1
|
Hays M, Schwartz K, Schmidtke DT, Aggeli D, Sherlock G. Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination. PLoS Genet 2023; 19:e1010747. [PMID: 37192196 PMCID: PMC10218751 DOI: 10.1371/journal.pgen.1010747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
There are many mechanisms that give rise to genomic change: while point mutations are often emphasized in genomic analyses, evolution acts upon many other types of genetic changes that can result in less subtle perturbations. Changes in chromosome structure, DNA copy number, and novel transposon insertions all create large genomic changes, which can have correspondingly large impacts on phenotypes and fitness. In this study we investigate the spectrum of adaptive mutations that arise in a population under consistently fluctuating nitrogen conditions. We specifically contrast these adaptive alleles and the mutational mechanisms that create them, with mechanisms of adaptation under batch glucose limitation and constant selection in low, non-fluctuating nitrogen conditions to address if and how selection dynamics influence the molecular mechanisms of evolutionary adaptation. We observe that retrotransposon activity accounts for a substantial number of adaptive events, along with microhomology-mediated mechanisms of insertion, deletion, and gene conversion. In addition to loss of function alleles, which are often exploited in genetic screens, we identify putative gain of function alleles and alleles acting through as-of-yet unclear mechanisms. Taken together, our findings emphasize that how selection (fluctuating vs. non-fluctuating) is applied also shapes adaptation, just as the selective pressure (nitrogen vs. glucose) does itself. Fluctuating environments can activate different mutational mechanisms, shaping adaptive events accordingly. Experimental evolution, which allows a wider array of adaptive events to be assessed, is thus a complementary approach to both classical genetic screens and natural variation studies to characterize the genotype-to-phenotype-to-fitness map.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
2
|
Barkova A, Adhya I, Conesa C, Asif-Laidin A, Bonnet A, Rabut E, Chagneau C, Lesage P, Acker J. A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 2022; 13:26. [PMCID: PMC9673352 DOI: 10.1186/s13100-022-00284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Transposable elements are ubiquitous and play a fundamental role in shaping genomes during evolution. Since excessive transposition can be mutagenic, mechanisms exist in the cells to keep these mobile elements under control. Although many cellular factors regulating the mobility of the retrovirus-like transposon Ty1 in Saccharomyces cerevisiae have been identified in genetic screens, only very few of them interact physically with Ty1 integrase (IN).
Results
Here, we perform a proteomic screen to establish Ty1 IN interactome. Among the 265 potential interacting partners, we focus our study on the conserved CK2 kinase. We confirm the interaction between IN and CK2, demonstrate that IN is a substrate of CK2 in vitro and identify the modified residues. We find that Ty1 IN is phosphorylated in vivo and that these modifications are dependent in part on CK2. No significant change in Ty1 retromobility could be observed when we introduce phospho-ablative mutations that prevent IN phosphorylation by CK2 in vitro. However, the absence of CK2 holoenzyme results in a strong stimulation of Ty1 retrotransposition, characterized by an increase in Ty1 mRNA and protein levels and a high accumulation of cDNA.
Conclusion
Our study shows that Ty1 IN is phosphorylated, as observed for retroviral INs and highlights an important role of CK2 in the regulation of Ty1 retrotransposition. In addition, the proteomic approach enabled the identification of many new Ty1 IN interacting partners, whose potential role in the control of Ty1 mobility will be interesting to study.
Collapse
|
3
|
Martín L, Kamstra JH, Hurem S, Lindeman LC, Brede DA, Aanes H, Babiak I, Arenal A, Oughton D, Salbu B, Lyche JL, Aleström P. Altered non-coding RNA expression profile in F 1 progeny 1 year after parental irradiation is linked to adverse effects in zebrafish. Sci Rep 2021; 11:4142. [PMID: 33602989 PMCID: PMC7893006 DOI: 10.1038/s41598-021-83345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations. Non-coding RNA expression profile was analysed in F1 offspring (5.5 h post-fertilization) by high-throughput sequencing 1 year after parental irradiation (8.7 mGy/h, 5.2 Gy total dose). Using our previous F1-γ genome-wide gene expression data (GSE98539), hundreds of mRNAs were predicted as targets of differentially expressed (DE) miRNAs, involved in pathways such as insulin receptor, NFkB and PTEN signalling, linking to apoptosis and cancer. snRNAs belonging to the five major spliceosomal snRNAs were down-regulated in the F1-γ group, Indicating transcriptional and post-transcriptional alterations. In addition, DEpiRNA clusters were associated to 9 transposable elements (TEs) (LTR, LINE, and TIR) (p = 0.0024), probable as a response to the activation of these TEs. Moreover, the expression of the lincRNAs malat-1, and several others was altered in the offspring F1, in concordance with previously observed phenotypical alterations. In conclusion, our results demonstrate diverse gamma radiation-induced alterations in the ncRNA profiles of F1 offspring observable 1 year after parental irradiation.
