1
|
Salimando GJ, Tremblay S, Kimmey BA, Li J, Rogers SA, Wojick JA, McCall NM, Wooldridge LM, Rodrigues A, Borner T, Gardiner KL, Jayakar SS, Singeç I, Woolf CJ, Hayes MR, De Jonghe BC, Bennett FC, Bennett ML, Blendy JA, Platt ML, Creasy KT, Renthal WR, Ramakrishnan C, Deisseroth K, Corder G. Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types. Nat Commun 2023; 14:5632. [PMID: 37704594 PMCID: PMC10499891 DOI: 10.1038/s41467-023-41407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory J Salimando
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sébastien Tremblay
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jia Li
- Dept. of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophie A Rogers
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica A Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrith Rodrigues
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin L Gardiner
- Dept. of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selwyn S Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ilyas Singeç
- Stem Cell Translation Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew R Hayes
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - F Christian Bennett
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Dept. of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariko L Bennett
- Division of Neurology, Dept. of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie A Blendy
- Dept. of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate Townsend Creasy
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - William R Renthal
- Dept. of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karl Deisseroth
- CNC Program, Stanford University, Stanford, CA, USA.
- Dept. of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Dept. of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
He T, Chen W, Fan Y, Xu X, Guo H, Li N, Lu X, Ge F, Guan X. A novel cholinergic projection from the lateral parabrachial nucleus and its role in methamphetamine-primed conditioned place preference. Brain Commun 2022; 4:fcac219. [PMID: 36213311 PMCID: PMC9536296 DOI: 10.1093/braincomms/fcac219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 12/27/2022] Open
Abstract
Drug relapse is a big clinical challenge in the treatment of addiction, but its neural circuit mechanism is far from being fully understood. Here, we identified a novel cholinergic pathway from choline acetyltransferase-positive neurons in the external lateral parabrachial nucleus (eLPBChAT) to the GABAergic neurons in the central nucleus of the amygdala (CeAGABA) and explored its role in methamphetamine priming-induced reinstatement of conditioned place preference. The anatomical structure and functional innervation of the eLPBChAT–CeAGABA pathway were investigated by various methods such as fluorescent micro-optical sectioning tomography, virus-based neural tracing, fibre photometry, patch-clamp and designer receptor exclusively activated by a designer drug. The role of the eLPBChAT–CeAGABA pathway in methamphetamine relapse was assessed using methamphetamine priming-induced reinstatement of conditioned place preference behaviours in male mice. We found that the eLPBChAT neurons mainly projected to the central nucleus of the amygdala. A chemogenetic activation of the eLPBChAT neurons in vitro or in vivo triggered the excitabilities of the CeAGABA neurons, which is at least in part mediated via the cholinergic receptor system. Most importantly, the chemogenetic activation of either the eLPBChAT neurons or the eLPBChAT neurons that project onto the central nucleus of the amygdala decreased the methamphetamine priming-induced reinstatement of conditioned place preference in mice. Our findings revealed a previously undiscovered cholinergic pathway of the eLPBChAT–CeAGABA and showed that the activation of this pathway decreased the methamphetamine priming-induced reinstatement of conditioned place preference.
Collapse
Affiliation(s)
| | | | | | | | - Hao Guo
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nanqin Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Lu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feifei Ge
- Correspondence may also be addressed to: Feifei Ge, PhD E-mail:
| | - Xiaowei Guan
- Correspondence to: Xiaowei Guan, MD, PhD Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine 138 Xianlin Rd, Nanjing, China E-mail:
| |
Collapse
|
3
|
Jaramillo AA, Brown JA, Winder DG. Danger and distress: Parabrachial-extended amygdala circuits. Neuropharmacology 2021; 198:108757. [PMID: 34461068 DOI: 10.1016/j.neuropharm.2021.108757] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Our understanding of the role of the parabrachial nucleus (PBN) has evolved as technology has advanced, in part due to cell-specific studies and complex behavioral assays. This is reflected in the heterogeneous neuronal populations within the PBN to the extended amygdala (EA) circuits which encompass the bed nucleus of the stria terminalis (BNST) and central amygdala (CeA) circuitry, as they differentially modulate aspects of behavior in response to diverse threat-like contexts necessary for survival. Here we review how the PBN→CeA and PBN→BNST pathways differentially modulate fear-like behavior, innate and conditioned, through unique changes in neurotransmission in response to stress-inducing contexts. Furthermore, we hypothesize how in specific instances the PBN→CeA and PBN→BNST circuits are redundant and in part intertwined with their respective reciprocal projections. By deconstructing the interoceptive and exteroceptive components of affect- and stress related behavioral paradigms, evidence suggests that the PBN→CeA circuit modulates innate response to physical stimuli and fear conditioning. Conversely, the PBN→BNST circuit modulates distress-like stress in unpredictable contexts. Thereby, the PBN provides a pathway for alarming interoceptive and exteroceptive stimuli to be processed and relayed to the EA to induce stress-relevant affect. Additionally, we provide a framework for future studies to detail the cell-type specific intricacies of PBN→EA circuits in mediating behavioral responses to threats, and the relevance of the PBN in drug-use as it relates to threat and negative reinforcement. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- A A Jaramillo
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA
| | - J A Brown
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA
| | - D G Winder
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA; Vanderbilt Kennedy Center, USA; Department of Psychiatry & Behavioral Sciences, USA.
