1
|
Liu Y, Zhang Y, Kang C, Tian D, Lu H, Xu B, Xia Y, Kashiwagi A, Westermann M, Hoischen C, Xu J, Yomo T. Comparative genomics hints at dispensability of multiple essential genes in two Escherichia coli L-form strains. Biosci Rep 2023; 43:BSR20231227. [PMID: 37819245 PMCID: PMC10600066 DOI: 10.1042/bsr20231227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
Despite the critical role of bacterial cell walls in maintaining cell shapes, certain environmental stressors can induce the transition of many bacterial species into a wall-deficient state called L-form. Long-term induced Escherichia coli L-forms lose their rod shape and usually hold significant mutations that affect cell division and growth. Besides this, the genetic background of L-form bacteria is still poorly understood. In the present study, the genomes of two stable L-form strains of E. coli (NC-7 and LWF+) were sequenced and their gene mutation status was determined and compared with their parental strains. Comparative genomic analysis between two L-forms reveals both unique adaptions and common mutated genes, many of which belong to essential gene categories not involved in cell wall biosynthesis, indicating that L-form genetic adaptation impacts crucial metabolic pathways. Missense variants from L-forms and Lenski's long-term evolution experiment (LTEE) were analyzed in parallel using an optimized DeepSequence pipeline to investigate predicted mutation effects (α) on protein functions. We report that the two L-form strains analyzed display a frequency of 6-10% (0% for LTEE) in mutated essential genes where the missense variants have substantial impact on protein functions (α<0.5). This indicates the emergence of different survival strategies in L-forms through changes in essential genes during adaptions to cell wall deficiency. Collectively, our results shed light on the detailed genetic background of two E. coli L-forms and pave the way for further investigations of the gene functions in L-form bacterial models.
Collapse
Affiliation(s)
- Yunfei Liu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Yueyue Zhang
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Chen Kang
- School of Software Engineering, East China Normal University, Shanghai 200062, PR China
| | - Di Tian
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Hui Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Akiko Kashiwagi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Martin Westermann
- Center for Electron Microscopy, Medical Faculty, Friedrich–Schiller–University Jena, Ziegelmühlenweg 1, D-07743 Jena, Germany
| | - Christian Hoischen
- CF Imaging, Leibniz Institute On Aging, Fritz–Lipmann–Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| |
Collapse
|
2
|
Lynch M, Ali F, Lin T, Wang Y, Ni J, Long H. The divergence of mutation rates and spectra across the Tree of Life. EMBO Rep 2023; 24:e57561. [PMID: 37615267 PMCID: PMC10561183 DOI: 10.15252/embr.202357561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several-fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift-barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population-genetic analysis and raises challenges for future applications in these areas.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Farhan Ali
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| |
Collapse
|
3
|
Dominelli N, Jäger HY, Langer A, Brachmann A, Heermann R. High-throughput sequencing analysis reveals genomic similarity in phenotypic heterogeneous Photorhabdus luminescens cell populations. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Phenotypic heterogeneity occurs in many bacterial populations: single cells of the same species display different phenotypes, despite being genetically identical. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens is an excellent example to investigate bacterial phenotypic heterogeneity. Its dualistic life cycle includes a symbiotic stage interacting with entomopathogenic nematodes (EPNs) and a pathogenic stage killing insect larvae. P. luminescens appears in two phenotypically different cell forms: the primary (1°) and the secondary (2°) cell variants. While 1° cells are bioluminescent, pigmented, and produce a huge set of secondary metabolites, 2° cells lack all these phenotypes. The main difference between both phenotypic variants is that only 1° cells can undergo symbiosis with EPNs, a phenotype that is absent from 2° cells. Recent comparative transcriptome analysis revealed that genes mediating 1° cell-specific traits are modulated differently in 2° cells. Although it was previously suggested that heterogeneity in P. luminescens cells cultures is not genetically mediated by, e.g., larger rearrangements in the genome, the genetic similarity of both cell variants has not clearly been demonstrated yet.
Methods
Here, we analyzed the genomes of both 1° and 2° cells by genome sequencing of each six single 1° and 2° clones that emerged from a single 1° clone after prolonged growth. Using different bioinformatics tools, the sequence data were analyzed for clustered point mutations or genetic rearrangements with respect to the respective phenotypic variant.
Result
We demonstrate that isolated clones of 2° cells that switched from the 1° cell state do not display any noticeable mutation and do not genetically differ from 1° cells.
Conclusion
In summary, we show that the phenotypic differences in P. luminescens cell cultures are obviously not caused by mutations or genetic rearrangements in the genome but truly emerge from phenotypic heterogeneity.
Collapse
|
4
|
Saakian DB, Cheong KH. Weak mixed phase in the mutator model. Phys Rev E 2021; 103:032113. [PMID: 33862733 DOI: 10.1103/physreve.103.032113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/10/2021] [Indexed: 11/07/2022]
Abstract
We consider the mutator model with unidirected transitions from the wild type to the mutator type, with different fitness functions for the wild types and mutator types. We calculate both the fraction of mutator types in the population and the surpluses, i.e., the mean number of mutations in the regular part of genomes for the wild type and mutator type, which have never been derived exactly. We identify the phase structure. Beside the mixed (ordinary evolution phase with finite fraction of wild types at large genome length) and the mutator phase (the absolute majority is mutators), we find another new phase as well-it has the mean fitness of the mixed phase but an exponentially small (in genome length) fraction of wild types. We identify the phase transition point and discuss its implications.
Collapse
Affiliation(s)
- David B Saakian
- Laboratory of Applied Physics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, S487372 Singapore
| |
Collapse
|
5
|
Rudenko O, Engelstädter J, Barnes AC. Evolutionary epidemiology of Streptococcus iniae: Linking mutation rate dynamics with adaptation to novel immunological landscapes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104435. [PMID: 32569744 DOI: 10.1016/j.meegid.2020.104435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Pathogens continuously adapt to changing host environments where variation in their virulence and antigenicity is critical to their long-term evolutionary success. The emergence of novel variants is accelerated in microbial mutator strains (mutators) deficient in DNA repair genes, most often from mismatch repair and oxidized-guanine repair systems (MMR and OG respectively). Bacterial MMR/OG mutants are abundant in clinical samples and show increased adaptive potential in experimental infection models, yet the role of mutators in the epidemiology and evolution of infectious disease is not well understood. Here we investigated the role of mutation rate dynamics in the evolution of a broad host range pathogen, Streptococcus iniae, using a set of 80 strains isolated globally over 40 years. We have resolved phylogenetic relationships using non-recombinant core genome variants, measured in vivo mutation rates by fluctuation analysis, identified variation in major MMR/OG genes and their regulatory regions, and phenotyped the major traits determining virulence in streptococci. We found that both mutation rate and MMR/OG genotype are remarkably conserved within phylogenetic clades but significantly differ between major phylogenetic lineages. Further, variation in MMR/OG loci correlates with occurrence of atypical virulence-associated phenotypes, infection in atypical hosts (mammals), and atypical (osseous) tissue of a vaccinated primary host. These findings suggest that mutators are likely to facilitate adaptations preceding major diversification events and may promote emergence of variation permitting colonization of a novel host tissue, novel host taxa (host jumps), and immune-escape in the vaccinated host.
