1
|
Beaudier P, Devès G, Plawinski L, Dupuy D, Barberet P, Seznec H. Proton Microbeam Targeted Irradiation of the Gonad Primordium Region Induces Developmental Alterations Associated with Heat Shock Responses and Cuticle Defense in Caenorhabditis elegans. BIOLOGY 2023; 12:1372. [PMID: 37997971 PMCID: PMC10669138 DOI: 10.3390/biology12111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
We describe a methodology to manipulate Caenorhabditis elegans (C. elegans) and irradiate the stem progenitor gonad region using three MeV protons at a specific developmental stage (L1). The consequences of the targeted irradiation were first investigated by considering the organogenesis of the vulva and gonad, two well-defined and characterized developmental systems in C. elegans. In addition, we adapted high-throughput analysis protocols, using cell-sorting assays (COPAS) and whole transcriptome analysis, to the limited number of worms (>300) imposed by the selective irradiation approach. Here, the presented status report validated protocols to (i) deliver a controlled dose in specific regions of the worms; (ii) immobilize synchronized worm populations (>300); (iii) specifically target dedicated cells; (iv) study the radiation-induced developmental alterations and gene induction involved in cellular stress (heat shock protein) and cuticle injury responses that were found.
Collapse
Affiliation(s)
- Pierre Beaudier
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France; (P.B.); (G.D.); (L.P.); (P.B.)
| | - Guillaume Devès
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France; (P.B.); (G.D.); (L.P.); (P.B.)
| | - Laurent Plawinski
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France; (P.B.); (G.D.); (L.P.); (P.B.)
| | - Denis Dupuy
- University Bordeaux, INSERM, U1212, 33607 Pessac, France
| | - Philippe Barberet
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France; (P.B.); (G.D.); (L.P.); (P.B.)
| | - Hervé Seznec
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France; (P.B.); (G.D.); (L.P.); (P.B.)
| |
Collapse
|
2
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
3
|
A mutation in SLC30A9, a zinc transporter, causes an increased sensitivity to oxidative stress in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2022; 634:175-181. [DOI: 10.1016/j.bbrc.2022.09.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
4
|
Rossbach LM, Oughton DH, Maremonti E, Eide DM, Brede DA. Impact of multigenerational exposure to AgNO 3 or NM300K Ag NPs on antioxidant defense and oxidative stress in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112178. [PMID: 33812211 DOI: 10.1016/j.ecoenv.2021.112178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Adaptation of the nematode Caenorhabditis elegans towards NM300K silver nanoparticles (Ag NPs) has previously been demonstrated. In the current study, the sensitivity to a range of secondary stressors (CeO2 NP, Ce3+, Cu2+, Cd2+, and Paraquat) following the multigenerational exposure to silver nanoparticles (Ag NPs NM300K) or AgNO3 was investigated. This revealed improved tolerance to the ROS inducer Paraquat with higher fecundity after pre-exposure to Ag NP, indicating an involvement of reactive oxygen species (ROS) metabolism in the adaptive response to NM300K. The potential contribution of the antioxidant defenses related to adaptive responses was investigated across six generations of exposure using the sod-1::GFP reporter (GA508), and the Grx1-roGFP2 (GRX) biosensor strains. Results showed an increase in sod-1 expression by the F3 generation, accompanied by a reduction of GSSG/GSH ratios, from both AgNO3 and Ag NP exposures. Continuous exposure to AgNO3 and Ag NP until the F6 generation resulted in a decreased sod-1 expression, with a concomitant increase in GSSG/GSH ratios. The results thus show that despite an initial enhancement, the continuous exposure to Ag caused a severe impairment of the antioxidant defense capacity in C. elegans.
Collapse
Affiliation(s)
- Lisa M Rossbach
- Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. BOX 5003 NMBU, No-1432 Ås, Norway.
| | - Deborah H Oughton
- Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
| | - Erica Maremonti
- Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
| | - Dag M Eide
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Dag A Brede
- Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. BOX 5003 NMBU, No-1432 Ås, Norway
| |
Collapse
|
5
|
Sayed SMA, Siems K, Schmitz-Linneweber C, Luyten W, Saul N. Enhanced Healthspan in Caenorhabditis elegans Treated With Extracts From the Traditional Chinese Medicine Plants Cuscuta chinensis Lam. and Eucommia ulmoides Oliv. Front Pharmacol 2021; 12:604435. [PMID: 33633573 PMCID: PMC7901915 DOI: 10.3389/fphar.2021.604435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
To uncover potential anti-aging capacities of Traditional Chinese Medicine (TCM), the nematode Caenorhabditis elegans was used to investigate the effects of Eucommia ulmoides and Cuscuta chinensis extracts, selected by screening seven TCM extracts, on different healthspan parameters. Nematodes exposed to E. ulmoides and C. chinensis extracts, starting at the young adult stage, exhibited prolonged lifespan and increased survival after heat stress as well as upon exposure to the pathogenic bacterium Photorhabdus luminescens, whereby the survival benefits were monitored after stress initiation at different adult stages. However, only C. chinensis had the ability to enhance physical fitness: the swimming behavior and the pharyngeal pumping rate of C. elegans were improved at day 7 and especially at day 12 of adulthood. Finally, monitoring the red fluorescence of aged worms revealed that only C. chinensis extracts caused suppression of intestinal autofluorescence, a known marker of aging. The results underline the different modes of action of the tested plants extracts. E. ulmoides improved specifically the physiological fitness by increasing the survival probability of C. elegans after stress, while C. chinensis seems to be an overall healthspan enhancer, reflected in the suppressed autofluorescence, with beneficial effects on physical as well as physiological fitness. The C. chinensis effects may be hormetic: this is supported by increased gene expression of hsp-16.1 and by trend, also of hsp-12.6.