| |
Collapse
|
4
|
Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019; 33:1475-1490. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since the discovery of rewarding intracranial self-stimulation by Olds and Milner, extensive data have been published on the biological basis of reward. Although participation of the mesolimbic dopaminergic system is well documented, its precise role has not been fully elucidated, and some authors have proposed the involvement of other neural systems in processing specific aspects of reinforced behaviour. AIMS AND METHODS We reviewed published data, including our own findings, on the rewarding effects induced by electrical stimulation of the lateral hypothalamus (LH) and of the external lateral parabrachial area (LPBe) - a brainstem region involved in processing the rewarding properties of natural and artificial substances - and compared its functional characteristics as observed in operant and non-operant behavioural procedures. RESULTS Brain circuits involved in the induction of preferences for stimuli associated with electrical stimulation of the LBPe appear to functionally and neurochemically differ from those activated by electrical stimulation of the LH. INTERPRETATION We discuss the possible involvement of the LPBe in processing emotional-affective aspects of the brain reward system.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Maria A Zafra
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
5
|
García R, Simon MJ, Puerto A. Rewarding effects of the electrical stimulation of the parabrachial complex: taste or place preference? Neurobiol Learn Mem 2013; 107:101-7. [PMID: 24291574 DOI: 10.1016/j.nlm.2013.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/05/2013] [Accepted: 11/18/2013] [Indexed: 11/24/2022]
Abstract
The lateral parabrachial complex has been related to various emotional-affective processes. It has been shown that electrical stimulation of the external Lateral Parabrachial (LPBe) nucleus can induce reinforcing effects in place preference and taste discrimination tasks but does not appear to support self-stimulation. This study examined the relative relevance of place and taste stimuli after electrical stimulation of the LPBe nucleus. A learning discrimination task was conducted that simultaneously included both sensory indexes (taste and place) in order to determine the preference of animals for one or the other. After a taste stimulus reversal task, the rewarding effect of stimulation was found to be preferentially associated with place. These results are discussed in the context of the rewarding action and biological constraints induced by different natural and artificial reinforcing agents.
Collapse
Affiliation(s)
- Raquel García
- Department of Psychobiology, University of Granada, Campus of Cartuja, Granada 18071, Spain.
| | - Maria J Simon
- Department of Psychobiology, University of Granada, Campus of Cartuja, Granada 18071, Spain
| | - Amadeo Puerto
- Department of Psychobiology, University of Granada, Campus of Cartuja, Granada 18071, Spain
| |
Collapse
|
6
|
Enoksson T, Bertran-Gonzalez J, Christie MJ. Nucleus accumbens D2- and D1-receptor expressing medium spiny neurons are selectively activated by morphine withdrawal and acute morphine, respectively. Neuropharmacology 2012; 62:2463-71. [PMID: 22410393 DOI: 10.1016/j.neuropharm.2012.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/23/2012] [Accepted: 02/21/2012] [Indexed: 11/28/2022]
Abstract
Opioids are effective analgesic agents but serious adverse effects such as tolerance and withdrawal contribute to opioid dependence and limit their use. Opioid withdrawal involves numerous brain regions and includes suppression of dopamine release and activation of neurons in the ventral striatum. By contrast, acute opioids increase dopamine release. Like withdrawal, acute opioids also activate neurons in the ventral striatum, suggesting that different populations of ventral striatal neurons may be activated by withdrawal and acute opioid actions. Here, immunofluorescence for the activity-related immediate-early gene, c-Fos, was examined in transgenic reporter mouse lines by confocal microscopy to study the specific populations of ventral striatal neurons activated by morphine withdrawal and acute morphine. After chronic morphine, naloxone-precipitated withdrawal strongly increased expression of c-Fos immunoreactivity, predominantly in D2-receptor (D2R) medium-sized spiny neurons (MSNs) of the nucleus accumbens (NAc) core and shell regions. By contrast, a single injection of morphine exclusively activated c-Fos immunoreactivity in D1-receptor expressing (D1R) MSNs of the core and shell of the NAc. These results reveal a striking segregation of neuronal responses occurring in the two populations of MSNs of the NAc in response to morphine withdrawal and acute morphine.