Collapse
Affiliation(s)
- Oleksandra Rudenko
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Jan Engelstädter
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Raghavan V, Aquadro CF, Alani E. Baker's Yeast Clinical Isolates Provide a Model for How Pathogenic Yeasts Adapt to Stress. Trends Genet 2019; 35:804-817. [PMID: 31526615 PMCID: PMC6825890 DOI: 10.1016/j.tig.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Global outbreaks of drug-resistant fungi such as Candida auris are thought to be due at least in part to excessive use of antifungal drugs. Baker's yeast Saccharomyces cerevisiae has gained importance as an emerging opportunistic fungal pathogen that can cause infections in immunocompromised patients. Analyses of over 1000 S. cerevisiae isolates are providing rich resources to better understand how fungi can grow in human environments. A large percentage of clinical S. cerevisiae isolates are heterozygous across many nucleotide sites, and a significant proportion are of mixed ancestry and/or are aneuploid or polyploid. Such features potentially facilitate adaptation to new environments. These observations provide strong impetus for expanding genomic and molecular studies on clinical and wild isolates to understand the prevalence of genetic diversity and instability-generating mechanisms, and how they are selected for and maintained. Such work can also lead to the identification of new targets for antifungal drugs.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Khil PP, Dulanto Chiang A, Ho J, Youn JH, Lemon JK, Gea-Banacloche J, Frank KM, Parta M, Bonomo RA, Dekker JP. Dynamic Emergence of Mismatch Repair Deficiency Facilitates Rapid Evolution of Ceftazidime-Avibactam Resistance in Pseudomonas aeruginosa Acute Infection. mBio 2019; 10:e01822-19. [PMID: 31530672 PMCID: PMC6751058 DOI: 10.1128/mbio.01822-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023] Open
Abstract
Strains of Pseudomonas aeruginosa with deficiencies in DNA mismatch repair have been studied in the context of chronic infection, where elevated mutational rates ("hypermutation") may facilitate the acquisition of antimicrobial resistance. Whether P. aeruginosa hypermutation can also play an adaptive role in the more dynamic context of acute infection remains unclear. In this work, we demonstrate that evolved mismatch repair deficiencies may be exploited by P. aeruginosa to facilitate rapid acquisition of antimicrobial resistance in acute infection, and we directly document rapid clonal succession by such a hypermutating lineage in a patient. Whole-genome sequencing (WGS) was performed on nine serially cultured blood and respiratory isolates from a patient in whom ceftazidime-avibactam (CZA) resistance emerged in vivo over the course of days. The CZA-resistant clone was differentiated by 14 mutations, including a gain-of-function G183D substitution in the PDC-5 chromosomal AmpC cephalosporinase conferring CZA resistance. This lineage also contained a substitution (R656H) at a conserved position in the ATPase domain of the MutS mismatch repair (MMR) protein, and elevated mutational rates were confirmed by mutational accumulation experiments with WGS of evolved lineages in conjunction with rifampin resistance assays. To test whether MMR-deficient hypermutation could facilitate rapid acquisition of CZA resistance, in vitro adaptive evolution experiments were performed with a mutS-deficient strain. These experiments demonstrated rapid hypermutation-facilitated acquisition of CZA resistance compared with the isogenic wild-type strain. Our results suggest a possibly underappreciated role for evolved MMR deficiency in facilitating rapid adaptive evolution of P. aeruginosa in the context of acute infection.IMPORTANCE Antimicrobial resistance in bacteria represents one of the most consequential problems in modern medicine, and its emergence and spread threaten to compromise central advances in the treatment of infectious diseases. Ceftazidime-avibactam (CZA) belongs to a new class of broad-spectrum beta-lactam/beta-lactamase inhibitor combinations designed to treat infections caused by multidrug-resistant bacteria. Understanding the emergence of resistance to this important new drug class is of critical importance. In this work, we demonstrate that evolved mismatch repair deficiency in P. aeruginosa, an important pathogen responsible for significant morbidity and mortality among hospitalized patients, may facilitate rapid acquisition of resistance to CZA in the context of acute infection. These findings are relevant for both diagnosis and treatment of antimicrobial resistance emerging in acute infection in the hypermutator background and additionally have implications for the emergence of more virulent phenotypes.
Collapse
Affiliation(s)
- Pavel P Khil
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| | - Augusto Dulanto Chiang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| | - Jonathan Ho
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie K Lemon
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Karen M Frank
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Parta
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Fredrick, Maryland, USA
| | - Robert A Bonomo
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John P Dekker
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| |
Collapse
|
8
|
Galeota-Sprung B, Guindon B, Sniegowski P. The fitness cost of mismatch repair mutators in Saccharomyces cerevisiae: partitioning the mutational load. Heredity (Edinb) 2019; 124:50-61. [PMID: 31515531 DOI: 10.1038/s41437-019-0267-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
Mutational load is the depression in a population's mean fitness that results from the continual influx of deleterious mutations. Here, we directly estimate the mutational load in a population of haploid Saccharomyces cerevisiae that are deficient for mismatch repair. We partition the load in haploids into two components. To estimate the load due to nonlethal mutations, we measure the competitive fitness of hundreds of randomly selected clones from both mismatch-repair-deficient and -proficient populations. Computation of the mean clone fitness for the mismatch-repair-deficient strain permits an estimation of the nonlethal load, and the histogram of fitness provides an interesting visualization of a loaded population. In a separate experiment, in order to estimate the load due to lethal mutations (i.e. the lethal mutation rate), we manipulate thousands of individual pairs of mother and daughter cells and track their fates. These two approaches yield point estimates for the two contributors to load, and the addition of these estimates is nearly equal to the separately measured short-term competitive fitness deficit for the mismatch-repair-deficient strain. This correspondence suggests that there is no need to invoke direct fitness effects to explain the fitness difference between mismatch-repair-deficient and -proficient strains. Assays in diploids are consistent with deleterious mutations in diploids tending towards recessivity. These results enhance our understanding of mutational load, a central population genetics concept, and we discuss their implications for the evolution of mutation rates.
Collapse
|
9
|
Hingston PA, Truelstrup Hansen L, Pombert JF, Wang S. Characterization of Listeria monocytogenes enhanced cold-tolerance variants isolated during prolonged cold storage. Int J Food Microbiol 2019; 306:108262. [PMID: 31362162 DOI: 10.1016/j.ijfoodmicro.2019.108262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/04/2019] [Accepted: 07/07/2019] [Indexed: 11/25/2022]
Abstract
In this study, we show that growth and prolonged storage of Listeria monocytogenes at 4 °C can promote the selection of variants with enhanced cold and heat tolerance. Enhanced cold-tolerance (ECT) variants (n = 12) were successfully isolated from a strain with impaired cold growth abilities following 84 days of storage at 4 °C in brain heart infusion broth (BHIB). Whole genome sequencing, membrane fatty acid analysis, and stress tolerance profiling were performed on the parent strain and two ECT variants: one displaying regular-sized colonies and the other displaying small colonies when grown at 37 °C on BHI agar. Under cold stress conditions, the parent strain exhibited an impaired ability to produce branched-chain fatty acids which are known to be important for cold adaptation in L.monocytogenes. The ECT variants were able to overcome this limitation, a finding which is hypothesized to be associated with the identification of two independent single-nucleotide polymorphisms in genes encoding subunits of acetyl-coA carboxylase, an enzyme critical for fatty acid biosynthesis. While the ECT phenotype was not found to be associated with improved salt (BHIB + 6% NaCl, 25 °C), acid (BHIB pH 5, 25 °C) or desiccation (33% RH, 20 °C) tolerance, the small-colony variant exhibited significantly (p < 0.05) enhanced heat tolerance at 52 °C in buffered peptone water compared to the parent strain and the other variant. The results from this study demonstrate that the continuous use of refrigeration along the food-supply chain has the potential to select for L.monocytogenes variants with enhanced cold and heat tolerance, highlighting the impact that microbial intervention strategies can have on the evolution of bacterial strains and likewise, food safety.
Collapse
Affiliation(s)
- Patricia A Hingston
- Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Siyun Wang
- Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
10
|
Raghavan V, Bui DT, Al-Sweel N, Friedrich A, Schacherer J, Aquadro CF, Alani E. Incompatibilities in Mismatch Repair Genes MLH1-PMS1 Contribute to a Wide Range of Mutation Rates in Human Isolates of Baker's Yeast. Genetics 2018; 210:1253-1266. [PMID: 30348651 PMCID: PMC6283166 DOI: 10.1534/genetics.118.301550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Laboratory baker's yeast strains bearing an incompatible combination of MLH1 and PMS1 mismatch repair alleles are mutators that can adapt more rapidly to stress, but do so at the cost of long-term fitness. We identified 18 baker's yeast isolates from 1011 surveyed that contain the incompatible MLH1-PMS1 genotype in a heterozygous state. Surprisingly, the incompatible combination from two human clinical heterozygous diploid isolates, YJS5845 and YJS5885, contain the exact MLH1 (S288c-derived) and PMS1 (SK1-derived) open reading frames originally shown to confer incompatibility. While these isolates were nonmutators, their meiotic spore clone progeny displayed mutation rates in a DNA slippage assay that varied over a 340-fold range. This range was 30-fold higher than observed between compatible and incompatible combinations of laboratory strains. Genotyping analysis indicated that MLH1-PMS1 incompatibility was the major driver of mutation rate in the isolates. The variation in the mutation rate of incompatible spore clones could be due to background suppressors and enhancers, as well as aneuploidy seen in the spore clones. Our data are consistent with the observed variance in mutation rate contributing to adaptation to stress conditions (e.g., in a human host) through the acquisition of beneficial mutations, with high mutation rates leading to long-term fitness costs that are buffered by mating or eliminated through natural selection.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratory of Molecular Genetics, Genomics and Microbiology (GMGM) UMR 7156, F-67000, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratory of Molecular Genetics, Genomics and Microbiology (GMGM) UMR 7156, F-67000, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
11
|
Sergaki C, Lagunas B, Lidbury I, Gifford ML, Schäfer P. Challenges and Approaches in Microbiome Research: From Fundamental to Applied. FRONTIERS IN PLANT SCIENCE 2018; 9:1205. [PMID: 30174681 PMCID: PMC6107787 DOI: 10.3389/fpls.2018.01205] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 05/07/2023]
Abstract
We face major agricultural challenges that remain a threat for global food security. Soil microbes harbor enormous potentials to provide sustainable and economically favorable solutions that could introduce novel approaches to improve agricultural practices and, hence, crop productivity. In this review we give an overview regarding the current state-of-the-art of microbiome research by discussing new technologies and approaches. We also provide insights into fundamental microbiome research that aim to provide a deeper understanding of the dynamics within microbial communities, as well as their interactions with different plant hosts and the environment. We aim to connect all these approaches with potential applications and reflect how we can use microbial communities in modern agricultural systems to realize a more customized and sustainable use of valuable resources (e.g., soil).