Collapse
Affiliation(s)
- Shimaa M. A. Sayed
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
- Botany and Microbiology Department, Faculty of Science, New Valley University, El-Kharga, Egypt
| | | | - Christian Schmitz-Linneweber
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | | | - Nadine Saul
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
6
|
Rossbach LM, Maremonti E, Eide DM, Oughton DH, Brede DA. Adaptive tolerance to multigenerational silver nanoparticle (NM300K) exposure by the nematode Caenorhabditis elegans is associated with increased sensitivity to AgNO3. Nanotoxicology 2019; 13:527-542. [DOI: 10.1080/17435390.2018.1557272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lisa M. Rossbach
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Dag M. Eide
- Norwegian Institute of Public Health, Oslo, Norway
| | - Deborah H. Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Dag A. Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
7
|
Hunter S, Maulik M, Scerbak C, Vayndorf E, Taylor BE. Caenorhabditis Sieve: A Low-tech Instrument and Methodology for Sorting Small Multicellular Organisms. J Vis Exp 2018. [PMID: 30035770 DOI: 10.3791/58014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is a well-established model organism used across a range of basic and biomedical research. Within the nematode research community, there is a need for an affordable and effective way to maintain large, age-matched populations of C. elegans. Here, we present a methodology for mechanically sorting and cleaning C. elegans. Our aim is to provide a cost-effective, efficient, fast, and simple process to obtain animals of uniform sizes and life stages for their use in experiments. This tool, the Caenorhabditis Sieve, uses a custom-built lid system that threads onto common conical lab tubes and sorts C. elegans based on body size. We also demonstrate that the Caenorhabditis Sieve effectively transfers animals from one culture plate to another allowing for a rapid sorting, synchronizing, and cleaning without impacting markers of health, including motility and stress-inducible gene reporters. This accessible and innovative tool is a fast, efficient, and non-stressful option for maintaining C. elegans populations.
Collapse
Affiliation(s)
- Skyler Hunter
- Department of Biology and Wildlife, University of Alaska Fairbanks; Institute of Arctic Biology, University of Alaska Fairbanks
| | - Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks;
| | | | - Elena Vayndorf
- Institute of Arctic Biology, University of Alaska Fairbanks
| | - Barbara E Taylor
- Department of Biological Sciences, College of Natural Science and Mathematics, California State University Long Beach
| |
Collapse
|
8
|
Stress pre-conditioning with temperature, UV and gamma radiation induces tolerance against phosphine toxicity. PLoS One 2018; 13:e0195349. [PMID: 29672544 PMCID: PMC5909616 DOI: 10.1371/journal.pone.0195349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Phosphine is the only general use fumigant for the protection of stored grain, though its long-term utility is threatened by the emergence of highly phosphine-resistant pests. Given this precarious situation, it is essential to identify factors, such as stress preconditioning, that interfere with the efficacy of phosphine fumigation. We used Caenorhabditis elegans as a model organism to test the effect of pre-exposure to heat and cold shock, UV and gamma irradiation on phosphine potency. Heat shock significantly increased tolerance to phosphine by 3-fold in wild-type nematodes, a process that was dependent on the master regulator of the heat shock response, HSF-1. Heat shock did not, however, increase the resistance of a strain carrying the phosphine resistance mutation, dld-1(wr4), and cold shock did not alter the response to phosphine of either strain. Pretreatment with the LD50 of UV (18 J cm-2) did not alter phosphine tolerance in wild-type nematodes, but the LD50 (33 J cm-2) of the phosphine resistant strain (dld-1(wr4)) doubled the level of resistance. In addition, exposure to a mild dose of gamma radiation (200 Gy) elevated the phosphine tolerance by ~2-fold in both strains.
Collapse
|
9
|
Salgueiro WG, Goldani BS, Peres TV, Miranda-Vizuete A, Aschner M, da Rocha JBT, Alves D, Ávila DS. Insights into the differential toxicological and antioxidant effects of 4-phenylchalcogenil-7-chloroquinolines in Caenorhabditis elegans. Free Radic Biol Med 2017; 110:133-141. [PMID: 28571752 DOI: 10.1016/j.freeradbiomed.2017.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
Abstract
Organic selenium and tellurium compounds are known for their broad-spectrum effects in a variety of experimental disease models. However, these compounds commonly display high toxicity and the molecular mechanisms underlying these deleterious effects have yet to be elucidated. Thus, the need for an animal model that is inexpensive, amenable to high-throughput analyses, and feasible for molecular studies is highly desirable to improve organochalcogen pharmacological and toxicological characterization. Herein, we use Caenorhabdtis elegans (C. elegans) as a model for the assessment of pharmacological and toxicological parameters following exposure to two 4-phenylchalcogenil-7-chloroquinolines derivatives (PSQ for selenium and PTQ for tellurium-containing compounds). While non-lethal concentrations (NLC) of PTQ and PSQ attenuated paraquat-induced effects on survival, lifespan and oxidative stress parameters, lethal concentrations (LC) of PTQ and PSQ alone are able to impair these parameters in C. elegans. We also demonstrate that DAF-16/FOXO and SKN-1/Nrf2 transcription factors underlie the mechanism of action of these compounds, as their targets sod-3, gst-4 and gcs-1 were modulated following exposures in a daf-16- and skn-1-dependent manner. Finally, in accordance with a disturbed thiol metabolism in both LC and NLC, we found higher sensitivity of trxr-1 worm mutants (lacking the selenoprotein thioredoxin reductase 1) when exposed to PSQ. Finally, our study suggests new targets for the investigation of organochalcogen pharmacological effects, reinforcing the use of C. elegans as a powerful platform for preclinical approaches.
Collapse
Affiliation(s)
- Willian G Salgueiro
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE),Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil
| | - Bruna S Goldani
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, CEP 96010-900 Pelotas, RS, Brazil
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, CEP 96010-900 Pelotas, RS, Brazil
| | - Daiana S Ávila
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE),Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil.
| |
Collapse
|
10
|
Kishimoto S, Uno M, Okabe E, Nono M, Nishida E. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat Commun 2017; 8:14031. [PMID: 28067237 PMCID: PMC5227915 DOI: 10.1038/ncomms14031] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Hormesis is a biological phenomenon, whereby exposure to low levels of toxic agents or conditions increases organismal viability. It thus represents a beneficial aspect of adaptive responses to harmful environmental stimuli. Here we show that hormesis effects induced in the parental generation can be passed on to the descendants in Caenorhabditis elegans. Animals subjected to various stressors during developmental stages exhibit increased resistance to oxidative stress and proteotoxicity. The increased resistance is transmitted to the subsequent generations grown under unstressed conditions through epigenetic alterations. Our analysis reveal that the insulin/insulin-like growth factor (IGF) signalling effector DAF-16/FOXO and the heat-shock factor HSF-1 in the parental somatic cells mediate the formation of epigenetic memory, which is maintained through the histone H3 lysine 4 trimethylase complex in the germline across generations. The elicitation of memory requires the transcription factor SKN-1/Nrf in somatic tissues. We propose that germ-to-soma communication across generations is an essential framework for the transgenerational inheritance of acquired traits, which provides the offspring with survival advantages to deal with environmental perturbation. Environmental stress causes epigenetic changes but it is unclear if such changes are transgenerational. Here, the authors show that in C. elegans, increased resistance to oxidative stress and proteotoxicity in the parental generation and linked epigenetic changes are transmitted to subsequent generations.