Collapse
Affiliation(s)
- T Enoksson
- Brain and Mind Research Institute, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
7
|
Glass MJ. The role of functional postsynaptic NMDA receptors in the central nucleus of the amygdala in opioid dependence. VITAMINS AND HORMONES 2010; 82:145-66. [PMID: 20472137 DOI: 10.1016/s0083-6729(10)82008-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of ionotropic N-methyl-D-aspartate (NMDA)-type glutamate receptors in limbic system nuclei, such as the central nucleus of the amygdala (CeA), plays an essential role in autonomic, behavioral, and affective processes that are profoundly impacted by exposure to opioids. However, the heterogeneous ultrastructural distribution of the NMDA receptor, its complex pharmacology, and the paucity of genetic models have hampered the development of linkages between functional amygdala NMDA receptors and opioid dependence. To overcome these shortcomings, high-resolution imaging and molecular pharmacology were used to (1) Identify the ultrastructural localization of the essential NMDA-NR1 receptor (NR1) subunit and its relationship to the mu-opioid receptor (microOR), the major cellular target of abused opioids like morphine, in the CeA and (2) Determine the effect of CeA NR1 deletion on the physical, and particularly, psychological aspects of opioid dependence. Combined immunogold and immuoperoxidase electron microscopic analysis showed that NR1 was prominently expressed in postsynaptic (i.e., somata, dendrites) locations of CeA neurons, where they were also frequently colocalized with the microOR. A spatial-temporal deletion of NR1 in postsynaptic sites of CeA neurons was produced by local microinjection of a neurotropic recombinant adeno-associated virus (rAAV), expressing the green fluorescent protein (GFP) reporter and Cre recombinase (rAAV-GFP-Cre), in adult "floxed" NR1 (fNR1) mice. Mice with deletion of NR1 in the CeA showed no obvious impairments in sensory, motor, or nociceptive function. In addition, when administered chronic morphine, these mice also displayed an acute physical withdrawal syndrome precipitated by naloxone. However, opioid-dependent CeA NR1 knockout mice failed to exhibit a conditioned place aversion induced by naloxone-precipitated withdrawal. These results indicate that postsynaptic NMDA receptor activity in central amygdala neurons is required for the expression of a learned affective behavior associated with opioid withdrawal. The neurogenetic dissociation of physical and psychological properties of opioid dependence demonstrates the value of combined ultrastructural analysis and molecular pharmacology in clarifying the neurobiological mechanisms subserving opioid-mediated plasticity.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, USA
| |
Collapse
|
8
|
Lucas M, Frenois F, Vouillac C, Stinus L, Cador M, Le Moine C. Reactivity and plasticity in the amygdala nuclei during opiate withdrawal conditioning: differential expression of c-fos and arc immediate early genes. Neuroscience 2008; 154:1021-33. [PMID: 18501523 DOI: 10.1016/j.neuroscience.2008.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/14/2008] [Accepted: 04/04/2008] [Indexed: 11/27/2022]
Abstract
Opiate withdrawal leads to the emergence of an aversive state that can be conditioned to a specific environment. Reactivation of these withdrawal memories has been suggested to be involved in relapse to drug-seeking of abstinent opiate addicts. Among the limbic areas that are likely to mediate these features of opiate dependence, amygdala nuclei represent critical neural substrates. Using a conditioned place aversion paradigm (CPA), we have previously shown specific opposite patterns of reactivity in the basolateral (BLA) and the central (CeA) amygdala, when comparing the experience of acute opiate withdrawal with the re-exposure to a withdrawal-paired environment. These data gave clues about the potential mechanisms by which amygdala nuclei may be involved in withdrawal memories. To extend these results, the present study aimed to assess the cellular reactivity and plasticity of amygdala nuclei during the opiate withdrawal conditioning process. For this, we have quantified c-fos and arc expression using in situ hybridization in rats, following each of the three conditioning sessions during CPA, and after re-exposure to the withdrawal-paired environment. BLA output neurons showed an increase in the expression of the plasticity-related arc gene during conditioning that was also increased by re-exposure to the withdrawal-paired environment. Interestingly, the CeA showed an opposite pattern of responding, and the intercalated cell masses (ITC), a possible inhibitory interface between the BLA and CeA, showed a persistent activation of c-fos and arc mRNA. We report here specific c-fos and arc patterns of reactivity in amygdala nuclei during withdrawal conditioning. These findings improve our understanding of the involvement of the amygdala network in the formation and retrieval of withdrawal memories. Plasticity processes within BLA output neurons during conditioning, may participate in increasing the BLA reactivity to conditioned stimuli, which could in turn (by the control of downstream nuclei) reinforce and drive the motivational properties of withdrawal over drug consumption.