Collapse
Affiliation(s)
- Leonardo Martín
- grid.441252.40000 0000 9526 034XMorphophysiology Department, Faculty of Agricultural Sciences, University of Camagüey Ignacio Agramonte y Loynaz, 74 650 Camagüey, Cuba ,grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Jorke H. Kamstra
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.5477.10000000120346234Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Selma Hurem
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Leif C. Lindeman
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dag A. Brede
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Håvard Aanes
- grid.458778.1PatoGen AS, P.O.box 548, 6001 Ålesund, Norway
| | - Igor Babiak
- grid.465487.cFaculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Amilcar Arenal
- grid.441252.40000 0000 9526 034XMorphophysiology Department, Faculty of Agricultural Sciences, University of Camagüey Ignacio Agramonte y Loynaz, 74 650 Camagüey, Cuba
| | - Deborah Oughton
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Brit Salbu
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Environmental Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Jan Ludvig Lyche
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Paraclinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Peter Aleström
- grid.19477.3c0000 0004 0607 975XCERAD CoE, Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway ,grid.19477.3c0000 0004 0607 975XDepartment of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 0454 Oslo, Norway
| |
Collapse
|
4
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
5
|
Salinero AC, Knoll ER, Zhu ZI, Landsman D, Curcio MJ, Morse RH. The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. PLoS Genet 2018; 14:e1007232. [PMID: 29462141 PMCID: PMC5834202 DOI: 10.1371/journal.pgen.1007232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/02/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022] Open
Abstract
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility. Retrotransposons are mobile genetic elements that copy their RNA genomes into DNA and insert the DNA copies into the host genome. These elements contribute to genome instability, control of host gene expression and adaptation to changing environments. Retrotransposons depend on numerous host factors for their own propagation and control. The retrovirus-like retrotransposon, Ty1, in the yeast Saccharomyces cerevisiae has been an invaluable model for retrotransposon research, and hundreds of host factors that regulate Ty1 retrotransposition have been identified. Non-essential subunits of the Mediator transcriptional co-activator complex have been identified as one set of host factors implicated in Ty1 regulation. Here, we report a systematic investigation of the effects of loss of these non-essential subunits of Mediator on Ty1 retrotransposition. Our findings reveal a heretofore unknown mechanism by which Mediator influences the balance between transcription from two promoters in Ty1 to modulate expression of an autoinhibitory transcript known as Ty1i RNA. Our results provide new insights into host control of retrotransposon activity via promoter choice and elucidate a novel mechanism by which the Mediator co-activator governs this choice.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Elisabeth R. Knoll
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Z. Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - M. Joan Curcio
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| | - Randall H. Morse
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| |
Collapse
|
6
|
Morales ME, Servant G, Ade C, Roy-Enge AM. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage. Biol Trace Elem Res 2015; 166:24-33. [PMID: 25774044 PMCID: PMC4696754 DOI: 10.1007/s12011-015-0298-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
Abstract
Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.
Collapse
Affiliation(s)
- Maria E. Morales
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Geraldine Servant
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Catherine Ade
- Department of Cellular and Molecular Biology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Astrid M. Roy-Enge
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
- Corresponding author: Astrid M. Roy-Engel, Ph.D., Department of Epidemiology, Tulane Cancer Center, SL66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112. , Phone: (504) 988-6316, Fax: (504) 988-5516
| |
Collapse
|
7
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
8
|
Stoycheva T. Methylmethane Sulfonate Increases the Level of Superoxide Anions in Yeast Cells. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10818518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Natural and unanticipated modifiers of RNAi activity in Caenorhabditis elegans. PLoS One 2012; 7:e50191. [PMID: 23209671 PMCID: PMC3509143 DOI: 10.1371/journal.pone.0050191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Organisms used as model genomics systems are maintained as isogenic strains, yet evidence of sequence differences between independently maintained wild-type stocks has been substantiated by whole-genome resequencing data and strain-specific phenotypes. Sequence differences may arise from replication errors, transposon mobilization, meiotic gene conversion, or environmental or chemical assault on the genome. Low frequency alleles or mutations with modest effects on phenotypes can contribute to natural variation, and it has proven possible for such sequences to become fixed by adapted evolutionary enrichment and identified by resequencing. Our objective was to identify and analyze single locus genetic defects leading to RNAi resistance in isogenic strains of Caenorhabditis elegans. In so doing, we uncovered a mutation that arose de novo in an existing strain, which initially frustrated our phenotypic analysis. We also report experimental, environmental, and genetic conditions that can complicate phenotypic analysis of RNAi pathway defects. These observations highlight the potential for unanticipated mutations, coupled with genetic and environmental phenomena, to enhance or suppress the effects of known mutations and cause variation between wild-type strains.