Collapse
Affiliation(s)
- Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Chrysi Sergaki,
| | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ian Lidbury
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Miriam L. Gifford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
12
|
Swings T, Van den Bergh B, Wuyts S, Oeyen E, Voordeckers K, Verstrepen KJ, Fauvart M, Verstraeten N, Michiels J. Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli. eLife 2017; 6. [PMID: 28460660 PMCID: PMC5429094 DOI: 10.7554/elife.22939] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy.
Collapse
Affiliation(s)
- Toon Swings
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Sander Wuyts
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Eline Oeyen
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Karin Voordeckers
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,Smart Systems and Emerging Technologies Unit, Imec (Interuniversity Micro-Electronics Centre), Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Bui DT, Friedrich A, Al-Sweel N, Liti G, Schacherer J, Aquadro CF, Alani E. Mismatch Repair Incompatibilities in Diverse Yeast Populations. Genetics 2017; 205:1459-1471. [PMID: 28193730 PMCID: PMC5378106 DOI: 10.1534/genetics.116.199513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
An elevated mutation rate can provide cells with a source of mutations to adapt to changing environments. We identified a negative epistatic interaction involving naturally occurring variants in the MLH1 and PMS1 mismatch repair (MMR) genes of Saccharomyces cerevisiae We hypothesized that this MMR incompatibility, created through mating between divergent S. cerevisiae, yields mutator progeny that can rapidly but transiently adapt to an environmental stress. Here we analyzed the MLH1 and PMS1 genes across 1010 S. cerevisiae natural isolates spanning a wide range of ecological sources (tree exudates, Drosophila, fruits, and various fermentation and clinical isolates) and geographical sources (Europe, America, Africa, and Asia). We identified one homozygous clinical isolate and 18 heterozygous isolates containing the incompatible MMR genotype. The MLH1-PMS1 gene combination isolated from the homozygous clinical isolate conferred a mutator phenotype when expressed in the S288c laboratory background. Using a novel reporter to measure mutation rates, we showed that the overall mutation rate in the homozygous incompatible background was similar to that seen in compatible strains, indicating the presence of suppressor mutations in the clinical isolate that lowered its mutation rate. This observation and the identification of 18 heterozygous isolates, which can lead to MMR incompatible genotypes in the offspring, are consistent with an elevated mutation rate rapidly but transiently facilitating adaptation. To avoid long-term fitness costs, the incompatibility is apparently buffered by mating or by acquiring suppressors. These observations highlight effective strategies in eukaryotes to avoid long-term fitness costs associated with elevated mutation rates.
Collapse
Affiliation(s)
- Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice, 06107 Nice, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
14
|
Alexander HK, Mayer SI, Bonhoeffer S. Population Heterogeneity in Mutation Rate Increases the Frequency of Higher-Order Mutants and Reduces Long-Term Mutational Load. Mol Biol Evol 2017; 34:419-436. [PMID: 27836985 PMCID: PMC5850754 DOI: 10.1093/molbev/msw244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified.
Collapse
Affiliation(s)
- Helen K. Alexander
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| | - Stephanie I. Mayer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| |
Collapse
|
15
|
Abstract
We propose a modification of the Crow-Kimura and Eigen models of biological molecular evolution to include a mutator gene that causes both an increase in the mutation rate and a change in the fitness landscape. This mutator effect relates to a wide range of biomedical problems. There are three possible phases: mutator phase, mixed phase and non-selective phase. We calculate the phase structure, the mean fitness and the fraction of the mutator allele in the population, which can be applied to describe cancer development and RNA viruses. We find that depending on the genome length, either the normal or the mutator allele dominates in the mixed phase. We analytically solve the model for a general fitness function. We conclude that the random fitness landscape is an appropriate choice for describing the observed mutator phenomenon in the case of a small fraction of mutators. It is shown that the increase in the mutation rates in the regular and the mutator parts of the genome should be set independently; only some combinations of these increases can push the complex biomedical system to the non-selective phase, potentially related to the eradication of tumors.
Collapse
|
16
|
James A, Jain K. Fixation probability of rare nonmutator and evolution of mutation rates. Ecol Evol 2016; 6:755-64. [PMID: 26865963 PMCID: PMC4739564 DOI: 10.1002/ece3.1932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 01/02/2023] Open
Abstract
Although mutations drive the evolutionary process, the rates at which the mutations occur are themselves subject to evolutionary forces. Our purpose here is to understand the role of selection and random genetic drift in the evolution of mutation rates, and we address this question in asexual populations at mutation-selection equilibrium neglecting selective sweeps. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large asexual population of mutators and find that a nonmutator is more likely to fix when the deleterious mutation rate of the mutator population is high. Compensatory mutations in the mutator population are found to decrease the fixation probability of a nonmutator when the selection coefficient is large. But, surprisingly, the fixation probability changes nonmonotonically with increasing compensatory mutation rate when the selection is mild. Using these results for the fixation probability and a drift-barrier argument, we find a novel relationship between the mutation rates and the population size. We also discuss the time to fix the nonmutator in an adapted population of asexual mutators, and compare our results with experiments.
Collapse
Affiliation(s)
- Ananthu James
- Theoretical Sciences Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur PO Bangalore 560064 India
| | - Kavita Jain
- Theoretical Sciences Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur PO Bangalore 560064 India
| |
Collapse
|
17
|
Wang Y, Liu C, Zhang Z, Hu Y, Cao C, Wang X, Xi M, Xia X, Yang B, Meng J. Distribution and Molecular Characterization of Salmonella enterica Hypermutators in Retail Food in China. J Food Prot 2015; 78:1481-7. [PMID: 26219361 DOI: 10.4315/0362-028x.jfp-14-462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypermutable pathogens can easily acquire mutation opportunities, as well as antimicrobial resistance, and are tremendous hazards to food safety and public health. In this study, a total of 96 (7.6%) hypermutators were identified from 1,264 Salmonella isolates recovered from retail foods. Pulsed-field gel electrophoresis analysis indicated that hypermutators were genetically diverse. Amino acid substitution of Val421Phe was detected in MutS in one hypermutator and Val246Ala in 56 other hypermutators, while no mutation in MutS was found among the remaining 39 hypermutators. Hypermutators in Salmonella isolates recovered in 2010 (9.3%) and 2008 (7.7%) were significantly more prevalent than those in 2007 (1.4%). The rate of hypermutators in mutton (22.2%) was significantly higher than that in chicken (7.9%) and pork (4.7%). In Salmonella Leimo isolates (60.0%), hypermutators were most frequently detected, followed by Salmonella Essen (50.0%), Salmonella Indiana (36.6%), Salmonella Kallo (25.0%), Salmonella Heidelberg (23.8%), Salmonella Typhimurium (14.0%), Salmonella Shubra (13.0%), Salmonella Albany (11.1%), Salmonella Agona (7.0%), Salmonella Gueuletapee (6.3%), and Salmonella Enteritidis (1.7%). Salmonella hypermutators in isolates recovered from retail food stored at ambient temperature (15.7%) were significantly more prevalent than those stored in chilled (3.1%) and frozen (5.4%) condition. The overall distributions of mutation frequencies of the 96 hypermutators (selected by rifampin) were from 2.16 × 10(-5) to 4.25 × 10(-1). Mutation frequencies of hypermutators of Salmonella Leimo, Salmonella Essen, Salmonella Kallo, and Salmonella Agona were relative low, while those of Salmonella Typhimurium, Salmonella Indiana, and Salmonella Shubra were extremely high. No significant correlation was found between mutation frequency and antimicrobial resistance of the hypermutators.