Collapse
Affiliation(s)
- M Lucas
- Université Victor Segalen Bordeaux 2, Université Bordeaux 1, CNRS UMR 5227, Team "Neuropsychopharmacology of Addiction," 146 bis rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
9
|
Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87:1113-73. [PMID: 17928582 DOI: 10.1152/physrev.00037.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogeneous brain structure implicated in processing of emotions and storing the emotional aspects of memories. Gene activity markers such as c-Fos have been shown to reflect both neuronal activation and neuronal plasticity. Herein, we analyze the expression patterns of gene activity markers in the amygdala in response to either behavioral training or treatment with drugs of abuse and then we confront the results with data on other approaches to internal complexity of the amygdala. c-Fos has been the most often studied in the amygdala, showing specific expression patterns in response to various treatments, most probably reflecting functional specializations among amygdala subdivisions. In the basolateral amygdala, c-Fos expression appears to be consistent with the proposed role of this nucleus in a plasticity of the current stimulus-value associations. Within the medial part of the central amygdala, c-Fos correlates with acquisition of alimentary/gustatory behaviors. On the other hand, in the lateral subdivision of the central amygdala, c-Fos expression relates to attention and vigilance. In the medial amygdala, c-Fos appears to be evoked by emotional novelty of the experimental situation. The data on the other major subdivisions of the amygdala are scarce. In conclusion, the studies on the gene activity markers, confronted with other approaches involving neuroanatomy, physiology, and the lesion method, have revealed novel aspects of the amygdala, especially pointing to functional heterogeneity of this brain region that does not fit very well into contemporarily active debate on serial versus parallel information processing within the amygdala.
Collapse
|
10
|
Klein SM, Nielsen KC. Brachial plexus blocks: infusions and other mechanisms to provide prolonged analgesia. Curr Opin Anaesthesiol 2007; 16:393-9. [PMID: 17021488 DOI: 10.1097/01.aco.0000084477.59960.92] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Regional anesthesia has numerous benefits for upper extremity surgery such as improved analgesia, opioid sparing and reduced side effects. However, many of these advantages are lost after block regression. Recently, several strategies such as continuous ambulatory local anesthetic infusions and adjuvants that may potentiate analgesia after a brachial plexus block have been described and investigated. This review will highlight and place in context this recent work. RECENT FINDINGS Current investigations have demonstrated that brachial plexus analgesia can be extended by combining existing solutions and technology. This has been most evident in the use of ambulatory continuous peripheral nerve blocks such as the interscalene, infraclavicular and axillary approaches. Accomplishing this safely in an outpatient setting requires the use of basic infusion pumps, patient education and a mechanism for follow-up after discharge. This strategy has prolonged pain relief and facilitated major operations on an outpatient basis. An alternative to this strategy is to combine adjuvants such as opioids, clonidine, ketamine and neostigmine to potentiate the effects of local anesthetics. These additives have had mixed results. The most promising solutions are the alpha-2-adrenergic agonists but further investigation is necessary to confirm their efficacy and quantify their appropriate dose and side effects. SUMMARY The advances and techniques recently described demonstrate that prolonging analgesia after brachial plexus blocks is possible. This may be accomplished via several different approaches and mechanisms resulting in improved patient analgesia and side effects.