Collapse
|
10
|
Abstract
In 1950, Barbara McClintock published a Classic PNAS article, "The origin and behavior of mutable loci in maize," which summarized the evidence leading to her discovery of transposition. The article described a number of genome alterations revealed through her studies of the Dissociation locus, the first mobile genetic element she identified. McClintock described the suite of nuclear events, including transposon activation and various chromosome aberrations and rearrangements, that unfolded in the wake of genetic crosses that brought together two broken chromosomes 9. McClintock left future generations with the challenge of understanding how genomes respond to genetic and environmental stresses by mounting adaptive responses that frequently include genome restructuring.
Collapse
|
11
|
García Guerreiro MP. What makes transposable elements move in the Drosophila genome? Heredity (Edinb) 2012; 108:461-8. [PMID: 21971178 PMCID: PMC3330689 DOI: 10.1038/hdy.2011.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 11/08/2022] Open
Abstract
Transposable elements (TEs), by their capacity of moving and inducing mutations in the genome, are considered important drivers of species evolution. The successful invasions of TEs in genomes, despite their mutational properties, are an apparent paradox. TEs' transposition is usually strongly regulated to low value, but in some cases these elements can also show high transposition rates, which has been associated sometimes to changes in environmental conditions. It is evident that factors susceptible to induce transpositions in natural populations contribute to TE perpetuation. Different factors were proposed as causative agents of TE mobilization in a wide range of organisms: biotic and abiotic stresses, inter- and intraspecific crosses and populational factors. However, there is no clear evidence of the factors capable of inducing TE mobilization in Drosophila, and data on laboratory stocks show contradictory results. The aim of this review is to have an update critical revision about mechanisms promoting transposition of TEs in Drosophila, and to provide to the readers a global vision of the dynamics of these genomic elements in the Drosophila genome.
Collapse
Affiliation(s)
- M P García Guerreiro
- Grup de Biologia Evolutiva, Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Servant G, Pinson B, Tchalikian-Cosson A, Coulpier F, Lemoine S, Pennetier C, Bridier-Nahmias A, Todeschini AL, Fayol H, Daignan-Fornier B, Lesage P. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress. Nucleic Acids Res 2012; 40:5271-82. [PMID: 22379133 PMCID: PMC3384299 DOI: 10.1093/nar/gks166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.
Collapse
Affiliation(s)
- Géraldine Servant
- CNRS UPR9073, associated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC, Nowosielska A, Li C, Zamore PD, Weng Z, Theurkauf WE. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 2012; 147:1551-63. [PMID: 22196730 DOI: 10.1016/j.cell.2011.11.042] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/29/2011] [Accepted: 11/17/2011] [Indexed: 01/03/2023]
Abstract
Transposons evolve rapidly and can mobilize and trigger genetic instability. Piwi-interacting RNAs (piRNAs) silence these genome pathogens, but it is unclear how the piRNA pathway adapts to invasion of new transposons. In Drosophila, piRNAs are encoded by heterochromatic clusters and maternally deposited in the embryo. Paternally inherited P element transposons thus escape silencing and trigger a hybrid sterility syndrome termed P-M hybrid dysgenesis. We show that P-M hybrid dysgenesis activates both P elements and resident transposons and disrupts the piRNA biogenesis machinery. As dysgenic hybrids age, however, fertility is restored, P elements are silenced, and P element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery assembles, and resident elements are silenced. Significantly, resident transposons insert into piRNA clusters, and these new insertions are transmitted to progeny, produce novel piRNAs, and are associated with reduced transposition. P element invasion thus triggers heritable changes in genome structure that appear to enhance transposon silencing.
Collapse
Affiliation(s)
- Jaspreet S Khurana
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Barbara McClintock was the first to suggest that transposons are a source of genome instability and that genotoxic stress assisted in their mobilization. The generation of double-stranded DNA breaks (DSBs) is a severe form of genotoxic stress that threatens the integrity of the genome, activates cell cycle checkpoints, and, in some cases, causes cell death. Applying McClintock's stress hypothesis to humans, are L1 retrotransposons, the most active autonomous mobile elements in the
modern day human genome, mobilized by DSBs? Here, evidence that transposable elements, particularly retrotransposons, are mobilized by genotoxic stress is reviewed. In the setting of DSB formation, L1 mobility may be affected by changes in the substrate for L1 integration, the DNA repair machinery, or the L1 element itself.