Collapse
Affiliation(s)
- Saya Kishimoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaharu Uno
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Emiko Okabe
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masanori Nono
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
11
|
Oliveira MP, Correa Soares JBR, Oliveira MF. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology. PLoS One 2016; 11:e0158429. [PMID: 27380021 PMCID: PMC4933344 DOI: 10.1371/journal.pone.0158429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute to redox biology among parasite sexes.
Collapse
Affiliation(s)
- Matheus P. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Juliana B. R. Correa Soares
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Marcus F. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Ghoshal N, Talapatra S, Talukder P, Sengupta M, Ray SK, Chakraborty A, Raychaudhuri SS. Cross-adaptation to cadmium stress in Plantago ovata by pre-exposure to low dose of gamma rays: Effects on metallothionein and metal content. Int J Radiat Biol 2015; 91:611-23. [PMID: 25968556 DOI: 10.3109/09553002.2015.1047984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the effects of gamma pre-exposure on cadmium accumulation in Plantago ovata seedlings. Metallothionein (MT) localization was also studied following Cadmium (Cd) treatment in P. ovata. MATERIALS AND METHODS DNA damage was determined by alkaline comet assay. MT gene and protein expression were studied by real-time polymerase chain reaction and flow cytometry, respectively, in root and shoot tissues. Metal accumulation (Cd, zinc [Zn], iron [Fe]) was evaluated by Atomic Absorption Spectroscopy. RESULTS Cd treatment decreased seed germination rate, biomass and free radical scavenging activity and increased DNA damage in a dose-dependent manner. When P. ovata seeds were pre- exposed to 5 Gy gamma dose (prior to Cd treatment) seed germination rate, biomass and free radical scavenging activity increased significantly. MT genes (PoMT1, PoMT2 and PoMT3) and MT protein expression enhanced when 5 Gy gamma-irradiated seeds were grown in Cd containing medium and Cd accumulation also increased in a dose-dependent manner. CONCLUSIONS Higher Cd accumulation in P. ovata seedlings may be attributed to the upregulation of PoMT genes in gamma pretreated seedlings. Localization of metallothionein in cytosol and nucleus indicated its positive role against Cd-mediated cytotoxic and genotoxic effects.
Collapse
Affiliation(s)
- Nirmalya Ghoshal
- a Department of Biophysics , Molecular Biology and Bioinformatics, University of Calcutta , Kolkata , India
| | - Shonima Talapatra
- a Department of Biophysics , Molecular Biology and Bioinformatics, University of Calcutta , Kolkata , India
| | - Pratik Talukder
- a Department of Biophysics , Molecular Biology and Bioinformatics, University of Calcutta , Kolkata , India
| | - Mandar Sengupta
- a Department of Biophysics , Molecular Biology and Bioinformatics, University of Calcutta , Kolkata , India
| | - Suman Kumar Ray
- a Department of Biophysics , Molecular Biology and Bioinformatics, University of Calcutta , Kolkata , India
| | - Anindita Chakraborty
- b UGC-DAE Consortium for Scientific Research, Kolkata Centre, Radiation Biology Division , Salt Lake, Kolkata , India
| | - Sarmistha Sen Raychaudhuri
- a Department of Biophysics , Molecular Biology and Bioinformatics, University of Calcutta , Kolkata , India
| |
Collapse
|
13
|
Ristow M, Schmeisser K. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS). Dose Response 2014; 12:288-341. [PMID: 24910588 PMCID: PMC4036400 DOI: 10.2203/dose-response.13-035.ristow] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful.
Collapse
Affiliation(s)
- Michael Ristow
- Energy Metabolism Laboratory, ETH Zürich (Swiss Federal Institute of Technology Zurich), Schwerzenbach/Zürich, CH 8603, Switzerland
- Dept. of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Kathrin Schmeisser
- Dept. of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| |
Collapse
|
14
|
Direct synthesis of 4-organylsulfenyl-7-chloro quinolines and their toxicological and pharmacological activities in Caenorhabditis elegans. Eur J Med Chem 2014; 75:448-59. [PMID: 24561673 DOI: 10.1016/j.ejmech.2014.01.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 12/30/2022]
Abstract
We describe herein our results on the synthesis and biological properties in Caenorhabditis elegans of a range of 4-organylsulfenyl-7-chloroquinolines. This class of compounds have been easily synthesized in high yields by direct reaction of 4,7-dichloroquinoline with organylthiols using DMSO as solvent at room temperature under air atmosphere and tolerates a range of substituents in the organylsulfenyl moiety. We have performed a toxicological and pharmacological screening of the synthesized 4-organylsulfenyl-7-chloroquinolines in vivo in C. elegans acutely exposed to these compounds, under per se and stress conditions. Hence, we determined the lethal dose 50% (LD50), in order to choose a nonlethal concentration (10 μM) and verified that at that concentration some of the compounds depicted protective action against the induced damage inflicted by paraquat, a superoxide generator. Two compounds (3c and 3h) reduced the toxicity inflicted by paraquat above survival, reproduction and longevity of the worms, at least in part, by reducing the reactive oxygen species (ROS) generated by the toxicant exposure. Besides, these compounds increased the quantities of superoxide dismutase (SOD-3::GFP) and catalase (CTL-1,2,3::GFP), antioxidant enzymes. We concluded that the protective effects of the compounds observed in this study might have been a hormetic response dependent of the transcriptional factor DAF-16/FOXO, causing a non-lethal oxidative stress that protects against the subsequently damage induced by paraquat.