Collapse
Affiliation(s)
- Stephen M Klein
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
11
|
Hamlin AS, McNally GP, Osborne PB. Induction of c-Fos and zif268 in the nociceptive amygdala parallel abstinence hyperalgesia in rats briefly exposed to morphine. Neuropharmacology 2007; 53:330-43. [PMID: 17631915 DOI: 10.1016/j.neuropharm.2007.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 04/25/2007] [Accepted: 05/21/2007] [Indexed: 02/06/2023]
Abstract
Opioid-induced analgesia can be followed by spontaneous pain in humans, and hyperalgesia in rodents. In this study, opioid-induced hyperalgesia was measured by the tail-flick test when acute abstinence was precipitated by administering naloxone to drug naive rats that had experienced morphine analgesia for only 30 min. In a further experiment, the drug treatment that previously caused opioid-induced hyperalgesia was found to increase neurons expressing nuclear c-Fos or zif268 proteins in extended amygdalar regions targeted by projections of the ascending spino-parabrachio-amygdaloid nociceptive pathway. Transcription factor induction, however, was not detected in multiple brain regions known to respond in parallel with the same extended amygdalar structures when (1) rats are exposed to interoceptive/physical stressors, or (2) naloxone is used to precipitate abstinence in opioid dependent rats. Surprisingly, in many regions c-Fos induction by morphine was reduced or blocked by naloxone, even though these subjects had also experienced the effects of morphine for 30 min prior to antagonist administration. It is suggested transcription factor induction during opioid hyperalgesia in non-dependent rats could support the induction or consolidation of neural plasticity in nociceptive amygdaloid circuitry previously suggested to function in bi-directional control of pain and expression of pain-related behaviors.
Collapse
Affiliation(s)
- Adam S Hamlin
- Pain Management Research Institute (Kolling Institute), The University of Sydney at the Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | | | |
Collapse
|
12
|
Chieng BCH, Christie MJ, Osborne PB. Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. J Comp Neurol 2006; 497:910-27. [PMID: 16802333 DOI: 10.1002/cne.21025] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The central nucleus of the amygdala (CeA) orchestrates autonomic and other behavioral and physiological responses to conditioned stimuli that are aversive or elicit fear. As a related CeA function is the expression of hypoalgesia induced by conditioned stimuli or systemic morphine administration, we examined postsynaptic opioid modulation of neurons in each major CeA subdivision. Following electrophysiological recording, biocytin-filled neurons were precisely located in CeA regions identified by chemoarchitecture (enkephalin-immunoreactivity) and cytoarchitecture (DAPI nuclear staining) in fixed adult rat brain slices. This revealed a striking distribution of physiological types, as 92% of neurons in capsular CeA were classified as late-firing, whereas no neurons in the medial CeA were of this class. In contrast, 60% or more of neurons in the lateral and medial CeA were low-threshold bursting neurons. Mu-opioid receptor (MOPR) agonists induced postsynaptic inhibitory potassium currents in 61% of CeA cells, and this ratio was maintained in each subdivision and for each physiological class of neuron. However, MOPR agonists more frequently inhibited bipolar/fusiform cells than triangular or multipolar neurons. A subpopulation of MOPR-expressing neurons were also inhibited by delta opioid receptor agonists, whereas a separate population were inhibited kappa opioid receptors (KOPR). The MOPR agonist DAMGO inhibited 9/9 CeM neurons with projections to the parabrachial nucleus identified by retrograde tracer injection. These data support models of striatopallidal organization that have identified striatal-like and pallidal-like CeA regions. Opioids can directly inhibit output from each subdivision by activating postsynaptic MOPRs or KOPRs on distinct subpopulations of opioid-sensitive neurons.