The review concludes with a discussion of the potential consequences of L1 mobilization in the setting of genotoxic stress.
Collapse
Affiliation(s)
- Evan A. Farkash
- Department of Pathology and Laboratory Medicine,
School of Medicine, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine,
School of Medicine, University of Pennsylvania,
Philadelphia, PA 19104, USA
- 405B Stellar Chance Labs, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
- *Eline T. Luning Prak:
| |
Collapse
|
15
|
Stoycheva T, Pesheva M, Venkov P. The role of reactive oxygen species in the induction ofTy1retrotransposition inSaccharomyces cerevisiae. Yeast 2010; 27:259-67. [DOI: 10.1002/yea.1749] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
The positive response of Ty1 retrotransposition test to carcinogens is due to increased levels of reactive oxygen species generated by the genotoxins. Arch Toxicol 2010; 85:67-74. [DOI: 10.1007/s00204-010-0542-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/01/2010] [Indexed: 01/25/2023]
|
17
|
Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency. Mol Cell Biol 2008; 28:5543-54. [PMID: 18591253 DOI: 10.1128/mcb.00416-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ty1 long terminal repeat (LTR) retrotransposon of Saccharomyces cerevisiae is a powerful model to understand the activation of transposable elements by stress and their impact on genome expression. We previously discovered that Ty1 transcription is activated under conditions of severe adenine starvation. The mechanism of activation is independent of the Bas1 transcriptional activator of the de novo AMP biosynthesis pathway and probably involves chromatin remodeling at the Ty1 promoter. Here, we show that the 5' LTR has a weak transcriptional activity and is sufficient for the activation by severe adenine starvation. Furthermore, we demonstrate that Ty1 insertions that bring Ty1 promoter sequences into the vicinity of a reporter gene confer adenine starvation regulation on it. We provide evidence that similar coactivation of genes adjacent to Ty1 sequences occurs naturally in the yeast genome, indicating that Ty1 insertions can mediate transcriptional control of yeast gene expression under conditions of severe adenine starvation. Finally, the transcription pattern of genes adjacent to Ty1 insertions suggests that severe adenine starvation facilitates the initiation of transcription at alternative sites, partly located in the 5' LTR. We propose that Ty1-driven transcription of coding and noncoding sequences could regulate yeast gene expression in response to stress.
Collapse
|
18
|
Transposition of Saccharomyces cerevisiae Ty1 retrotransposon is activated by improper cryopreservation. Cryobiology 2008; 56:241-7. [DOI: 10.1016/j.cryobiol.2008.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/10/2008] [Accepted: 03/27/2008] [Indexed: 11/22/2022]
|
19
|
Pesheva M, Krastanova O, Stamenova R, Kantardjiev D, Venkov P. The response of Ty1 test to genotoxins. Arch Toxicol 2008; 82:779-85. [DOI: 10.1007/s00204-008-0299-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/17/2008] [Indexed: 11/27/2022]
|
20
|
Stoycheva T, Venkov P, Tsvetkov T. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae. Cryobiology 2007; 54:243-50. [PMID: 17416359 DOI: 10.1016/j.cryobiol.2006.10.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 10/02/2006] [Accepted: 10/16/2006] [Indexed: 11/16/2022]
Abstract
Although suggested in some studies, the mutagenic effect of freezing has not been proved by induction and isolation of mutants. Using a well-defined genetic model, we supply in this communication evidence for the mutagenic effect of freezing on mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae. The cooling for 2 h at +4 degrees C, followed by freezing for 1 h at -10 degrees C and 16 h at -20 degrees C resulted in induction of respiratory mutations. The immediate freezing in liquid nitrogen was without mutagenic effect. The study of the stepwise procedure showed that the induction of respiratory mutants takes place during the freezing at -10 and -20 degrees C of cells pre-cooled at +4 degrees C. The genetic crosses of freeze-induced mutants evidenced their mitochondrial rho- origin. The freeze-induced rho- mutants are most likely free of simultaneous nuclear mutations. The extracellular presence of cryoprotectants did not prevent the mutagenic effect of freezing while accumulation of cryoprotectors inside cells completely escaped mtDNA from cryodamage. Although the results obtained favor the notion that the mutagenic effect of freezing on yeast mtDNA is due to formation and growth of intracellular ice crystals, other reasons, such as impairment of mtDNA replication or elevated levels of ROS production are discussed as possible explanations of the mutagenic effect of freezing. It is concluded that: (i) freezing can be used as a method for isolation of mitochondrial mutants in S. cerevisiae and (ii) given the substantial development in cryopreservation of cells and tissues, special precautions should be made to avoid mtDNA damage during the cryopreservation procedures.
