1 values had risen to 460 +/- 242 ng/ml (p = 0.1 vs. controls, p < 0.0005 vs. acute phase), whereas GH levels were lower (0.2 +/- 0.2 vs. 2.5 +/- 2.3 ng/ml, p = 0.01) and insulin levels higher (12.5 +/- 0.2 vs. 3.9 +/- 2.6 microU/ml, p < 0.0001) compared with controls. CONCLUSIONS In the early phase of AMI, serum IGF-1 levels are markedly reduced and may contribute to adverse outcomes. Reduced IGF-1 preceding the rise of myocardial necrosis markers suggests a possible pathogenetic role. A compensatory increase in IGF-1 appears to occur by one year.
Collapse
Affiliation(s)
- E Conti
- Institute of Cardiology, Catholic University, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The secretion of growth hormone (GH) is regulated through a complex neuroendocrine control system, especially by the functional interplay of two hypothalamic hypophysiotropic hormones, GH-releasing hormone (GHRH) and somatostatin (SS), exerting stimulatory and inhibitory influences, respectively, on the somatotrope. The two hypothalamic neurohormones are subject to modulation by a host of neurotransmitters, especially the noradrenergic and cholinergic ones and other hypothalamic neuropeptides, and are the final mediators of metabolic, endocrine, neural, and immune influences for the secretion of GH. Since the identification of the GHRH peptide, recombinant DNA procedures have been used to characterize the corresponding cDNA and to clone GHRH receptor isoforms in rodent and human pituitaries. Parallel to research into the effects of SS and its analogs on endocrine and exocrine secretions, investigations into their mechanism of action have led to the discovery of five separate SS receptor genes encoding a family of G protein-coupled SS receptors, which are widely expressed in the pituitary, brain, and the periphery, and to the synthesis of analogs with subtype specificity. Better understanding of the function of GHRH, SS, and their receptors and, hence, of neural regulation of GH secretion in health and disease has been achieved with the discovery of a new class of fairly specific, orally active, small peptides and their congeners, the GH-releasing peptides, acting on specific, ubiquitous seven-transmembrane domain receptors, whose natural ligands are not yet known.
Collapse
Affiliation(s)
- E E Müller
- Department of Pharmacology, Chemotherapy, and Toxicology, University of Milan, Milan, Italy
| | | | | |
Collapse
|
15
|
Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998; 19:717-97. [PMID: 9861545 DOI: 10.1210/edrv.19.6.0353] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During the last decade, the GH axis has become the compelling focus of remarkably active and broad-ranging basic and clinical research. Molecular and genetic models, the discovery of human GHRH and its receptor, the cloning of the GHRP receptor, and the clinical availability of recombinant GH and IGF-I have allowed surprisingly rapid advances in our knowledge of the neuroregulation of the GH-IGF-I axis in many pathophysiological contexts. The complexity of the GHRH/somatostatin-GH-IGF-I axis thus commends itself to more formalized modeling (154, 155), since the multivalent feedback-control activities are difficult to assimilate fully on an intuitive scale. Understanding the dynamic neuroendocrine mechanisms that direct the pulsatile secretion of this fundamental growth-promoting and metabolic hormone remains a critical goal, the realization of which is challenged by the exponentially accumulating matrix of experimental and clinical data in this arena. To the above end, we review here the pathophysiology of the GHRH somatostatin-GH-IGF-I feedback axis consisting of corresponding key neurotransmitters, neuromodulators, and metabolic effectors, and their cloned receptors and signaling pathways. We propose that this system is best viewed as a multivalent feedback network that is exquisitely sensitive to an array of neuroregulators and environmental stressors and genetic restraints. Feedback and feedforward mechanisms acting within the intact somatotropic axis mediate homeostatic control throughout the human lifetime and are disrupted in disease. Novel effectors of the GH axis, such as GHRPs, also offer promise as investigative probes and possible therapeutic agents. Further understanding of the mechanisms of GH neuroregulation will likely allow development of progressively more specific molecular and clinical tools for the diagnosis and treatment of various conditions in which GH secretion is regulated abnormally. Thus, we predict that unexpected and enriching insights in the domain of the neuroendocrine pathophysiology of the GH axis are likely be achieved in the succeeding decades of basic and clinical research.
Collapse
Affiliation(s)
- A Giustina
- Department of Internal Medicine, University of Brescia, Italy
| | | |
Collapse
|
16
|
Kovacs M, Kineman RD, Schally AV, Zarandi M, Groot K, Frohman LA. Effects of antagonists of growth hormone-releasing hormone (GHRH) on GH and insulin-like growth factor I levels in transgenic mice overexpressing the human GHRH gene, an animal model of acromegaly. Endocrinology 1997; 138:4536-42. [PMID: 9348175 DOI: 10.1210/endo.138.11.5498] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transgenic mice overexpressing the human GH-releasing hormone (hGHRH) gene, an animal model of acromegaly, were used to investigate the effects of potent GHRH antagonists MZ-4-71 and MZ-5-156 on the excessive GH and insulin-like growth factor I (IGF-I) secretion caused by overproduction of hGHRH. Because metallothionein (MT)-GHRH mice express the hGHRH transgene in various tissues, including the pituitary and hypothalamus, initial experiments focused on the effectiveness of the GHRH antagonists in blocking basal and stimulated GH secretion from pituitary cells in vitro. Both MZ-4-71 and MZ-5-156 suppressed basal release of GH from superfused MT-GHRH pituitary cells, apparently by blocking the action of endogenously produced hGHRH. In addition, these antagonists effectively eliminated the response to stimulatory action of exogenous hGHRH(1-29)NH2 (30 and 100 nM). To ascertain whether MZ-4-71 and MZ-5-156 could antagonize the effect of hGHRH hyperstimulation in vivo, each antagonist was administered to MT-GHRH transgenic mice in a single iv dose of 10-200 microg. Both compounds decreased serum GH levels in transgenic mice by 39-72% at 1 h after injection. The inhibitory effect of 50 microg MZ-5-156 was maintained for 5 h. Twice daily ip administration of 100 microg MZ-5-156 for 3 days suppressed the highly elevated serum GH and IGF-I concentrations in transgenic mice by 56.8% and 39.0%, respectively. This treatment also reduced IGF-I messenger RNA levels in the liver by 21.8% but did not affect the level of GH messenger RNA in the pituitary. Our results demonstrate that GHRH antagonists MZ-4-71 and MZ-5-156 can inhibit elevated GH levels caused by overproduction of hGHRH. The suppression of circulating GH concentrations induced by the antagonists seems to be physiologically relevant, because both IGF-I secretion and synthesis also were reduced. Our findings, showing the suppression of GH and IGF-I secretion with GHRH antagonists, suggest that this class of analogs could be used for the diagnosis and therapy of disorders characterized by excessive GHRH secretion.
Collapse
Affiliation(s)
- M Kovacs
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70146, USA
| | | | | | | | | | | |
Collapse
|