Collapse
Affiliation(s)
- Billy C H Chieng
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, NSW 2065, Australia
| | | | | |
Collapse
|
13
|
Frenois F, Stinus L, Di Blasi F, Cador M, Le Moine C. A specific limbic circuit underlies opiate withdrawal memories. J Neurosci 2005; 25:1366-74. [PMID: 15703390 PMCID: PMC6725999 DOI: 10.1523/jneurosci.3090-04.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 12/10/2004] [Accepted: 12/10/2004] [Indexed: 11/21/2022] Open
Abstract
Compulsive drug-seeking behavior and its renewal in former drug addicts is promoted by several situations, among which reactivation of drug withdrawal memories plays a crucial role. A neural hypothesis is that such memories reactivate the circuits involved in withdrawal itself and promote a motivational state leading to drug seeking or taking. To test this hypothesis, we have analyzed the neural circuits and cell populations recruited when opiate-dependent rats are reexposed to stimuli previously paired with withdrawal (memory retrieval) and compared them with those underlying acute withdrawal during conditioning (memory formation). Using in situ hybridization for c-fos expression, we report here that reexposure to a withdrawal-paired environment induced conditioned c-fos responses in a specific limbic circuit, which can be partially dissociated from the structures involved in acute withdrawal. At the amygdala level, c-fos responses were doubly dissociated between the central and basolateral (BLA) nuclei, when comparing the two situations. Detailed phenotypical analyses in the amygdala and ventral tegmental area (VTA) show that specific subpopulations in the BLA are differentially involved in the formation and retrieval of withdrawal memories, and strikingly that a population of VTA dopamine neurons is activated in both situations. Together, this indicates that withdrawal memories can drive activity changes in specific neuronal populations of interconnected limbic areas known to be involved in aversive motivational processes. This first study on the neural substrates of withdrawal memories strongly supports an incentive-motivational view of withdrawal in opiate addiction that could be crucial in compulsive drug seeking and relapse.
Collapse
Affiliation(s)
- François Frenois
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5541 Interactions Neuronales et Comportements, Université Victor Segalen Bordeaux 2, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
14
|
Mizutani A, Arvidsson J, Chahl LA. Sensitization to morphine withdrawal in guinea-pigs. Eur J Pharmacol 2005; 509:135-43. [PMID: 15733548 DOI: 10.1016/j.ejphar.2004.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 12/24/2004] [Indexed: 11/21/2022]
Abstract
The aim of this study was to determine whether sensitization occurred to morphine withdrawal. Guinea-pigs were treated twice daily with increasing doses of morphine (10-100 mg/kg s.c.) for 3 days followed by injection of morphine 100 mg/kg on the fourth day. Sixty min after the last morphine injection, animals were withdrawn from morphine with naltrexone, 15 mg/kg s.c., and locomotor activity and all other behaviours scored over 90 min. Animals were then rested for 3 days. This procedure was repeated twice over the next 2 weeks. Control animals were treated with saline for the first two treatment cycles. Guinea-pigs subjected to three cycles of morphine withdrawal showed a significant increase in the total number of withdrawal behaviour counts over the 90-min observation period following the third cycle of withdrawal compared with the first and second withdrawal cycles. However, locomotor activity, a major sign of morphine withdrawal in guinea-pigs, was not significantly increased. Fos-LI was markedly increased in the repeatedly withdrawn animals in several brain regions, including amygdala, dorsal striatum, thalamus, ventral tegmental area, and ventrolateral periaqueductal gray area. It is concluded that sensitization to morphine withdrawal occurs in guinea-pigs.
Collapse
Affiliation(s)
- Akiko Mizutani
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | | | | |
Collapse
|
15
|
Hamlin AS, Buller KM, Day TA, Osborne PB. Effect of naloxone-precipitated morphine withdrawal on c-fos expression in rat corticotropin-releasing hormone neurons in the paraventricular hypothalamus and extended amygdala. Neurosci Lett 2004; 362:39-43. [PMID: 15147776 DOI: 10.1016/j.neulet.2004.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 02/06/2004] [Accepted: 02/08/2004] [Indexed: 10/26/2022]
Abstract
Morphine withdrawal is characterized by physical symptoms and a negative affective state. The 41 amino acid polypeptide corticotropin-releasing hormone (CRH) is hypothesized to mediate, in part, both the negative affective state and the physical withdrawal syndrome. Here, by means of dual-immunohistochemical methodology, we examined the co-expression of the c-Fos protein and CRH following naloxone-precipitated morphine withdrawal. Rats were treated with slow-release morphine 50 mg/kg (subcutaneous, s.c.) or vehicle every 48 h for 5 days, then withdrawn with naloxone 5 mg/kg (s.c.) or saline 48 h after the final morphine injection. Two hours after withdrawal rats were perfused transcardially and their brains were removed and processed for immunohistochemistry. We found that naloxone-precipitated withdrawal of morphine-dependent rats increased c-Fos immunoreactivity (IR) in CRH positive neurons in the paraventricular hypothalamus. Withdrawal of morphine-dependent rats also increased c-Fos-IR in the central amygdala and bed nucleus of the stria terminalis, however these were in CRH negative neurons.