Collapse
Affiliation(s)
- T Stoycheva
- Institute of Cryobiology and Food Technology, 53A Cherni Vrah Blvd, 1407 Sofia, Bulgaria
| | | | | |
Collapse
|
21
|
Stoycheva T, Massardo DR, Pesheva M, Venkov P, Wolf K, Del Giudice L, Pontieri P. Ty1 transposition induced by carcinogens in Saccharomyces cerevisiae yeast depends on mitochondrial function. Gene 2007; 389:212-8. [PMID: 17208390 DOI: 10.1016/j.gene.2006.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/07/2006] [Accepted: 11/16/2006] [Indexed: 12/31/2022]
Abstract
The transposition of the Ty mobile genetic element of Saccharomyces cerevisiae is induced by carcinogens. While the molecular background of spontaneous Ty1 transposition is well understood, the detailed mechanism of carcinogen induced Ty1 transposition is not clear. We found that mitochondrial functions participate in the Ty induced transposition induced by carcinogens. Contrary to the parental rho(+) cells rho(-) mutants (spontaneous or induced by ethidium bromide) do not increase the rate of Ty1 transposition upon treatment with carcinogens. Preliminary results strongly suggest that the absence of oxidative phosphorylation in rho(-) mutants is the reason for the inhibited Ty transposition. The lack of carcinogen induced Ty1 transposition in rho(-) cells is not specific for a particular carcinogen and represents a general feature of different carcinogenic substances inducing rho(-). It is concluded that carcinogen induced Ty1 transposition depends on the functional state of mitochondria and cannot take place in cells with compromised mitochondrial function (rho(-)).
Collapse
Affiliation(s)
- Teodora Stoycheva
- Institute of Cryobiology and Food Technology, Department of Molecular Ecology, 53 A Cherni Vrah Blvd, 1407 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
22
|
Mieczkowski PA, Lemoine FJ, Petes TD. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2006; 5:1010-20. [PMID: 16798113 DOI: 10.1016/j.dnarep.2006.05.027] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Homologous recombination between dispersed repeated genetic elements is an important source of genetic variation. In this review, we discuss chromosome rearrangements that are a consequence of homologous recombination between transposable elements in the yeast Saccharomyces cerevisiae. The review will be divided into five sections: (1) Introduction (mechanisms of homologous recombination involving ectopic repeats), (2) Spontaneous chromosome rearrangements in wild-type yeast cells, (3) Chromosome rearrangements induced by low DNA polymerase, mutagenic agents or mutations in genes affecting genome stability, (4) Recombination between retrotransposons as a mechanism of genome evolution, and (5) Important unanswered questions about homologous recombination between retrotransposons. This review complements several others [S. Liebman, S. Picologlou, Recombination associated with yeast retrotransposons, in: Y. Koltin, M.J. Leibowitz (Eds.), Viruses of Fungi and Simple Eukaryotes, Marcel Dekker Inc., New York, 1988, pp. 63-89; P. Lesage, A.L. Todeschini, Happy together: the life and times of Ty retrotransposons and their hosts, Cytogenet. Genome Res. 110 (2005) 70-90; D.J. Garfinkel, Genome evolution mediated by Ty elements in Saccharomyces, Cytogenet. Genome Res. 110 (2005) 63-69] that discuss genomic rearrangements involving Ty elements.