Collapse
Affiliation(s)
- Yin Wang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Chongyang Liu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Zengfeng Zhang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Yuanyuan Hu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China, 710062
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Meili Xi
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100.
| | - Jianghong Meng
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| |
Collapse
|
18
|
Bui DT, Dine E, Anderson JB, Aquadro CF, Alani EE. A Genetic Incompatibility Accelerates Adaptation in Yeast. PLoS Genet 2015; 11:e1005407. [PMID: 26230253 PMCID: PMC4521705 DOI: 10.1371/journal.pgen.1005407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
During mismatch repair (MMR) MSH proteins bind to mismatches that form as the result of DNA replication errors and recruit MLH factors such as Mlh1-Pms1 to initiate excision and repair steps. Previously, we identified a negative epistatic interaction involving naturally occurring polymorphisms in the MLH1 and PMS1 genes of baker’s yeast. Here we hypothesize that a mutagenic state resulting from this negative epistatic interaction increases the likelihood of obtaining beneficial mutations that can promote adaptation to stress conditions. We tested this by stressing yeast strains bearing mutagenic (incompatible) and non-mutagenic (compatible) mismatch repair genotypes. Our data show that incompatible populations adapted more rapidly and without an apparent fitness cost to high salt stress. The fitness advantage of incompatible populations was rapid but disappeared over time. The fitness gains in both compatible and incompatible strains were due primarily to mutations in PMR1 that appeared earlier in incompatible evolving populations. These data demonstrate a rapid and reversible role (by mating) for genetic incompatibilities in accelerating adaptation in eukaryotes. They also provide an approach to link experimental studies to observational population genomics. In nature, bacterial populations with high mutation rates can adapt faster to new environments by acquiring beneficial mutations. However, such populations also accumulate harmful mutations that reduce their fitness. We show that the model eukaryote baker’s yeast can use a similar mutator strategy to adapt to new environments. The mutator state that we observed resulted from an incompatibility involving two genes, MLH1 and PMS1, that work together to remove DNA replication errors through a spellchecking mismatch repair mechanism. This incompatibility can occur through mating between baker’s yeast from different genetic backgrounds, yielding mutator offspring containing an MLH1-PMS1 combination not present in either parent. Interestingly, these offspring adapted more rapidly to stress, compared to the parental strains, and did so without an overall loss in fitness. DNA sequencing analyses of baker’s yeast strains from across the globe support the presence of incompatible hybrid yeast strains in nature. These observations provide a powerful model to understand how the segregation of defects in DNA mismatch repair can serve as an effective strategy to enable eukaryotes to adapt to changing environments.
Collapse
Affiliation(s)
- Duyen T. Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elliot Dine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - James B. Anderson
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eric E. Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Turrientes MC, Baquero F, Levin BR, Martínez JL, Ripoll A, González-Alba JM, Tobes R, Manrique M, Baquero MR, Rodríguez-Domínguez MJ, Cantón R, Galán JC. Normal mutation rate variants arise in a Mutator (Mut S) Escherichia coli population. PLoS One 2013; 8:e72963. [PMID: 24069167 PMCID: PMC3771984 DOI: 10.1371/journal.pone.0072963] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023] Open
Abstract
The rate at which mutations are generated is central to the pace of evolution. Although this rate is remarkably similar amongst all cellular organisms, bacterial strains with mutation rates 100 fold greater than the modal rates of their species are commonly isolated from natural sources and emerge in experimental populations. Theoretical studies postulate and empirical studies teort the hypotheses that these “mutator” strains evolved in response to selection for elevated rates of generation of inherited variation that enable bacteria to adapt to novel and/or rapidly changing environments. Less clear are the conditions under which selection will favor reductions in mutation rates. Declines in rates of mutation for established populations of mutator bacteria are not anticipated if such changes are attributed to the costs of augmented rates of generation of deleterious mutations. Here we report experimental evidence of evolution towards reduced mutation rates in a clinical isolate of Escherichia coli with an hyper-mutable phenotype due a deletion in a mismatch repair gene, (ΔmutS). The emergence in a ΔmutS background of variants with mutation rates approaching those of the normal rates of strains carrying wild-type MutS was associated with increase in fitness with respect to ancestral strain. We postulate that such an increase in fitness could be attributed to the emergence of mechanisms driving a permanent “aerobic style of life”, the negative consequence of this behavior being regulated by the evolution of mechanisms protecting the cell against increased endogenous oxidative radicals involved in DNA damage, and thus reducing mutation rate. Gene expression assays and full sequencing of evolved mutator and normo-mutable variants supports the hypothesis. In conclusion, we postulate that the observed reductions in mutation rate are coincidental to, rather than, the selective force responsible for this evolution.
Collapse
Affiliation(s)
- María-Carmen Turrientes
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- * E-mail: (FB); (JCG)
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta Georgia, United States of America
| | - José-Luis Martínez
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Madrid, Spain
| | - Aida Ripoll
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - José-María González-Alba
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - Raquel Tobes
- Research Department, Era7 Bioinformatics, Granada, Spain
| | | | | | | | - Rafael Cantón
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, Madrid, Spain
| | - Juan-Carlos Galán
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- * E-mail: (FB); (JCG)
| |
Collapse
|
20
|
Jain K, Nagar A. Fixation of mutators in asexual populations: the role of genetic drift and epistasis. Evolution 2013; 67:1143-54. [PMID: 23550762 DOI: 10.1111/evo.12005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We study the evolutionary dynamics of an asexual population of nonmutators and mutators on a class of epistatic fitness landscapes. We consider the situation in which all mutations are deleterious and mutators are produced from nonmutators continually at a constant rate. We find that in an infinitely large population, a minimum nonmutator-to-mutator conversion rate is required to fix the mutators but an arbitrarily small conversion rate results in the fixation of mutators in a finite population. We calculate analytical expressions for the mutator fraction at mutation-selection balance and fixation time for mutators in a finite population when the difference between the mutation rate for mutator and nonmutator is smaller (regime I) and larger (regime II) than the selection coefficient. Our main result is that in regime I, the mutator fraction and the fixation time are independent of epistasis but in regime II, mutators are rarer and take longer to fix when the decrease in fitness with the number of deleterious mutations occurs at an accelerating rate (synergistic epistasis) than at a diminishing rate (antagonistic epistasis). Our analytical results are compared with numerics and their implications are discussed.
Collapse
Affiliation(s)
- Kavita Jain
- Theoretical Sciences Unit and Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
| | | |
Collapse
|
21
|
Yamachika S, Sugihara C, Kamai Y, Yamashita M. Correlation between penicillin-binding protein 2 mutations and carbapenem resistance in Escherichia coli. J Med Microbiol 2013; 62:429-436. [DOI: 10.1099/jmm.0.051631-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shinichiro Yamachika
- Oncology Research Laboratories, Daiichi Sankyo Co. Ltd, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Chika Sugihara
- Lead Discovery & Optimization Research Laboratories II, Daiichi Sankyo Co. Ltd, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yasuki Kamai
- Oncology Research Laboratories, Daiichi Sankyo Co. Ltd, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Makoto Yamashita
- Biological Research Laboratories, Daiichi Sankyo Co. Ltd, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
22
|
Hilbert L. Stress-induced hypermutation as a physical property of life, a force of natural selection and its role in four thought experiments. Phys Biol 2013; 10:026001. [PMID: 23406696 DOI: 10.1088/1478-3975/10/2/026001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The independence of genetic mutation rate from selection is central to neo-Darwinian evolutionary theory. However, it has been continuously challenged for more than 30 years by experimental evidence of genetic mutation rate transiently increasing in response to stress (stress-induced hypermutation, SIH). The prominent concept of evolved evolvability (EE) explains that natural selection for strategies more competitive at evolutionary adaptation itself gives rise to mechanisms dynamically adjusting mutation rates to environmental stress. Here, we theoretically investigate the alternative (not mutually exclusive) hypothesis that SIH is an inherent physical property of all genetically reproducing life. We define stress as any condition lowering the capability of utilizing metabolic resources for genome storage and replication. This thermodynamical analysis indicates stress-induced increases in the genetic mutation rate in genome storage and in genome replication as inherent physical properties of genetically reproducing life. Further integrating SIH into an overall organismic thermodynamic budget identifies SIH as a force of natural selection, alongside death rate, replication rate and constitutive mutation rate differences. We execute four thought experiments with a non-recombinant lesion mutant strain to predict experimental observations due to SIH in response to different stresses and stress combinations. We find (1) acceleration of adaptation over models without SIH, (2) possibility of adaptation at high stresses which are not explicable by mutation in genome replication alone and (3) different adaptive potential under high growth-inhibiting versus high lethal stresses. The predictions are directly comparable to culture experiments (colony size time courses, antibacterial resistance assay and occurrence of lesion-reversion mutant colonies) and genome sequence analysis. Considering suggestions of drug-mediated disruption of SIH and attempts to target mutation-associated sites with chemotherapeutic agents to prevent resistance, our findings seem to be relevant knowledge for resistance-averse drug development and administration.