Collapse
|
15
|
A cytoprotective perspective on longevity regulation. Trends Cell Biol 2013; 23:409-20. [PMID: 23726168 DOI: 10.1016/j.tcb.2013.04.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023]
Abstract
There are many mechanisms of lifespan extension, including the disruption of insulin/insulin-like growth factor 1 (IGF-1) signaling, metabolism, translation, and feeding. Despite the disparate functions of these pathways, inhibition of each induces responses that buffer stress and damage. Here, emphasizing data from genetic analyses in Caenorhabditis elegans, we explore the effectors and upstream regulatory components of numerous cytoprotective mechanisms activated as major elements of longevity programs, including detoxification, innate immunity, proteostasis, and oxidative stress response. We show that their induction underpins longevity extension across functionally diverse triggers and across species. Intertwined with the evolution of longevity, cytoprotective pathways are coupled to the surveillance of core cellular components, with important implications in normal and aberrant responses to drugs, chemicals, and pathogens.
Collapse
|
16
|
Formation and regulation of adaptive response in nematode Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:564093. [PMID: 22997543 PMCID: PMC3446806 DOI: 10.1155/2012/564093] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/24/2012] [Indexed: 01/11/2023]
Abstract
All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc.) with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types of adaptive responses can be formed: hormesis, cross-adaptation, and dietary restriction. Several factors influence the formation of adaptive responses in nematodes, and some mechanisms can explain their response formation. In particular, antioxidation system, heat-shock proteins, metallothioneins, glutathione, signaling transduction, and metabolic signals may play important roles in regulating the formation of adaptive responses. In this paper, we summarize the published evidence demonstrating that several types of adaptive responses have converged in C. elegans and discussed some possible alternative theories explaining the adaptive response control.
Collapse
|
17
|
Radiation-induced genomic instability in Caenorhabditis elegans. Mutat Res 2012; 748:36-41. [PMID: 22796420 DOI: 10.1016/j.mrgentox.2012.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/27/2012] [Accepted: 06/24/2012] [Indexed: 11/23/2022]
Abstract
Radiation-induced genomic instability has been well documented, particularly in vitro. However, the understanding of its mechanisms and their consequences in vivo is still limited. In this study, Caenorhabditis elegans (C. elegans; strain CB665) nematodes were exposed to X-rays at doses of 0.1, 1, 3 or 10Gy. The endpoints were measured several generations after exposure and included mutations in the movement-related gene unc-58, alterations in gene expression analysed with oligoarrays containing the entire C. elegans genome, and micro-satellite mutations measured by capillary electrophoresis. The progeny of the irradiated nematodes showed an increased mutation frequency in the unc-58 gene, with a maximum response observed at 1Gy. Significant differences were also found in gene expression between the irradiated (1Gy) and non-irradiated nematode lines. Differences in gene expression did not show clear clustering into certain gene categories, suggesting that the instability might be a chaotic process rather than a result of changes in the function of few specific genes such as, e.g., those responsible for DNA repair. Increased heterogeneity in gene expression, which has previously been described in irradiated cultured human lymphocytes, was also observed in the present study in C. elegans, the coefficient of variation of gene expression being higher in the progeny of irradiated nematodes than in control nematodes. To the best of our knowledge, this is the first publication reporting radiation-induced genomic instability in C. elegans.
Collapse
|
18
|
The neglected significance of "antioxidative stress". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:480895. [PMID: 22655114 PMCID: PMC3357598 DOI: 10.1155/2012/480895] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/17/2012] [Indexed: 12/13/2022]
Abstract
Oxidative stress arises when there is a marked imbalance between the production and removal of reactive oxygen species (ROS) in favor of the prooxidant balance, leading to potential oxidative damage. ROSs were considered traditionally to be only a toxic byproduct of aerobic metabolism. However, recently, it has become apparent that ROS might control many different physiological processes such as induction of stress response, pathogen defense, and systemic signaling. Thus, the imbalance of the increased antioxidant potential, the so-called antioxidative stress, should be as dangerous as well. Here, we synthesize increasing evidence on “antioxidative stress-induced” beneficial versus harmful roles on health, disease, and aging processes. Oxidative stress is not necessarily an un-wanted situation, since its consequences may be beneficial for many physiological reactions in cells. On the other hand, there are potentially harmful effects of “antioxidative stress,” especially in the cases of overconsumption of synthetic antioxidants. Antioxidants can neutralize ROS and decrease oxidative stress; however, this is not always beneficial in regard to disease formation or progression (of, e.g., cancer) or for delaying aging.
Collapse
|
19
|
Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free Radic Biol Med 2011; 51:327-36. [PMID: 21619928 DOI: 10.1016/j.freeradbiomed.2011.05.010] [Citation(s) in RCA: 521] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 12/31/2022]
Abstract
Various nutritional, behavioral, and pharmacological interventions have been previously shown to extend life span in diverse model organisms, including Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, mice, and rats, as well as possibly monkeys and humans. This review aims to summarize published evidence that several longevity-promoting interventions may converge by causing an activation of mitochondrial oxygen consumption to promote increased formation of reactive oxygen species (ROS). These serve as molecular signals to exert downstream effects to ultimately induce endogenous defense mechanisms culminating in increased stress resistance and longevity, an adaptive response more specifically named mitochondrial hormesis or mitohormesis. Consistently, we here summarize findings that antioxidant supplements that prevent these ROS signals interfere with the health-promoting and life-span-extending capabilities of calorie restriction and physical exercise. Taken together and consistent with ample published evidence, the findings summarized here question Harman's Free Radical Theory of Aging and rather suggest that ROS act as essential signaling molecules to promote metabolic health and longevity.