Collapse
Affiliation(s)
- Piotr A Mieczkowski
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
23
|
Belgnaoui SM, Gosden RG, Semmes OJ, Haoudi A. Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int 2006; 6:13. [PMID: 16670018 PMCID: PMC1464142 DOI: 10.1186/1475-2867-6-13] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 05/02/2006] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Long interspersed nuclear elements (LINEs), Alu and endogenous retroviruses (ERVs) make up some 45% of human DNA. LINE-1 also called L1, is the most common family of non-LTR retrotransposons in the human genome and comprises about 17% of the genome. L1 elements require the integration into chromosomal target sites using L1-encoded endonuclease which creates staggering DNA breaks allowing the newly transposed L1 copies to integrate into the genome. L1 expression and retrotransposition in cancer cells might cause transcriptional deregulation, insertional mutations, DNA breaks, and an increased frequency of recombinations, contributing to genome instability. There is however little evidence on the mechanism of L1-induced genetic instability and its impact on cancer cell growth and proliferation. RESULTS We report that L1 has genome-destabilizing effects indicated by an accumulation of gamma-H2AX foci, an early response to DNA strand breaks, in association with an abnormal cell cycle progression through a G2/M accumulation and an induction of apoptosis in breast cancer cells. In addition, we found that adjuvant L1 activation may lead to supra-additive killing when combined with radiation by enhancing the radiation lethality through induction of apoptosis that we have detected through Bax activation. CONCLUSION L1 retrotransposition is sensed as a DNA damaging event through the creation DNA breaks involving L1-encoded endonuclease. The apparent synergistic interaction between L1 activation and radiation can further be utilized for targeted induction of cancer cell death. Thus, the role of retrotransoposons in general, and of L1 in particular, in DNA damage and repair assumes larger significance both for the understanding of mutagenicity and, potentially, for the control of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- S Mehdi Belgnaoui
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Roger G Gosden
- Center for Reproductive Medicine and Infertility, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Abdelali Haoudi
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| |
Collapse
|
24
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
25
|
Todeschini AL, Morillon A, Springer M, Lesage P. Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:7459-72. [PMID: 16107695 PMCID: PMC1190277 DOI: 10.1128/mcb.25.17.7459-7472.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ty1 retrotransposons of the yeast Saccharomyces cerevisiae are activated by different kinds of stress. Here we show that Ty1 transcription is stimulated under severe adenine starvation conditions. The Bas1 transcriptional activator, responsible for the induction of genes of the de novo AMP biosynthesis pathway (ADE) in the absence of adenine, is not involved in this response. Activation occurs mainly on Ty1 elements, whose expression is normally repressed by chromatin and is suppressed in a hta1-htb1Delta mutant that alters chromatin structure. Activation is also abolished in a snf2Delta mutant. Several regions of the Ty1 promoter are necessary to achieve full activation, suggesting that full integrity of the promoter sequences might be important for activation. Together, these observations are consistent with a model in which the activation mechanism involves chromatin remodeling at Ty1 promoters. The consequence of Ty1 transcriptional activation in response to adenine starvation is an increase in Ty1 cDNA levels and a relief of Ty1 dormancy. The retrotransposition of four native Ty1 elements increases in proportion to their increase in transcription. Implications for the regulation of Ty1 mobility by changes in Ty1 mRNA levels are discussed.
Collapse
|
26
|
Pesheva M, Krastanova O, Staleva L, Dentcheva V, Hadzhitodorov M, Venkov P. The Ty1 transposition assay: a new short-term test for detection of carcinogens. J Microbiol Methods 2005; 61:1-8. [PMID: 15676190 DOI: 10.1016/j.mimet.2004.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 09/27/2004] [Accepted: 10/04/2004] [Indexed: 11/26/2022]
Abstract
An assay based on induction by carcinogens of Ty1 transposition in Saccharomyces cerevisiae is proposed. A tester strain was developed that contains a marked Ty1 element, which allows following the transposition in the genome as a whole and a mutation, which increases cellular permeability. Hypersensitivity to chemical agents, higher cell wall porosity and transformability with plasmid DNA evidenced an enhanced cellular permeability of the tester cells. The increased permeability resulted in higher sensitivity to carcinogens. The treatment with different laboratory carcinogens induced Ty1 transposition rates in the tester strain by a factor of 10 to 20, compared to the controls. The induction is not stress-generated by the cytotoxicity of carcinogens, since treatment with NaN3 at concentrations killing 50% of the cells did not increase the transposition rate. The increase of Ty1 transposition in tester cells is specific for active carcinogens and a positive response with procarcinogens was obtained only in presence of S9 mix. The Ty1 transposition test responded positively to a number of Ames-test or DEL-test negative carcinogens. The positive response of Ty1 test was statistically significant and verified in kinetics and concentration-dependent experiments. It is concluded that the Ty1 transposition test can be used, in addition to the Ames assay, as a short-term test for detection of carcinogens.
Collapse
Affiliation(s)
- Margarita Pesheva
- Sofia University, Faculty of Biology, Department of Genetics, 8 Dragan Tsankov Blvd, 1421 Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
27
|
Garfinkel DJ, Nyswaner KM, Stefanisko KM, Chang C, Moore SP. Ty1 copy number dynamics in Saccharomyces. Genetics 2005; 169:1845-57. [PMID: 15687270 PMCID: PMC1449601 DOI: 10.1534/genetics.104.037317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand long terminal repeat (LTR)-retrotransposon copy number dynamics, Ty1 elements were reintroduced into a "Ty-less" Saccharomyces strain where elements had been lost by LTR-LTR recombination. Repopulated strains exhibited alterations in chromosome size that were associated with Ty1 insertions, but did not become genetically isolated. The rates of element gain and loss under genetic and environmental conditions known to affect Ty1 retrotransposition were determined using genetically tagged reference elements. The results show that Ty1 retrotransposition varies with copy number, temperature, and cell type. In contrast to retrotransposition, Ty1 loss by LTR-LTR recombination was more constant and not markedly influenced by copy number. Endogenous Ty1 cDNA was poorly utilized for recombination when compared with LTR-LTR recombination or ectopic gene conversion. Ty1 elements also appear to be more susceptible to copy number fluctuation in haploid cells. Ty1 gain/loss ratios obtained under different conditions suggest that copy number oscillates over time by altering the rate of retrotransposition, resulting in the diverse copy numbers observed in Saccharomyces.