Collapse
Affiliation(s)
- Lennart Hilbert
- Department of Physiology, Centre for Applied Mathematics in Bioscience and Medicine, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
23
|
Couce A, Guelfo JR, Blázquez J. Mutational spectrum drives the rise of mutator bacteria. PLoS Genet 2013; 9:e1003167. [PMID: 23326242 PMCID: PMC3542065 DOI: 10.1371/journal.pgen.1003167] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/30/2012] [Indexed: 12/31/2022] Open
Abstract
Understanding how mutator strains emerge in bacterial populations is relevant both to evolutionary theory and to reduce the threat they pose in clinical settings. The rise of mutator alleles is understood as a result of their hitchhiking with linked beneficial mutations, although the factors that govern this process remain unclear. A prominent but underappreciated fact is that each mutator allele increases only a specific spectrum of mutational changes. This spectrum has been speculated to alter the distribution of fitness effects of beneficial mutations, potentially affecting hitchhiking. To study this possibility, we analyzed the fitness distribution of beneficial mutations generated from different mutator and wild-type Escherichia coli strains. Using antibiotic resistance as a model system, we show that mutational spectra can alter these distributions substantially, ultimately determining the competitive ability of each strain across environments. Computer simulation showed that the effect of mutational spectrum on hitchhiking dynamics follows a non-linear function, implying that even slight spectrum-dependent fitness differences are sufficient to alter mutator success frequency by several orders of magnitude. These results indicate an unanticipated central role for the mutational spectrum in the evolution of bacterial mutation rates. At a practical level, this study indicates that knowledge of the molecular details of resistance determinants is crucial for minimizing mutator evolution during antibiotic therapy. Natural and laboratory populations of bacteria can readily give rise to strains with high mutation rates. The evolution of these mutator bacteria—of particular concern in clinical situations—has been understood exclusively in terms of their increased capacity to generate beneficial mutations, such as those that confer antibiotic resistance. Current models, however, have largely overlooked that each mutator allele increases only characteristic types of mutations, a prominent fact whose evolutionary consequences remain unexplored. Using laboratory Escherichia coli populations, we show that this mutational bias determines the competitiveness of different mutators across environments. Computer simulation showed that this effect can markedly influence the evolutionary fate of mutator alleles. These results indicate that this unrecognized factor can be a major determinant in the evolution of mutator bacteria and suggest future experimental approaches for improving antibiotic therapy design.
Collapse
Affiliation(s)
- Alejandro Couce
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
| | | | | |
Collapse
|
24
|
Abstract
Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the 'fittest' mutation gets fixed ultimately while the others are lost. This has been called 'clonal interference' which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host-pathogen interactions.
Collapse
|
25
|
Abstract
Mutator alleles, which elevate an individual's mutation rate from 10 to 10,000-fold, have been found at high frequencies in many natural and experimental populations. Mutators are continually produced from nonmutators, often due to mutations in mismatch-repair genes. These mutators gradually accumulate deleterious mutations, limiting their spread. However, they can occasionally hitchhike to high frequencies with beneficial mutations. We study the interplay between these effects. We first analyze the dynamics of the balance between the production of mutator alleles and their elimination due to deleterious mutations. We find that when deleterious mutation rates are high in mutators, there will often be many "young," recently produced mutators in the population, and the fact that deleterious mutations only gradually eliminate individuals from a population is important. We then consider how this mutator-nonmutator balance can be disrupted by beneficial mutations and analyze the circumstances in which fixation of mutator alleles is likely. We find that dynamics is crucial: even in situations where selection on average acts against mutators, so they cannot stably invade, the mutators can still occasionally generate beneficial mutations and hence be important to the evolution of the population.
Collapse
|
26
|
Gentile CF, Yu SC, Serrano SA, Gerrish PJ, Sniegowski PD. Competition between high- and higher-mutating strains of Escherichia coli. Biol Lett 2011; 7:422-4. [PMID: 21227974 DOI: 10.1098/rsbl.2010.1036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental studies have shown that a mutator allele can readily hitchhike to fixation with beneficial mutations in an asexual population having a low, wild-type mutation rate. Here, we show that a genotype bearing two mutator alleles can supplant a population already fixed for one mutator allele. Our results provide experimental support for recent theory predicting that mutator alleles will tend to accumulate in asexual populations by hitchhiking with beneficial mutations, causing an ever-higher genomic mutation rate.
Collapse
Affiliation(s)
- Christopher F Gentile
- Department of Biology, University of Pennsylvania, Leidy Laboratories, 415 South University Avenue, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
27
|
Trindade S, Perfeito L, Gordo I. Rate and effects of spontaneous mutations that affect fitness in mutator Escherichia coli. Philos Trans R Soc Lond B Biol Sci 2010; 365:1177-86. [PMID: 20308092 PMCID: PMC2871818 DOI: 10.1098/rstb.2009.0287] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Knowledge of the mutational parameters that affect the evolution of organisms is of key importance in understanding the evolution of several characteristics of many natural populations, including recombination and mutation rates. In this study, we estimated the rate and mean effect of spontaneous mutations that affect fitness in a mutator strain of Escherichia coli and review some of the estimation methods associated with mutation accumulation (MA) experiments. We performed an MA experiment where we followed the evolution of 50 independent mutator lines that were subjected to repeated bottlenecks of a single individual for approximately 1150 generations. From the decline in mean fitness and the increase in variance between lines, we estimated a minimum mutation rate to deleterious mutations of 0.005 (+/-0.001 with 95% confidence) and a maximum mean fitness effect per deleterious mutation of 0.03 (+/-0.01 with 95% confidence). We also show that any beneficial mutations that occur during the MA experiment have a small effect on the estimate of the rate and effect of deleterious mutations, unless their rate is extremely large. Extrapolating our results to the wild-type mutation rate, we find that our estimate of the mutational effects is slightly larger and the inferred deleterious mutation rate slightly lower than previous estimates obtained for non-mutator E. coli.
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, No. 6, 2780-156 Oeiras, Portugal
| | - Lilia Perfeito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, No. 6, 2780-156 Oeiras, Portugal
- Institute for Genetics of the University of Cologne, Zuelpicher Street 47, Cologne 50674, Germany
- Institute for Theoretical Physics of the University of Cologne, Zuelpicher Street 77, Cologne 50937, Germany
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, No. 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
28
|
Henderson-Begg SK, Sheppard CL, George RC, Livermore DM, Hall LM. Mutation frequency in antibiotic-resistant and -susceptible isolates of Streptococcus pneumoniae. Int J Antimicrob Agents 2010; 35:342-6. [DOI: 10.1016/j.ijantimicag.2009.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 12/18/2009] [Indexed: 10/19/2022]
|
29
|
Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 2009; 37:5768-83. [PMID: 19638423 PMCID: PMC2761278 DOI: 10.1093/nar/gkp612] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acetobacter species have been used for brewing traditional vinegar and are known to have genetic instability. To clarify the mutability, Acetobacter pasteurianus NBRC 3283, which forms a multi-phenotype cell complex, was subjected to genome DNA sequencing. The genome analysis revealed that there are more than 280 transposons and five genes with hyper-mutable tandem repeats as common features in the genome consisting of a 2.9-Mb chromosome and six plasmids. There were three single nucleotide mutations and five transposon insertions in 32 isolates from the cell complex. The A. pasteurianus hyper-mutability was applied for breeding a temperature-resistant strain grown at an unviable high-temperature (42°C). The genomic DNA sequence of a heritable mutant showing temperature resistance was analyzed by mutation mapping, illustrating that a 92-kb deletion and three single nucleotide mutations occurred in the genome during the adaptation. Alpha-proteobacteria including A. pasteurianus consists of many intracellular symbionts and parasites, and their genomes show increased evolution rates and intensive genome reduction. However, A. pasteurianus is assumed to be a free-living bacterium, it may have the potentiality to evolve to fit in natural niches of seasonal fruits and flowers with other organisms, such as yeasts and lactic acid bacteria.