Collapse
Affiliation(s)
- Michael Ristow
- Department of Human Nutrition, Institute of Nutrition, University of Jena, D-07743 Jena, Germany.
| | | |
Collapse
|
20
|
Ye B, Rui Q, Wu Q, Wang D. Metallothioneins are required for formation of cross-adaptation response to neurobehavioral toxicity from lead and mercury exposure in nematodes. PLoS One 2010; 5:e14052. [PMID: 21124968 PMCID: PMC2987793 DOI: 10.1371/journal.pone.0014052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/22/2010] [Indexed: 11/19/2022] Open
Abstract
Metallothioneins (MTs) are small, cysteine-rich polypeptides, but the role of MTs in inducing the formation of adaptive response is still largely unknown. We investigated the roles of metallothionein genes (mtl-1 and mtl-2) in the formation of cross-adaptation response to neurobehavioral toxicity from metal exposure in Caenorhabditis elegans. Pre-treatment with mild heat-shock at L2-larva stage effectively prevented the formation of the neurobehavioral defects and the activation of severe stress response in metal exposed nematodes at concentrations of 50 and 100 µM, but pre-treatment with mild heat-shock did not prevent the formation of neurobehavioral defects in 200 µM of metal exposed nematodes. During the formation of cross-adaptation response, the induction of mtl-1 and mtl-2 promoter activity and subsequent GFP gene expression were sharply increased in 50 µM or 100 µM of metal exposed Pmtl-1::GFP and Pmtl-2::GFP transgenic adult animals after mild heat-shock treatment compared with those treated with mild heat-shock or metal exposure alone. Moreover, after pre-treatment with mild heat-shock, no noticeable increase of locomotion behaviors could be observed in metal exposed mtl-1 or mtl-2 mutant nematodes compared to those without mild heat-shock pre-treatment. The defects of adaptive response to neurobehavioral toxicity induced by metal exposure formed in mtl-1 and mtl-2 mutants could be completely rescued by the expression of mtl-1 and mtl-2 with the aid of their native promoters. Furthermore, over-expression of MTL-1 and MTL-2 at the L2-larval stage significantly suppressed the toxicity on locomotion behaviors from metal exposure at all examined concentrations. Therefore, the normal formation of cross-adaptation response to neurobehavioral toxicity induced by metal exposure may need the enough accumulation of MTs protein in animal tissues.
Collapse
Affiliation(s)
- Boping Ye
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Qi Rui
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiuli Wu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
21
|
Abstract
Oxidative stress is recognized as an important environmental factor in aging; however, because reactive oxygen species (ROS) and related free radicals are normally produced both intra- and extracellularly, air-living organisms cannot avoid the risk of oxidative stress. Consequently, these organisms have evolved various anti-oxidant systems to prevent ROS, scavenge free radicals, repair damaged components and adaptive responses. This review will focus on the repair and adaptive response to oxidative stress, and summarize the changes of these systems as a result aging and their relationship to premature aging.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Functional Genomics, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan.
| | | |
Collapse
|
22
|
Wang D, Liu P, Xing X. Pre-treatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behaviors from metal exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:213-222. [PMID: 21787605 DOI: 10.1016/j.etap.2010.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 05/31/2023]
Abstract
UV irradiation at 10J/m(2)/min induced a mild toxicity on locomotion behaviors and stress response in Caenorhabditis elegans. Pre-treatment with UV irradiation at 10J/m(2)/min at L2-larva stage prevented the formation of locomotion behavioral defects, and activated a noticeable reduction of stress response and oxidative damage in 50 and 100μM metal (Hg, Pb, and Cr) exposed nematodes. Pre-treatment with UV irradiation at 20J/m(2)/min caused a significant decrease of locomotion behaviors in metal exposed nematodes, and pre-treatment with mild UV irradiation could not prevent the formation of locomotion behavioral defects in 200μM metal exposed nematodes. Moreover, the adaptive response to toxicity on locomotion behaviors induced by metal exposure was not formed in mev-1 mutants. Therefore, pre-treatment to mild UV irradiation activates the cross-adaptation response to toxicity on locomotion behaviors induced by metal exposure, and this kind of adaptive response may be under the control of MEV-1 function.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Southeast University Medical School, Nanjing 210009, China
| | | | | |
Collapse
|
23
|
Wang D, Xing X. Pre-treatment with mild UV irradiation suppresses reproductive toxicity induced by subsequent cadmium exposure in nematodes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:423-429. [PMID: 20045190 DOI: 10.1016/j.ecoenv.2009.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 12/01/2009] [Accepted: 12/06/2009] [Indexed: 05/28/2023]
Abstract
In nematodes, 10 J/m(2)/min of UV irradiation induced a mild reproductive toxicity. Pre-treatment with UV irradiation at 10 J/m(2)/min suppressed the formation of reproductive defects, and activated a noticeable reduction of percentage of population with hsp-16.2::gfp expression, an obvious elevation of superoxide dismutase activities, and decrease of oxidative damage in 50 and 100 microM Cd exposed nematodes; however, pre-treatment with UV irradiation at 20 J/m(2)/min caused a significant decrease of brood sizes or increase of generation times in Cd-exposed nematodes. Pre-treatment with mild UV irradiation did not suppress the formation of reproductive defects in 150 microM Cd-exposed nematodes. Furthermore, the adaptive response to reproductive toxicity from Cd exposure was not observed in a reactive oxygen species sensitive mev-1(kn1) mutant. Therefore, pre-treatment with mild UV irradiation triggers the resistance to reproductive toxicity from Cd exposure by at least partially inducing adaptation to oxidative stress and through a mev-1-dependent pathway.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Southeast University Medical School, Nanjing 210009, China.
| | | |
Collapse
|
24
|
Wang D, Xing X. Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:459-464. [PMID: 21784043 DOI: 10.1016/j.etap.2009.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 05/31/2023]
Abstract
Adaptive response to neurotoxicity on locomotion behavior by severe metal exposure was investigated in Caenorhabditis elegans. Exposure to 2.5μM of metals induced a moderate but significant reduction of locomotion behavior and induction of hsp-16.2::gfp expression. After pre-exposure to 2.5μM of metals, the reduced locomotion behavior induced by subsequent 50 and 100μM of metal exposure were significantly prevented, and the induction of hsp-16.2::gfp expression caused by subsequent 50 and 100μM of metal exposure were significantly suppressed. In contrast, after pre-exposure to 50μM examined metals, the reduced locomotion behavior induced by subsequent 50 and 100μM metal exposure were further decreased, and the noticeable induction of hsp-16.2::gfp expression caused by subsequent severe metal exposure were further enhanced. Therefore, pre-treatment with mild metal exposure can activate the adaptive response to neurotoxicity on locomotion behavior induced by subsequent severe metal exposure in nematodes.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Genetics and Developmental Biology, Southeast University Medical School, Nanjing 210009, China
| | | |
Collapse
|
25
|
Onodera A, Yanase S, Ishii T, Yasuda K, Miyazawa M, Hartman PS, Ishii N. Post-dauer life span of Caenorhabditis elegans dauer larvae can be modified by X-irradiation. JOURNAL OF RADIATION RESEARCH 2009; 51:67-71. [PMID: 19851044 DOI: 10.1269/jrr.09093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The time spent as a dauer larva does not affect adult life span in Caenorhabditis elegans, as if aging is suspended in this quiescent developmental stage. We now report that modest doses X-irradiation of dauer larvae increased their post-dauer longevity. Post-irradiation incubation of young dauer larvae did not modify this beneficial effect of radiation. Conversely, holding dauer larvae prior to irradiation rendered them refractory to this X-radiation-induced response. We present a model to explain these results. These experiments demonstrate that dauer larvae provide an excellent opportunity to study mechanisms by which X irradiation can extend life span.