Collapse
Affiliation(s)
- David J Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21701-1201, USA.
| | | | | | | | | |
Collapse
|
28
|
Pesheva M, Venkov P. Dimethylsulfoxide has a Recombinogenic Effect on Sacharomyces CerevisiaeCells. BIOTECHNOL BIOTEC EQ 2005. [DOI: 10.1080/13102818.2005.10817275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Sacerdot C, Mercier G, Todeschini AL, Dutreix M, Springer M, Lesage P. Impact of ionizing radiation on the life cycle ofSaccharomyces cerevisiae Ty1 retrotransposon. Yeast 2005; 22:441-55. [PMID: 15849797 DOI: 10.1002/yea.1222] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Ty1 elements, LTR-retrotransposons of Saccharomyces cerevisiae, are known to be activated by genetic and environmental stress. Several DNA-damaging agents have been shown to increase both Ty1 transcription and retrotransposition. To explore further the relationship between Ty1 mobility and DNA damage, we have studied the impact of ionizing radiation at different steps of the Ty1 life cycle. We have shown that Ty1 transposition is strongly activated by gamma-irradiation and we have analysed its effect on Ty1 transcription, TyA1 protein and Ty1 cDNA levels. The activation of transposition rises with increasing doses of gamma-rays and is stronger for Ty1 elements than for the related Ty2 elements. Ty1 RNA levels are markedly elevated upon irradiation; however, no significant increase of TyA1 protein was detected as measured by TYA1-lacZ fusions and by Western blot. A moderate increase in Ty1 cDNA levels was also observed, indicating that ionizing radiation can induce the synthesis of Ty1 cDNA. In diploid cells and ste12 mutants, where both Ty1 transcription and transposition are repressed, gamma-irradiation is able to activate Ty1 transposition and increases Ty1 RNA levels. These results suggest the existence of a specific regulatory pathway involved in Ty1 response to the gamma-irradiation that would be independent of Ste12 and mating-type factors. Our findings also indicate that ionizing radiation acts on several steps of the Ty1 life cycle.
Collapse
Affiliation(s)
- Christine Sacerdot
- UPR 9073 du CNRS, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
30
|
Stoycheva T, Pesheva M, Venkov P. Transposition of Saccharomyces CerevisiaeTy1 Retrotransposon Depends on the Function of Mitochondria. BIOTECHNOL BIOTEC EQ 2005. [DOI: 10.1080/13102818.2005.10817201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Scholes DT, Kenny AE, Gamache ER, Mou Z, Curcio MJ. Activation of a LTR-retrotransposon by telomere erosion. Proc Natl Acad Sci U S A 2003; 100:15736-41. [PMID: 14673098 PMCID: PMC307637 DOI: 10.1073/pnas.2136609100] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Indexed: 11/18/2022] Open
Abstract
Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.
Collapse
Affiliation(s)
- Derek T Scholes
- Department of Biomedical Sciences, University at Albany School of Public Health, PO Box 22002, Albany, NY 12201-2002, USA
| | | | | | | | | |
Collapse
|
32
|
Dziak R, Leishman D, Radovic M, Tye BK, Yankulov K. Evidence for a role of MCM (mini-chromosome maintenance)5 in transcriptional repression of sub-telomeric and Ty-proximal genes in Saccharomyces cerevisiae. J Biol Chem 2003; 278:27372-81. [PMID: 12750362 DOI: 10.1074/jbc.m301110200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MCM (mini-chromosome maintenance) genes have a well established role in the initiation of DNA replication and in the elongation of replication forks in Saccharomyces cerevisiae. In this study we demonstrate elevated expression of sub-telomeric and Ty retrotransposon-proximal genes in two mcm5 strains. This pattern of up-regulated genes resembles the genome-wide association of MCM proteins to chromatin that was reported earlier. We link the altered gene expression in mcm5 strains to a reversal of telomere position effect (TPE) and to remodeling of sub-telomeric and Ty chromatin. We also show a suppression of the Ts phenotype of a mcm5 strain by the high copy expression of the TRA1 component of the chromatin-remodeling SAGA/ADA (SPT-ADA-GCN5 acetylase/ADAptor). We propose that MCM proteins mediate the establishment of silent chromatin domains around telomeres and Ty retrotransposons.