Collapse
Affiliation(s)
- Yoshinao Azuma
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Le Gall S, Desbordes L, Gracieux P, Saffroy S, Bousarghin L, Bonnaure-Mallet M, Jolivet-Gougeon A. Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator. Vet Microbiol 2009; 137:306-12. [DOI: 10.1016/j.vetmic.2009.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 01/11/2023]
|
31
|
Wylie CS, Ghim CM, Kessler D, Levine H. The fixation probability of rare mutators in finite asexual populations. Genetics 2009; 181:1595-612. [PMID: 19153261 PMCID: PMC2666523 DOI: 10.1534/genetics.108.094532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
A mutator is an allele that increases the mutation rate throughout the genome by disrupting some aspect of DNA replication or repair. Mutators that increase the mutation rate by the order of 100-fold have been observed to spontaneously emerge and achieve high frequencies in natural populations and in long-term laboratory evolution experiments with Escherichia coli. In principle, the fixation of mutator alleles is limited by (i) competition with mutations in wild-type backgrounds, (ii) additional deleterious mutational load, and (iii) random genetic drift. Using a multiple-locus model and employing both simulation and analytic methods, we investigate the effects of these three factors on the fixation probability Pfix of an initially rare mutator as a function of population size N, beneficial and deleterious mutation rates, and the strength of mutations s. Our diffusion-based approximation for Pfix successfully captures effects ii and iii when selection is fast compared to mutation (micro/s<<1). This enables us to predict the conditions under which mutators will be evolutionarily favored. Surprisingly, our simulations show that effect i is typically small for strong-effect mutators. Our results agree semiquantitatively with existing laboratory evolution experiments and suggest future experimental directions.
Collapse
Affiliation(s)
- C Scott Wylie
- Center for Theoretical Biological Physics, University of California, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
32
|
Nagar A, Jain K. Exact phase diagram of a quasispecies model with a mutation rate modifier. PHYSICAL REVIEW LETTERS 2009; 102:038101. [PMID: 19257397 DOI: 10.1103/physrevlett.102.038101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Indexed: 05/27/2023]
Abstract
We consider an infinite asexual population with a mutator allele which can elevate mutation rates. With probability f, a transition from nonmutator to mutator state occurs but the reverse transition is forbidden. We find that at f=0, the population is in the state with minimum mutation rate, and at f=fc, a phase transition occurs between a mixed phase with both nonmutators and mutators and a pure mutator phase. We calculate the critical probability fc and the total mutator fraction Q in the mixed phase exactly. Our predictions for Q are in agreement with those seen in microbial populations in static environments.
Collapse
Affiliation(s)
- Apoorva Nagar
- School of Physics, Korea Institute for Advanced Study, Seoul 130-722, South Korea.
| | | |
Collapse
|
33
|
Demogines A, Wong A, Aquadro C, Alani E. Incompatibilities involving yeast mismatch repair genes: a role for genetic modifiers and implications for disease penetrance and variation in genomic mutation rates. PLoS Genet 2008; 4:e1000103. [PMID: 18566663 PMCID: PMC2413424 DOI: 10.1371/journal.pgen.1000103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 05/21/2008] [Indexed: 11/22/2022] Open
Abstract
Genetic background effects underlie the penetrance of most genetically determined phenotypes, including human diseases. To explore how such effects can modify a mutant phenotype in a genetically tractable system, we examined an incompatibility involving the MLH1 and PMS1 mismatch repair genes using a large population sample of geographically and ecologically diverse Saccharomyces cerevisiae strains. The mismatch repair incompatibility segregates into naturally occurring yeast strains, with no strain bearing the deleterious combination. In assays measuring the mutator phenotype conferred by different combinations of MLH1 and PMS1 from these strains, we observed a mutator phenotype only in combinations predicted to be incompatible. Surprisingly, intragenic modifiers could be mapped that specifically altered the strength of the incompatibility over a 20-fold range. Together, these observations provide a powerful model in which to understand the basis of disease penetrance and how such genetic variation, created through mating, could result in new mutations that could be the raw material of adaptive evolution in yeast populations. For many common afflictions, it is difficult to map disease-associated loci because multiple loci are involved, with some loci playing greater roles than others. To explore how complex interactions can contribute to disease, we examined an incompatibility involving the MLH1 and PMS1 DNA mismatch repair proteins in baker's yeast. In our system, an incompatibility is defined as a defect occurring when specific combinations of MLH1 and PMS1 proteins obtained from different baker's yeast strains are tested for function. We identified amino acid differences at only one site in each protein that contributed to this incompatibility. We also showed that amino acid differences that could cause such an incompatibility are found in strains collected from across the globe. No strain contained the incompatible MLH1-PMS1 combination, indicating that it was likely to be deleterious. When such a combination was created in the laboratory, we could detect a wide range of defects that were under the control of genetic modifiers. These observations provide a powerful model in which to understand the basis of disease penetrance and how segregation of defects in mismatch repair may allow for rapid yet reversible changes in genomic mutation rates that can help yeast adapt to changing or novel environments.
Collapse
Affiliation(s)
- Ann Demogines
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Alex Wong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Charles Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
The emergence of mutations in nucleic acids is one of the major factors underlying evolution, providing the working material for natural selection. Most bacteria are haploid for the vast majority of their genes and, coupled with typically short generation times, this allows mutations to emerge and accumulate rapidly, and to effect significant phenotypic changes in what is perceived to be real-time. Not least among these phenotypic changes are those associated with antibiotic resistance. Mechanisms of horizontal gene spread among bacterial strains or species are often considered to be the main mediators of antibiotic resistance. However, mutational resistance has been invaluable in studies of bacterial genetics, and also has primary clinical importance in certain bacterial species, such as Mycobacterium tuberculosis and Helicobacter pylori, or when considering resistance to particular antibiotics, especially to synthetic agents such as fluoroquinolones and oxazolidinones. In addition, mutation is essential for the continued evolution of acquired resistance genes and has, e.g., given rise to over 100 variants of the TEM family of beta-lactamases. Hypermutator strains of bacteria, which have mutations in genes affecting DNA repair and replication fidelity, have elevated mutation rates. Mutational resistance emerges de novo more readily in these hypermutable strains, and they also provide a suitable host background for the evolution of acquired resistance genes in vitro. In the clinical setting, hypermutator strains of Pseudomonas aeruginosa have been isolated from the lungs of cystic fibrosis patients, but a more general role for hypermutators in the emergence of clinically relevant antibiotic resistance in a wider variety of bacterial pathogens has not yet been proven.
Collapse
Affiliation(s)
- N Woodford
- Antibiotic Resistance Monitoring and Reference Laboratory, Centre for Infections, Health Protection Agency, London, UK.
| | | |
Collapse
|
35
|
Orlén H, Hughes D. Weak mutators can drive the evolution of fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 2006; 50:3454-6. [PMID: 17005830 PMCID: PMC1610101 DOI: 10.1128/aac.00783-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/12/2006] [Accepted: 07/14/2006] [Indexed: 11/20/2022] Open
Abstract
Weak mutators are common among clinical isolates of Escherichia coli. We show that the relative mutation rate and the "evolvability of fluoroquinolone resistance" are related by a power law slope of 1.2 over 3 orders of magnitude. Thus, even weak mutators can drive the evolution of fluoroquinolone resistance under selection pressure.
Collapse
Affiliation(s)
- Hanna Orlén
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
36
|
Warner DF, Mizrahi V. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 2006; 19:558-70. [PMID: 16847086 PMCID: PMC1539104 DOI: 10.1128/cmr.00060-05] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global tuberculosis (TB) control effort is focused on interrupting transmission of the causative agent, Mycobacterium tuberculosis, through chemotherapeutic intervention in active infectious disease. The insufficiency of this approach is manifest in the inexorable annual increase in TB infection and mortality rates and the emergence of multidrug-resistant isolates. Critically, the limited efficacy of the current frontline anti-TB drug combination suggests that heterogeneity of host and bacillary physiologies might impair drug activity. This review explores the possibility that strategies enabling adaptation of M. tuberculosis to hostile in vivo conditions might contribute to the subversion of anti-TB chemotherapy. In particular, evidence that infecting bacilli are exposed to environmental and host immune-mediated DNA-damaging insults suggests a role for error-prone DNA repair synthesis in the generation of chromosomally encoded antibiotic resistance mutations. The failure of frontline anti-TB drugs to sterilize a population of susceptible bacilli is independent of genetic resistance, however, and instead implies the operation of alternative tolerance mechanisms. Specifically, it is proposed that the emergence of persister subpopulations might depend on the switch to an altered metabolic state mediated by the stringent response alarmone, (p)ppGpp, possibly involving some or all of the many toxin-antitoxin modules identified in the M. tuberculosis genome.