Collapse
Affiliation(s)
- Akira Onodera
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Heidler T, Hartwig K, Daniel H, Wenzel U. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 2009; 11:183-95. [PMID: 19597959 DOI: 10.1007/s10522-009-9239-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
In Caenorhabditis elegans pretreatment with juglone, a generator of reactive oxygen species (ROS) provides a subsequently increased ROS-resistance. We investigated whether juglone at low or high concentrations when provided via the oral route in a liquid axenic medium affects normal lifespan of C. elegans. High juglone concentrations led to premature death, low concentrations were tolerated well and caused a prolongation of lifespan. Lifespan extension under moderate oxidative stress was associated with increased expression of small heat-shock protein HSP-16.2, enhanced glutathione levels, and nuclear translocation of DAF-16. Silencing or deletion of DAF-16 prevented the juglone-induced adaptations. RNA-interference for SIR-2.1 had the same effects as the deletion of DAF-16 but did not affect nuclear accumulation of DAF-16. Our studies demonstrate that DAF-16- and SIR-2.1-dependent alterations in gene expression after a ROS challenge lead to a lifespan extension in C. elegans as long as the stressor concentration does not exceed the saturable protective capacity.
Collapse
Affiliation(s)
- Tanja Heidler
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Am Forum 5, Freising, Germany
| | | | | | | |
Collapse
|
27
|
Miyazawa M, Ishii T, Yasuda K, Noda S, Onouchi H, Hartman PS, Ishii N. The role of mitochondrial superoxide anion (O2(-)) on physiological aging in C57BL/6J mice. JOURNAL OF RADIATION RESEARCH 2009; 50:73-83. [PMID: 19218782 DOI: 10.1269/jrr.08097] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Much attention has been focused on the mitochondrial superoxide anion (O2(-)), which is also a critical free radial produced by ionizing radiation. The specific role of the mitochondrial O2(-) on physiological aging in mammals is still unclear despite wide-spread evidence that oxidative stress is involved in aging and age-related diseases. The major endogenous source of O2(-) is generated as a byproduct of energy metabolism from mitochondria. In order to better understand how O2(-)relates to metazoan aging, we have comprehensively examined age-related changes in the levels of oxidative damage, mitochondrial O2(-) production, mitochondrial antioxidant enzyme activity and apoptosis induction in key organs of an inbred mouse strain (C57BL/6J). Oxidative damage accumulated and excess apoptosis occurred in the brain, oculus and kidney with aging, but comparatively little occurred in the heart and muscle. These rates are correlated with O2(-) levels. Mitochondrial O2(-) production levels increased with aging in the brain, oculus and kidney, and did not significantly increased in the heart and muscle. In contrast to O2(-) production, mitochondrial SOD activities increased in heart and muscle, and remained unchanged in the brain, oculus and kidney with aging. These results suggest that O2(-) production has high organ specificity, and oxidative damage by O2(-) from mitochondria mediated apoptosis can lead to organ atrophy and physiological dysfunction. In addition, O2(-) from mitochondria plays a core role in physiological aging.
Collapse
Affiliation(s)
- Masaki Miyazawa
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Flanders KC, Ho BM, Arany PR, Stuelten C, Mamura M, Paterniti MO, Sowers A, Mitchell JB, Roberts AB. Absence of Smad3 induces neutrophil migration after cutaneous irradiation: possible contribution to subsequent radioprotection. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:68-76. [PMID: 18502822 DOI: 10.2353/ajpath.2008.070937] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Our previous work showed that 6 weeks after cutaneous irradiation, mice null (knockout, KO) for Smad3, a cytoplasmic downstream mediator of transforming growth factor-beta, demonstrate less epidermal acanthosis and dermal inflammation than wild-type (WT) Smad3 mice. Analysis of the kinetics of inflammation showed that 6 to 8 hours after skin irradiation, there was a transient sevenfold increase in neutrophil influx in Smad3 KO mice compared with WT. Herein we describe bone marrow transplantation and skin grafting between WT and KO mice to assess the contribution of the neutrophil genotype compared with that of irradiated skin to the induction of neutrophil migration after irradiation. Results from bone marrow transplantation showed that WT marrow transplanted into KO mice enhanced neutrophil migration 6 to 8 hours after irradiation by 3.2-fold compared with KO marrow in WT mice. KO skin grafted onto either WT or KO animals showed a sixfold elevation of neutrophils after irradiation compared with grafted WT skin. These results suggest that the genotype of the irradiated skin, rather than the inflammatory cell, controls neutrophil influx. Circulating neutrophils, increased in WT mice after injection of granulocyte colony-stimulating factor, resulted in increased neutrophil migration to the skin 6 to 8 hours after irradiation and less skin damage 6 weeks after irradiation compared with untreated WT mice. Thus, early responses, including enhanced neutrophil influx, appear to contribute to subsequent cutaneous radioprotection.