Collapse
Affiliation(s)
- A S Hamlin
- Pain Management Research Institute, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | | | | | | |
Collapse
|
16
|
González-Cuello A, Milanés MV, Castells MT, Laorden ML. Morphine withdrawal-induced c-fos expression in the heart: a peripheral mechanism. Eur J Pharmacol 2004; 487:117-24. [PMID: 15033383 DOI: 10.1016/j.ejphar.2004.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 12/03/2003] [Accepted: 01/21/2004] [Indexed: 11/23/2022]
Abstract
We previously demonstrated that hyperactivity of cardiac noradrenergic pathways observed during morphine withdrawal is mediated by peripheral mechanisms. In the present study, naloxone methiodide (quaternary derivative of naloxone that does not cross the blood-brain barrier) and naloxone were administered to morphine-dependent rats and Fos immunostaining was used as a reflection of neuronal activity. Dependence on morphine was induced by 7-day chronic subcutaneous (s.c.) implantation of six morphine pellets (75 mg). Morphine withdrawal was precipitated by administration of naloxone methiodide (5 mg/kg, s.c.) or naloxone (5 mg/kg, s.c.) on day 8. Using immunohistochemical staining of Fos, present results indicate that the administration of naloxone methiodide or naloxone to morphine-dependent rats induced marked Fos immunoreactivity within the cardiomyocyte nuclei. Moreover, Western blot analysis revealed a peak expression of c-fos in the right and left ventricles after naloxone methiodide- or naloxone-precipitated withdrawal. In addition, in the hypothalamic paraventricular nucleus (PVN), Fos expression was increased after naloxone-but not after naloxone methiodide-administration to morphine-dependent rats. These results suggest that the activation of c-fos expression observed during morphine withdrawal in the heart is due to intrinsic mechanisms outside the central nervous system (CNS).
Collapse
Affiliation(s)
- Ana González-Cuello
- Department of Cellular and Molecular Pharmacology, University School of Medicine, Murcia, Spain
| | | | | | | |
Collapse
|
17
|
Veinante P, Stoeckel ME, Lasbennes F, Freund-Mercier MJ. c-Fos and peptide immunoreactivities in the central extended amygdala of morphine-dependent rats after naloxone-precipitated withdrawal. Eur J Neurosci 2003; 18:1295-305. [PMID: 12956728 DOI: 10.1046/j.1460-9568.2003.02837.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The central extended amygdala, a forebrain macrostructure, may represent a common substrate for acute drug reward and the dysphoric effects of drug withdrawal. To test its involvement during opiate withdrawal, we studied the distribution of c-Fos immunoreactive neurons, in relation to their neuropeptide content, in brain sections from morphine-dependent or naive rats, killed 90 min after naloxone or saline intraperitoneal injection. Naloxone treatment in naive rats induced a slight increase in c-Fos immunoreactivity in the central amygdaloid nucleus, the lateral bed nucleus of the stria terminalis and the interstitial nucleus of the posterior limb of the anterior commissure. In morphine-dependent rats, naloxone injection significantly increased the number of c-Fos-positive neurons in these structures as well as in the majority of the other central extended amygdala components. Double immunocytochemistry was used to determine the neurochemical nature of c-Fos-positive neurons in the central extended amygdala. Corticotropin-releasing factor- and methionine-enkephakin-immunoreactive neurons displayed c-Fos immunoreactivity in naive rats after naloxone injection, whereas only enkephalinergic neurons were found to be c-Fos positive in morphine-dependent rats after naloxone injection. The possible involvement of the corticotropin-releasing factor system during withdrawal is discussed. These results suggest that the whole central extended amygdala is activated during opiate withdrawal, with a lateral to medial decreasing gradient, and emphasize the role of peptidergic systems in this morphofunctional continuum.