Collapse
Affiliation(s)
- Digby F Warner
- Molecular Mycobacteriology Research Unit, Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand and NHLS, P.O. Box 1038, Johannesburg 2000, South Africa.
| | | |
Collapse
|
37
|
McGraw JE, Brookfield JFY. The interaction between mobile DNAs and their hosts in a fluctuating environment. J Theor Biol 2006; 243:13-23. [PMID: 16859716 DOI: 10.1016/j.jtbi.2006.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 05/18/2006] [Accepted: 05/25/2006] [Indexed: 11/29/2022]
Abstract
The interaction between mobile DNA sequences and their hosts raises important questions in the context of hosts which reproduce clonally with only rare horizontal transmission between clones. The activity of some mobile DNAs as reversible mutators of genes raises the possibility that, in a fluctuating environment, cells may gain an advantage if they have mobile DNAs which mutate genes whose inactivation is favoured in one of the environments that the population encounters. Here we analyse a model of this process and ask what would be the optimal rate of transposition in a population whose elements are maintained by this mechanism. We also examine the impact of horizontal transfer on such a population. With movement of elements between cells, we can imagine elements with differing rates of transposition and host cells with differing rates of transposition. We find that evolution in the population of elements favours a rapid rate of transposition, and evolution of the host cells favours cells in which this rapid rate of element-dependent transposition results in an optimal rate of transposition per cell. However, when horizontal transfer rates are high, some unexpected features of the model are observed. In particular, a polymorphism between cell types (some with an optimal rate of transposition and some with no transposition at all from endogenous elements) can be stably maintained. We consider the possible biological predictions of this analysis.
Collapse
Affiliation(s)
- James E McGraw
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
38
|
Abstract
Evolutionary success of bacteria relies on the constant fine-tuning of their mutation rates, which optimizes their adaptability to constantly changing environmental conditions. When adaptation is limited by the mutation supply rate, under some conditions, natural selection favours increased mutation rates by acting on allelic variation of the genetic systems that control fidelity of DNA replication and repair. Mutator alleles are carried to high frequency through hitchhiking with the adaptive mutations they generate. However, when fitness gain no longer counterbalances the fitness loss due to continuous generation of deleterious mutations, natural selection favours reduction of mutation rates. Selection and counter-selection of high mutation rates depends on many factors: the number of mutations required for adaptation, the strength of mutator alleles, bacterial population size, competition with other strains, migration, and spatial and temporal environmental heterogeneity. Such modulations of mutation rates may also play a role in the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Erick Denamur
- INSERM U722, Faculté de Médecine, Université Denis Diderot -- Paris 7, 16 rue Henri Huchard, 75018 Paris, France
| | | |
Collapse
|
39
|
Le Chat L, Fons M, Taddei F. Escherichia coli mutators: selection criteria and migration effect. MICROBIOLOGY-SGM 2006; 152:67-73. [PMID: 16385116 DOI: 10.1099/mic.0.28418-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In silico, it has been shown that mutator alleles that increase mutation rate can be selected for by generating adaptive mutations. In vitro and in vivo, competition between wild-type bacteria and isogenic mutator mutants is consistent with this view. However, in vivo, the gain of the mutator seems to be reduced when migration is allowed. In vitro, the advantage of mutators has been described as frequency-dependent, leading to mutator advantage only when they are sufficiently frequent. Using an in vitro system, it is demonstrated that (i) the selection of mutators is frequency-independent, yet depends on at least one mutator bacterium bearing an adaptive mutation (its presence depends on chance, mutation rates and population size of mutator bacteria); (ii) on average, the mutator gain is always equal to the ratio of the adaptive mutation frequency of the mutator versus wild-type; (iii) when migration into an empty niche is allowed, the mutator benefit is reduced if migration occurs after fixation of the adaptive mutation into the wild-type population. It is concluded that in all cases, mutator gain depends directly on the ratio of bacteria carrying a beneficial mutation in mutator versus wild-type lineages.
Collapse
Affiliation(s)
- Ludovic Le Chat
- University of Paris 5, Faculty of Medicine, INSERM, U571, F-75730 Paris 15, France
| | - Michel Fons
- Université Aix-Marseille III, Faculté St Jérome, IMRN service 342, F-13397 Marseille 20, France
| | - Francois Taddei
- University of Paris 5, Faculty of Medicine, INSERM, U571, F-75730 Paris 15, France
| |
Collapse
|
40
|
Nilsson AI, Kugelberg E, Berg OG, Andersson DI. Experimental adaptation of Salmonella typhimurium to mice. Genetics 2004; 168:1119-30. [PMID: 15579674 PMCID: PMC1448776 DOI: 10.1534/genetics.104.030304] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 07/13/2004] [Indexed: 01/13/2023] Open
Abstract
Experimental evolution is a powerful approach to study the dynamics and mechanisms of bacterial niche specialization. By serial passage in mice, we evolved 18 independent lineages of Salmonella typhimurium LT2 and examined the rate and extent of adaptation to a mainly reticuloendothelial host environment. Bacterial mutation rates and population sizes were varied by using wild-type and DNA repair-defective mutator (mutS) strains with normal and high mutation rates, respectively, and by varying the number of bacteria intraperitoneally injected into mice. After <200 generations of adaptation all lineages showed an increased fitness as measured by a faster growth rate in mice (selection coefficients 0.11-0.58). Using a generally applicable mathematical model we calculated the adaptive mutation rate for the wild-type bacterium to be >10(-6)/cell/generation, suggesting that the majority of adaptive mutations are not simple point mutations. For the mutator lineages, adaptation to mice was associated with a loss of fitness in secondary environments as seen by a reduced metabolic capability. During adaptation there was no indication that a high mutation rate was counterselected. These data show that S. typhimurium can rapidly and extensively increase its fitness in mice but this niche specialization is, at least in mutators, associated with a cost.
Collapse
Affiliation(s)
- Annika I Nilsson
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden
| | | | | | | |
Collapse
|
41
|
Abstract
A recent study indicates that the genomic mutation rate of the gut bacterium Escherichia coli is substantially higher in nongrowing than growing cultures. These findings are important in the light of the ongoing controversy over the generality and robustness of stationary phase mutagenesis and its evolutionary implications.
Collapse
Affiliation(s)
- Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
42
|
Abstract
Bacterial adaptation to antibiotics has been very successful and over the past decade the increase in antibiotic resistance has generated considerable medical problems. Even though many drug resistances confer a fitness cost, suggesting that they might disappear by reducing the volume of antibiotic use, increasing evidence obtained from laboratory and epidemiological studies indicate that several processes will act to cause long-term persistence of resistant bacteria. Compensatory evolution that ameliorates the costs of resistance, the occurrence of cost-free resistances and genetic linkage between non-selected and selected resistances will confer a stabilization of the resistant bacteria. Thus, it is of importance that we forcefully implement strategies to reduce the rate of appearance and spread of resistant bacteria to allow new drug discovery to catch up with bacterial resistance development.
Collapse
Affiliation(s)
- Dan I Andersson
- Swedish Institute for Infectious Disease Control, Dept. of Bacteriology, Nobels väg 18, S-171 82, Stockholm, Sweden.
| |
Collapse
|
43
|
Shaver AC, Sniegowski PD. Spontaneously arising mutL mutators in evolving Escherichia coli populations are the result of changes in repeat length. J Bacteriol 2003; 185:6076-82. [PMID: 14526019 PMCID: PMC225017 DOI: 10.1128/jb.185.20.6076-6082.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 05/23/2003] [Indexed: 11/20/2022] Open
Abstract
Over the course of thousands of generations of growth in a glucose-limited environment, 3 of 12 experimental populations of Escherichia coli spontaneously and independently evolved greatly increased mutation rates. In two of the populations, the mutations responsible for this increased mutation rate lie in the same region of the mismatch repair gene mutL. In this region, a 6-bp repeat is present in three copies in the gene of the wild-type ancestor of the experimental populations but is present in four copies in one of the experimental populations and two copies in the other. These in-frame mutations either add or delete the amino acid sequence LA in the MutL protein. We determined that the replacement of the wild-type sequence with either of these mutations was sufficient to increase the mutation rate of the wild-type strain to a level comparable to that of the mutator strains. Complementation of strains bearing the mutator mutations with wild-type copies of either mutL or the mismatch repair gene uvrD rescued the wild-type mutation rate. The position of the mutator mutations-in the region of MutL known as the ATP lid-suggests a possible deficiency in MutL's ATPase activity as the cause of the mutator phenotype. The similarity of the two mutator mutations (despite the independent evolutionary histories of the populations that gave rise to them) leads to a discussion of the potential adaptive role of DNA repeats.