Collapse
Affiliation(s)
- Renata Dziak
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
33
|
Sundararajan A, Lee BS, Garfinkel DJ. The Rad27 (Fen-1) nuclease inhibits Ty1 mobility in Saccharomyces cerevisiae. Genetics 2003; 163:55-67. [PMID: 12586696 PMCID: PMC1462422 DOI: 10.1093/genetics/163.1.55] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although most Ty1 elements in Saccharomyces cerevisiae are competent for retrotransposition, host defense genes can inhibit different steps of the Ty1 life cycle. Here, we demonstrate that Rad27, a structure-specific nuclease that plays an important role in DNA replication and genome stability, inhibits Ty1 at a post-translational level. We have examined the effects of various rad27 mutations on Ty1 element retrotransposition and cDNA recombination, termed Ty1 mobility. The point mutations rad27-G67S, rad27-G240D, and rad27-E158D that cause defects in certain enzymatic activities in vitro result in variable increases in Ty1 mobility, ranging from 4- to 22-fold. The C-terminal frameshift mutation rad27-324 confers the maximum increase in Ty1 mobility (198-fold), unincorporated cDNA, and insertion at preferred target sites. The null mutation differs from the other rad27 alleles by increasing the frequency of multimeric Ty1 insertions and cDNA recombination with a genomic element. The rad27 mutants do not markedly alter the levels of Ty1 RNA or the TyA1-gag protein. However, there is an increase in the stability of unincorporated Ty1 cDNA in rad27-324 and the null mutant. Our results suggest that Rad27 inhibits Ty1 mobility by destabilizing unincorporated Ty1 cDNA and preventing the formation of Ty1 multimers.
Collapse
Affiliation(s)
- Anuradha Sundararajan
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
34
|
Abstract
Cosuppression, the silencing of dispersed homologous genes triggered by high copy number, may have evolved in eukaryotic organisms to control molecular parasites such as viruses and transposons. Ty1 retrotransposons are dispersed gene repeats in Saccharomyces cerevisiae, where no cosuppression has been previously observed. Ty1 elements are seemingly expressed undeterred to a level as high as 10% of total mRNA. Using Ty1-URA3 reporters and negative selection with 5-fluoroorotic acid, it is shown that Ty1 genes can undergo transcriptional cosuppression that is independent of DNA methylation and polycomb-mediated repression. Expression of Ty1-related genes was shown to be in one of two states, the coexpressed state with all Ty1-related genes transcribed or the cosuppressed state with all Ty1-related genes shut off, without uncoordinated or mosaic expression in any individual cell. Rapid switches between the two states were observed. A high copy number of Ty1 elements was shown to be required for the initiation of Ty1 homology-dependent gene silencing, implying that Ty1 gene expression is under negative feedback control. Ty1 transcriptional repressors facilitated the onset of Ty1 cosuppression, and the native Ty1 promoters were required for Ty1 cosuppression, indicating that Ty1 cosuppression occurs at the transcriptional level.
Collapse
Affiliation(s)
- Yi Wei Jiang
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA.
| |
Collapse
|
35
|
Scholes DT, Banerjee M, Bowen B, Curcio MJ. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 2001; 159:1449-65. [PMID: 11779788 PMCID: PMC1461915 DOI: 10.1093/genetics/159.4.1449] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most Ty1 retrotransposons in the genome of Saccharomyces cerevisiae are transpositionally competent but rarely transpose. We screened yeast mutagenized by insertion of the mTn3-lacZ/LEU2 transposon for mutations that result in elevated Ty1 cDNA-mediated mobility, which occurs by cDNA integration or recombination. Here, we describe the characterization of mTn3 insertions in 21 RTT (regulation of Ty1 transposition) genes that result in 5- to 111-fold increases in Ty1 mobility. These 21 RTT genes are EST2, RRM3, NUT2, RAD57, RRD2, RAD50, SGS1, TEL1, SAE2, MED1, MRE11, SCH9, KAP122, and 8 previously uncharacterized genes. Disruption of RTT genes did not significantly increase Ty1 RNA levels but did enhance Ty1 cDNA levels, suggesting that most RTT gene products act at a step after mRNA accumulation but before cDNA integration. The rtt mutations had widely varying effects on integration of Ty1 at preferred target sites. Mutations in RTT101 and NUT2 dramatically stimulated Ty1 integration upstream of tRNA genes. In contrast, a mutation in RRM3 increased Ty1 mobility >100-fold without increasing integration upstream of tRNA genes. The regulation of Ty1 transposition by components of fundamental pathways required for genome maintenance suggests that Ty1 and yeast have coevolved to link transpositional dormancy to the integrity of the genome.
Collapse
Affiliation(s)
- D T Scholes
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|