Collapse
Affiliation(s)
- Pierre Veinante
- UMR 7519, CNRS/Université Louis Pasteur, 21 rue René Descartes, 67084 Strasbourg, France.
| | | | | | | |
Collapse
|
18
|
Klein S, Nielsen K. Curr Opin Anaesthesiol 2003; 16:393-399. [DOI: 10.1097/00001503-200308000-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Le Guen S, Gestreau C, Besson JM. Morphine withdrawal precipitated by specific mu, delta or kappa opioid receptor antagonists: a c-Fos protein study in the rat central nervous system. Eur J Neurosci 2003; 17:2425-37. [PMID: 12814374 DOI: 10.1046/j.1460-9568.2003.02678.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently shown concurrent changes in behavioural responses and c-Fos protein expression in the central nervous system in both naive and morphine-dependent rats after systemic administration of the opioid antagonist naloxone. However, because naloxone acts on the three major types of opioid receptors, the present study aimed at determining, in the same animals, both changes in behaviour and c-Fos-like immunoreactivity after intravenous injection of selective opioid antagonists, such as mu (beta-funaltrexamine, 10 mg/kg), delta (naltrindole, 4 mg/kg) or kappa (nor-binaltorphimine, 5 mg/kg) opioid receptor antagonists, in naive or morphine-dependent rats. In a first experimental series, only beta-funaltrexamine increased c-Fos expression in the eight central nervous system structures examined, whereas no effect was seen after naltrindole or nor-binaltorphimine administration in naive rats. These results suggest a tonic activity in the endogenous opioid peptides acting on mu opioid receptors in normal rats. A second experimental series in morphine-dependent rats showed that beta-funaltrexamine had the highest potency in the induction of classical signs of morphine withdrawal syndrome, as well as the increase in c-Fos expression in the 22 central nervous system structures studied, suggesting a major role of mu opioid receptors in opioid dependence. However, our results also demonstrated that naltrindole and, to a lesser extent, nor-binaltorphimine were able to induce moderate signs of morphine withdrawal and relatively weak c-Fos protein expression in restricted central nervous system structures. Therefore, delta and kappa opioid receptors may also contribute slightly to opioid dependence.
Collapse
Affiliation(s)
- Stéphanie Le Guen
- Laboratoire de Physiopharmacologie du Système Nerveux, Institut National de la Santé et de la Recherche Médicale (INSERM) and Ecole Pratique des Hautes Etudes (EPHE), Paris, France.
| | | | | |
Collapse
|
20
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
21
|
Frenois F, Cador M, Caillé S, Stinus L, Le Moine C. Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur J Neurosci 2002; 16:1377-89. [PMID: 12405997 DOI: 10.1046/j.1460-9568.2002.02187.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In morphine-dependent rats, low naloxone doses have been shown to induce conditioned place aversion, which reflects the negative motivational component of opiate withdrawal. In contrast, higher naloxone doses are able to induce a 'full' withdrawal syndrome, including overt somatic signs. The c-fos gene is commonly used as a marker of neuronal reactivity to map the neural substrates that are recruited by various stimuli. Using in situ hybridization, we have analysed in the brain of morphine-dependent rats the effects of acute withdrawal syndrome precipitated by increasing naloxone doses on c-fos mRNA expression. Morphine dependence was induced by subcutaneous implantation of slow-release morphine pellets for 6 days and withdrawal was precipitated by increasing naloxone doses inducing the motivational (7.5 and 15 micro g/kg) and somatic (30 and 120 micro g/kg) components of withdrawal. Our mapping study revealed a dissociation between a set of brain structures (extended amygdala, lateral septal nucleus, basolateral amygdala and field CA1 of the hippocampus) which exhibited c-fos mRNA dose-dependent variations from the lowest naloxone doses, and many other structures (dopaminergic and noradrenergic nuclei, motor striatal areas, hypothalamic nuclei and periaqueductal grey) which were less sensitive and recruited only by the higher doses. In addition, we found opposite dose-dependent variations of c-fos gene expression within the central (increase) and the basolateral (decrease) amygdala after acute morphine withdrawal. Altogether, these results emphasize that limbic structures of the extended amygdala along with the lateral septal nucleus, the basolateral amygdala and CA1 could specifically mediate the negative motivational component of opiate withdrawal.
Collapse
Affiliation(s)
- François Frenois
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541 Interactions Neuronales et Comportements, BP28, Université Victor Segalen, Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, France.
| | | | | | | | | |
Collapse
|