Collapse
Affiliation(s)
- Kathleen C Flanders
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Selch F, Higashibata A, Imamizo-Sato M, Higashitani A, Ishioka N, Szewczyk NJ, Conley CA. Genomic response of the nematode Caenorhabditis elegans to spaceflight. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2008; 41:807-815. [PMID: 18392117 PMCID: PMC2288577 DOI: 10.1016/j.asr.2007.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
On Earth, it is common to employ laboratory animals such as the nematode Caenorhabditis elegans to help understand human health concerns. Similar studies in Earth orbit should help understand and address the concerns associated with spaceflight. The "International Caenorhabditis elegans Experiment FIRST" (ICE FIRST), was carried out onboard the Dutch Taxiflight in April of 2004 by an international collaboration of laboratories in France, Canada, Japan and the United States. With the exception of a slight movement defect upon return to Earth, the result of altered muscle development, no significant abnormalities were detected in spaceflown C. elegans. Work from Japan revealed apoptosis proceeds normally and work from Canada revealed no significant increase in the rate of mutation. These results suggest that C. elegans can be used to study non-lethal responses to spaceflight and can possibly be developed as a biological sensor. To further our understanding of C. elegans response to spaceflight, we examined the gene transcription response to the 10 days in space using a near full genome microarray analysis. The transcriptional response is consistent with the observed normal developmental timing, apoptosis, DNA repair, and altered muscle development. The genes identified as altered in response to spaceflight are enriched for genes known to be regulated, in C. elegans, in response to altered environmental conditions (Insulin and TGF-beta regulated). These results demonstrate C. elegans can be used to study the effects of altered gravity and suggest that C. elegans responds to spaceflight by altering the expression of at least some of the same metabolic genes that are altered in response to differing terrestrial environments.
Collapse
Affiliation(s)
- Florian Selch
- Ames Research Center, National Aeronautics and Space Administration, M/S 239-11, Moffett Field, CA 94035-1000, USA
- Department of Molecular Cell Biology, University of Vienna, A-1010 Vienna, Austria
| | - Akira Higashibata
- Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Mari Imamizo-Sato
- Advanced Engineering Services Co., Ltd., Tsukuba Mitsui Building, 1-6-1, Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | | | - Noriaki Ishioka
- Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Nathaniel J. Szewczyk
- Ames Research Center, National Aeronautics and Space Administration, M/S 239-11, Moffett Field, CA 94035-1000, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- School of Graduate Entry Medicine and Health, University of Nottingham, Derby DE22 3DT, UK
| | - Catharine A. Conley
- Ames Research Center, National Aeronautics and Space Administration, M/S 239-11, Moffett Field, CA 94035-1000, USA
| |
Collapse
|
30
|
Abstract
Research reports using cells from bacteria, yeast, alga, nematodes, fish, plants, insects, amphibians, birds and mammals, including wild deer, rodents or humans show non-linear radio-adaptive processes in response to low doses of low LET radiation. Low doses increased cellular DNA double-strand break repair capacity, reduced the risk of cell death, reduced radiation or chemically-induced chromosomal aberrations and mutations, and reduced spontaneous or radiation-induced malignant transformation in vitro. In animals, a single low, whole body dose of low LET radiation, increased cancer latency and restored a portion of the life that would have been lost due to either spontaneous or radiation-induced cancer in the absence of the low dose. In genetically normal fetal mice, a prior low dose protected against radiation-induced birth defects. In genetically normal adult-male mice, a low dose prior to a high dose protected the offspring of the mice from heritable mutations produced by the large dose. The results show that low doses of low-LET radiation induce protective effects and that these induced responses have been tightly conserved throughout evolution, suggesting that they are basic responses critical to life. The results also argue strongly that the assumption of a linear increase in risk with increasing dose in humans is unlikely to be correct, and that low doses actually reduce risk.
Collapse
Affiliation(s)
- R E J Mitchel
- Radiation Biology and Health Physics Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada
| |
Collapse
|
31
|
Seo M, Kho BM, Guk SM, Lee SH, Chai JY. Radioresistance of Anisakis simplex Third-Stage Larvae and the Possible Role of Superoxide Dismutase. J Parasitol 2006; 92:416-8. [PMID: 16729710 DOI: 10.1645/ge-610r.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The radioresistance of Anisakis simplex third-stage larvae and the possible role of sublethal radiation on superoxide dismutase (SOD) were investigated. Larvae were isolated from the viscera of the sea eel Anago anago; irradiated with 10, 100, 200, 500, or 1,000 Gy; and then given orally to rats. Worms were recovered at 16 hr postinoculation. Most larvae were found to have invaded the gastric wall, omentum, and abdominal cavity, suggesting that their viability and infectivity were not controlled by irradiation with the doses used. To determine the relationship between SOD activities in parasites and their radiosensitivities, the larvae of A. simplex and the metacercariae of Neodiplostomum seoulense (a radiosensitive control) were irradiated with 0, 30, 100, or 500 Gy, and parasite SOD levels were measured. In nonirradiated A. simplex larvae, the average SOD level was 38.9 U/mg, and this increased to 51.3 U/mg at 500 Gy. However, at all radiation doses applied, SOD activities of N. seoulense metacercariae were significantly (P < 0.05) lower than those of A. simplex larvae. Our results demonstrate that A. simplex third-stage larvae are radioresistant, and suggest that SOD plays a role in this radioresistance.
Collapse
Affiliation(s)
- M Seo
- Department of Parasitology, College of Medicine, Dankook University, Chonan 330-714, Korea
| | | | | | | | | |
Collapse
|
32
|
Abstract
The nematode Caenorhabditis elegans has proven a robust genetic model for studies of aging and the roles of stress. In this review we focus on the genetics of select long-lived and short-lived mutants of C. elegans that have proven useful in revealing the relationships that exist between oxidative stress and life span. The former are known to be controlled by an insulin/insulin-like signaling pathway, while the latter are affected by mitochondrial functions.
Collapse
Affiliation(s)
- N Ishii
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
33
|
Miura Y. Oxidative stress, radiation-adaptive responses, and aging. JOURNAL OF RADIATION RESEARCH 2004; 45:357-372. [PMID: 15613781 DOI: 10.1269/jrr.45.357] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organisms living in an aerobic environment were forced to evolve effective cellular strategies to detoxify reactive oxygen species. Besides diverse antioxidant enzymes and compounds, DNA repair enzymes, and disassembly systems, which remove damaged proteins, regulation systems that control transcription, translation, and activation have also been developed. The adaptive responses, especially those to radiation, are defensive regulation mechanisms by which oxidative stress (conditioning irradiation) elicits a response against damage because of subsequent stress (challenging irradiation). Although many researchers have investigated these molecular mechanisms, they remain obscure because of their complex signaling pathways and the involvement of various proteins. This article reviews the factors concerned with radiation-adaptive response, the signaling pathways activated by conditioning irradiation, and the effects of aging on radiation-adaptive response. The proteomics approach is also introduced, which is a useful method for studying stress response in cells.