Collapse
Affiliation(s)
- Aaron C Shaver
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
44
|
Chopra I, O'Neill AJ, Miller K. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist Updat 2003; 6:137-45. [PMID: 12860461 DOI: 10.1016/s1368-7646(03)00041-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria contain a number of error prevention and error correction systems that maintain genome stability. However, strains exhibiting elevated mutation frequencies have recently been reported amongst natural populations of pathogenic Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Neisseria meningitidis, Helicobacter pylori and Streptococcus pneumoniae. The majority of naturally occurring, strong mutators contain defects in the methyl-directed mismatch repair (MMR) system, with mutations in mutS predominating. MMR-deficient strains possess superior genetic backgrounds for the selection of some antibiotic-resistance mutations since mutation frequencies up to 1000-fold higher than normal strains have been reported, and resistance levels achieved in mutators can be greater than those arising in non-mutator hosts. MMR is a major constraint to interspecies recombination events. Removal of this barrier, as in the case of MMR defective mutators, also enhances the frequency of horizontal gene transfer, which is an important mechanism of acquired drug resistance in bacteria. Permanent global mutator status is associated with loss of fitness as mutators accumulate deleterious mutations more frequently than non-mutators. Fitness limitations of mutators may be overcome simply by the high bacterial cell densities that can be achieved during acute infection or by the adoption of transient mutator status. Mutators are a risk factor during the treatment of bacterial infections as they appear to enhance the selection of mutants expressing high- and low-level antibiotic resistance and have the capacity to refine existing plasmid-located resistance determinants.
Collapse
Affiliation(s)
- Ian Chopra
- Antimicrobial Research Centre and Division of Microbiology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
45
|
Li B, Tsui HCT, LeClerc JE, Dey M, Winkler ME, Cebula TA. Molecular analysis of mutS expression and mutation in natural isolates of pathogenic Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1323-1331. [PMID: 12724393 DOI: 10.1099/mic.0.26213-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deficiencies in the MutS protein disrupt methyl-directed mismatch repair (MMR), generating a mutator phenotype typified by high mutation rates and promiscuous recombination. How such deficiencies might arise in the natural environment was determined by analysing pathogenic strains of Escherichia coli. Quantitative Western immunoblotting showed that the amount of MutS in a wild-type strain of the enterohaemorrhagic pathogen E. coli O157 : H7 decreased about 26-fold in stationary-phase cells as compared with the amount present during exponential-phase growth. The depletion of MutS in O157 : H7 is significantly greater than that observed for a laboratory-attenuated E. coli K-12 strain. In the case of stable mutators, mutS defects in strains identified among natural isolates were analysed, including two E. coli O157 : H7 strains, a diarrhoeagenic E. coli O55 : H7 strain, and a uropathogenic strain from the E. coli reference (ECOR) collection. No MutS could be detected in the four strains by Western immunoblot analyses. RNase T2 protection assays showed that the strains were either deficient in mutS transcripts or produced transcripts truncated at the 3' end. Nucleotide sequence analysis revealed extensive deletions in the mutS region of three strains, ranging from 7.5 to 17.3 kb relative to E. coli K-12 sequence, while the ECOR mutator contained a premature stop codon in addition to other nucleotide changes in the mutS coding sequence. These results provide insights into the status of the mutS gene and its product in pathogenic strains of E. coli.
Collapse
Affiliation(s)
- Baoguang Li
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA
| | - Ho-Ching T Tsui
- Department of Microbiology and Molecular Genetics, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - J Eugene LeClerc
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA
| | - Manashi Dey
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA
| | - Malcolm E Winkler
- Department of Microbiology and Molecular Genetics, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Thomas A Cebula
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
46
|
Shaver AC, Dombrowski PG, Sweeney JY, Treis T, Zappala RM, Sniegowski PD. Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations. Genetics 2002; 162:557-66. [PMID: 12399371 PMCID: PMC1462288 DOI: 10.1093/genetics/162.2.557] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied the evolution of high mutation rates and the evolution of fitness in three experimental populations of Escherichia coli adapting to a glucose-limited environment. We identified the mutations responsible for the high mutation rates and show that their rate of substitution in all three populations was too rapid to be accounted for simply by genetic drift. In two of the populations, large gains in fitness relative to the ancestor occurred as the mutator alleles rose to fixation, strongly supporting the conclusion that mutator alleles fixed by hitchhiking with beneficial mutations at other loci. In one population, no significant gain in fitness relative to the ancestor occurred in the population as a whole while the mutator allele rose to fixation, but a substantial and significant gain in fitness occurred in the mutator subpopulation as the mutator neared fixation. The spread of the mutator allele from rarity to fixation took >1000 generations in each population. We show that simultaneous adaptive gains in both the mutator and wild-type subpopulations (clonal interference) retarded the mutator fixation in at least one of the populations. We found little evidence that the evolution of high mutation rates accelerated adaptation in these populations.
Collapse
Affiliation(s)
- Aaron C Shaver
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- J Arjan G M de Visser
- Laboratory of Genetics, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands1
| |
Collapse
|
48
|
Velkov VV. Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment. J Biosci 2001; 26:667-83. [PMID: 11807296 DOI: 10.1007/bf02704764] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article is focused on the problems of reduction of the risk associated with the deliberate release of genetically modified microorganisms (GMMs) into the environment. Special attention is given to overview the most probable physiological and genetic processes which could be induced in the released GMMs by adverse environmental conditions, namely: (i) activation of quorum sensing and the functions associated with it, (ii) entering into a state of general resistance, (iii) activation of adaptive mutagenesis, adaptive amplifications and transpositions and (iv) stimulation of inter-species gene transfer. To reduce the risks associated with GMMs, the inactivation of their key genes responsible for stress-stimulated increase of viability and evolvability is proposed.
Collapse
Affiliation(s)
- V V Velkov
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| |
Collapse
|
49
|
Tenaillon O, Taddei F, Radmian M, Matic I. Second-order selection in bacterial evolution: selection acting on mutation and recombination rates in the course of adaptation. Res Microbiol 2001; 152:11-6. [PMID: 11281320 DOI: 10.1016/s0923-2508(00)01163-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The increase in genetic variability of a population can be selected during adaptation, as demonstrated by the selection of mutator alleles. The dynamics of this phenomenon, named second-order selection, can result in an improved adaptability of bacteria through regulation of all facets of mutation and recombination processes.
Collapse
Affiliation(s)
- O Tenaillon
- Inserm E9916, Faculté de médecine Necker Enfants Malades, Université Paris V, France.
| | | | | | | |
Collapse
|
50
|
Abstract
Natural selection can adjust the rate of mutation in a population by acting on allelic variation affecting processes of DNA replication and repair. Because mutation is the ultimate source of the genetic variation required for adaptation, it can be appealing to suppose that the genomic mutation rate is adjusted to a level that best promotes adaptation. Most mutations with phenotypic effects are harmful, however, and thus there is relentless selection within populations for lower genomic mutation rates. Selection on beneficial mutations can counter this effect by favoring alleles that raise the mutation rate, but the effect of beneficial mutations on the genomic mutation rate is extremely sensitive to recombination and is unlikely to be important in sexual populations. In contrast, high genomic mutation rates can evolve in asexual populations under the influence of beneficial mutations, but this phenomenon is probably of limited adaptive significance and represents, at best, a temporary reprieve from the continual selection pressure to reduce mutation. The physiological cost of reducing mutation below the low level observed in most populations may be the most important factor in setting the genomic mutation rate in sexual and asexual systems, regardless of the benefits of mutation in producing new adaptive variation. Maintenance of mutation rates higher than the minimum set by this "cost of fidelity" is likely only under special circumstances.
Collapse
Affiliation(s)
- P D Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|