Collapse
Affiliation(s)
- Yuri Miura
- Redox regulation research group, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku. Tokyo, Japan.
| |
Collapse
|
34
|
Shim J, Im SH, Lee J. Tissue-specific expression, heat inducibility, and biological roles of two hsp16 genes in Caenorhabditis elegans. FEBS Lett 2003; 537:139-45. [PMID: 12606046 DOI: 10.1016/s0014-5793(03)00111-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this report we have examined two new heat shock protein (HSP16) proteins in the nematode Caenorhabditis elegans encoded by the open reading frames F08H9.3 and F08H9.4. The F08H9.3 and F08H9.4 genes are oriented in the same direction next to each other on the chromosome, not sharing any promoter region, unlike other hsp16 genes that share common promoters in pairs. The F08H9.3 and F08H9.4 proteins were expressed in a tissue-specific manner, unlike the other four HSP16 proteins. F08H9.3 was expressed in the pharynx, and F08H9.4 in the excretory canal and a few neuronal cells. While F08H9.3 was weakly induced by heat shock only in the same tissue as under the normal condition, F08H9.4 was newly induced in the intestine. RNA interference experiments showed that these two proteins are required for survival under the heat shock condition.
Collapse
Affiliation(s)
- Jaegal Shim
- National Research Laboratory, Department of Biology, Yonsei University, 134 Shinchon-dong, Seoul 120-749, South Korea
| | | | | |
Collapse
|
35
|
Yanase S, Yasuda K, Ishii N. Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span. Mech Ageing Dev 2002; 123:1579-87. [PMID: 12470895 DOI: 10.1016/s0047-6374(02)00093-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxidative damage shortens the life span of the nematode Caenorhabditis elegans (C. elegans), even in an age-1 mutant that is characterized by a long life and oxygen resistance. We found that daily short-term exposure (3 h) to hyperoxia further extended the life span of age-1, a phenomenon known as an adaptive response. age-1 also showed resistance to paraquat and heat. Acute hyperoxic treatment did not extend the life spans of wild type, daf-16 or mev-1. daf-16 mutant had a slightly shorter life span compared to wild type and was sensitive to heat and paraquat. The daf-16 phenotype resembles that of mev-1 showing a short life and oxygen sensitivity. We measured mRNA levels of superoxide dismutase genes (sod-1 through 4), catalase genes (clt-1 and ctl-2), known to encode anti-oxidant enzymes, and found they were elevated in age-1 young adults. On the other hand, in daf-16 and mev-1, the expression of sod-1, sod-2 and sod-3 genes was lower rather than in wild type. Conversely, ctl-1 and ctl-2 genes expression was significantly elevated in daf-16 and mev-1. This suggests that DAF-16, a forkhead/winged-helix transcription factor, whose expression is suppressed by AGE-1, phosphoinositide 3-kinase (PI3-kinase), regulates anti-oxidant genes as well as energy metabolism under atmospheric conditions. However, the level of gene expression of SOD and catalase was not elevated by short-term exposure to 90% oxygen in wild type, mev-1, daf-16 and even age-1. This suggests that SOD and catalase do not play a role in the adaptive response against oxidative stress under hyperoxia, at least under these experimental conditions.
Collapse
Affiliation(s)
- Sumino Yanase
- Department of Molecular Life Science, Tokai University School of Medicine, Boseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | |
Collapse
|
36
|
Cypser JR, Johnson TE. Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 2002; 57:B109-14. [PMID: 11867647 DOI: 10.1093/gerona/57.3.b109] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrate here that the nematode Caenorhabditis elegans displays broad hormetic abilities. Hormesis is the induction of beneficial effects by exposure to low doses of otherwise harmful chemical or physical agents. Heat as well as pretreatment with hyperbaric oxygen or juglone (a chemical that generates reactive oxygen species) significantly increased subsequent resistance to the same challenge. Cross-tolerance between juglone and oxygen was also observed. The same heat or oxygen pretreatment regimens that induced subsequent stress resistance also increased life expectancy and maximum life span of populations undergoing normal aging. Pretreatment with ultraviolet or ionizing radiation did not promote subsequent resistance or increased longevity. In dose-response studies, induced thermotolerance paralleled the induced increase in life expectancy, which is consistent with a common origin.
Collapse
Affiliation(s)
- James R Cypser
- Institute for Behavioral Genetics, University of Colorado, Boulder 80303, USA
| | | |
Collapse
|
37
|
Butov A, Johnson T, Cypser J, Sannikov I, Volkov M, Sehl M, Yashin A. Hormesis and debilitation effects in stress experiments using the nematode worm Caenorhabditis elegans: the model of balance between cell damage and HSP levels. Exp Gerontol 2001; 37:57-66. [PMID: 11738147 DOI: 10.1016/s0531-5565(01)00161-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we discuss mechanisms responsible for the effects of heat treatment on increasing subsequent survival in the nematode worm Caenorhabditis elegans. We assume that the balance between damage associated with exposure to thermal stress and the level of heat shock proteins produced plays a key role in forming the age-pattern of mortality and survival in stress experiments. We propose a stochastic model of stress, which describes the accumulation of damage in the cells of the worm as the worm ages. The model replicates the age trajectories of experimental survival curves in three experiments in which worms were heat-treated for 0, 1, 2, 4, 6, or 8h. We also discuss analytical results and directions of further research. The proposed method of stochastic modelling of survival data provides a new approach that can be used to model, analyse and extrapolate experimental results.
Collapse
Affiliation(s)
- A Butov
- Ulyanovsk State University, Ulyanovsk, Russia
| | | | | | | | | | | | | |
Collapse
|
38
|
Johnson TE, de Castro E, Hegi de Castro S, Cypser J, Henderson S, Tedesco P. Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 2001; 36:1609-17. [PMID: 11672983 DOI: 10.1016/s0531-5565(01)00144-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We review the status of the hypothesis that interventions that increase the resistance to stress offer the potential for effective life prolongation and increased health. The work focuses on research in the nematode worm Caenorhabditis elegans and describes both published and unpublished results consistent with this hypothesis. Correlation between stress resistance and longevity among many gerontogene mutants is provided.
Collapse
Affiliation(s)
- T E Johnson
- Institute for Behavioral Genetics, University of Colorado at Boulder, 1480 30th St, Box 447, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|