1
|
Turkistani A, Al-kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elhussieny O, AL-Farga A, Aqlan F, Saad HM, Batiha GES. The functional and molecular roles of p75 neurotrophin receptor (p75 NTR) in epilepsy. J Cent Nerv Syst Dis 2024; 16:11795735241247810. [PMID: 38655152 PMCID: PMC11036928 DOI: 10.1177/11795735241247810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated. Therefore, this review aimed to revise the mechanistic pathway of p75NTR in epilepsy.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of pharmacology and toxicology, Collage of Medicine, Taif University, Taif, Kingdom of Saudi
| | - Hayder M. Al-kuraishy
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K. Albuhadily
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Ammar AL-Farga
- Biochemistry Department, College of Sciences, University of Jeddah, Jeddah, Saudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of Sciences, Ibb University, Ibb Governorate, Yemen
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
3
|
Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci 2018; 128:1086-1096. [DOI: 10.1080/00207454.2018.1481064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- E. Samokhina
- Russian Academy of Sciences, Institute of Theoretical and Experimental Biophysics, Pushchino, Russia
| | - Alexander Samokhin
- Russian Academy of Sciences, Institute of Cell Biophysics, Pushchino, Russia
| |
Collapse
|
4
|
Follow-Up of Peripheral IL-1β and IL-6 and Relation with Apoptotic Death in Drug-Resistant Temporal Lobe Epilepsy Patients Submitted to Surgery. Behav Sci (Basel) 2018; 8:bs8020021. [PMID: 29401729 PMCID: PMC5836004 DOI: 10.3390/bs8020021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Increasing amounts of evidence support the role of inflammation in epilepsy. This study was done to evaluate serum follow-up of IL-1β and IL-6 levels, as well as their concentration in the neocortex, and the relationship of central inflammation with NF-κB and annexin V in drug-resistant temporal lobe epileptic (DRTLE) patients submitted to surgical treatment. Peripheral and central levels of IL-1β and IL-6were measured by ELISA in 10 DRTLE patients. The sera from patients were taken before surgery, and 12 and 24 months after surgical treatment. The neocortical expression of NF-κB was evaluated by western blotting and annexin V co-localization with synaptophysin by immunohistochemistry. The neocortical tissues from five patients who died by non-neurological causes were used as control. Decreased serum levels of IL-1 and IL-6 were observed after surgery; at this time, 70% of patients were seizure-free. No values of IL-1 and IL-6 were detected in neocortical control tissue, whereas cytokine levels were evidenced in DRTLE. Increased NF-κB neocortex expression was found and the positive annexin V neurons were more obvious in the DRTLE tissue, correlating with IL-6 levels. The follow-up study confirmed that the inflammatory alterations disappeared one year after surgery, when the majority of patients were seizure-free, and the apoptotic death process correlated with inflammation.
Collapse
|
5
|
Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. J Neurosci 2017; 36:5920-32. [PMID: 27251615 DOI: 10.1523/jneurosci.4009-15.2016] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/26/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Neuroinflammation is thought to contribute to the pathogenesis and maintenance of temporal lobe epilepsy, but the underlying cell and molecular mechanisms are not fully understood. The P2X7 receptor is an ionotropic receptor predominantly expressed on the surface of microglia, although neuronal expression has also been reported. The receptor is activated by the release of ATP from intracellular sources that occurs during neurodegeneration, leading to microglial activation and inflammasome-mediated interleukin 1β release that contributes to neuroinflammation. Using a reporter mouse in which green fluorescent protein is induced in response to the transcription of P2rx7, we show that expression of the receptor is selectively increased in CA1 pyramidal and dentate granule neurons, as well as in microglia in mice that developed epilepsy after intra-amygdala kainic acid-induced status epilepticus. P2X7 receptor levels were increased in hippocampal subfields in the mice and in resected hippocampus from patients with pharmacoresistant temporal lobe epilepsy. Cells transcribing P2rx7 in hippocampal slices from epileptic mice displayed enhanced agonist-evoked P2X7 receptor currents, and synaptosomes from these animals showed increased P2X7 receptor levels and altered calcium responses. A 5 d treatment of epileptic mice with systemic injections of the centrally available, potent, and specific P2X7 receptor antagonist JNJ-47965567 (30 mg/kg) significantly reduced spontaneous seizures during continuous video-EEG monitoring that persisted beyond the time of drug presence in the brain. Hippocampal sections from JNJ-47965567-treated animals obtained >5 d after treatment ceased displayed strongly reduced microgliosis and astrogliosis. The present study suggests that targeting the P2X7 receptor has anticonvulsant and possibly disease-modifying effects in experimental epilepsy. SIGNIFICANCE STATEMENT Temporal lobe epilepsy is the most common and drug-resistant form of epilepsy in adults. Neuroinflammation is implicated as a pathomechanism, but the upstream mechanisms driving gliosis and how important this is for seizures remain unclear. In our study, we show that the ATP-gated P2X7 receptor is upregulated in experimental epilepsy and resected hippocampus from epilepsy patients. Targeting the receptor with a new centrally available antagonist, JNJ-47965567, suppressed epileptic seizures well beyond the time of treatment and reduced underlying gliosis in the hippocampus. The findings suggest a potential disease-modifying treatment for epilepsy based on targeting the P2X7 receptor.
Collapse
|
6
|
Kandeda AK, Taiwe GS, Moto FCO, Ngoupaye GT, Nkantchoua GCN, Njapdounke JSK, Omam JPO, Pale S, Kouemou N, Ngo Bum E. Antiepileptogenic and Neuroprotective Effects of Pergularia daemia on Pilocarpine Model of Epilepsy. Front Pharmacol 2017; 8:440. [PMID: 28713279 PMCID: PMC5492699 DOI: 10.3389/fphar.2017.00440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated antiepileptogenic and neuroprotective effects of the aqueous extract of Pergularia daemia roots (PDR) using in vivo and in vitro experimental models. In in vivo studies, status epilepticus caused by pilocarpine injection triggers epileptogenesis which evolves during about 1–2 weeks. After 2 h of status epilepticus, mice were treated during the epileptogenesis period for 7 days with sodium valproate and vitamin C (standards which demonstrated to alter epileptogenesis), or Pergularia daemia. The animals were then, 1 week after status epilepticus, challenged with acute pentylenetetrazole (PTZ) administration to test behaviorally the susceptibility to a convulsant agent of animals treated or not with the plan extract. Memory was assessed after PTZ administration in the elevated plus maze and T-maze paradigms at 24 and 48 h. Antioxidant and acetylcholinesterase activities were determined in the hippocampus after sacrifice, in vitro studies were conducted using embryonic rat primary cortical cultures exposed to L-glutamate. Cell survival rate was measured and apoptotic and necrotic cell death determined. The results showed that chronic oral administration of PDR significantly and dose-dependently increased the latency to myoclonic jerks, clonic seizures and generalized tonic–clonic seizures, and the seizure score. In addition, PDR at all doses (from 4.9 to 49 mg/kg) significantly decreased the initial and retention transfer latencies in the elevated plus maze. Interestingly PDR at the same doses significantly increased the time spent and the number of entries in T-maze novel arm. PDR significantly increased the activities of acetylcholinesterase and antioxidant enzymes superoxide dismutase, catalase, and total glutathione and proteins, and decreased malondialdehyde level. Furthermore, PDR increased viability rate of primary cortical neurons after L-glutamate-induced excitotoxicity, in a dose dependent manner. Altogether these results suggest that PDR has antiepileptogenic and neuroprotective effects, which could be mediated by antioxidant and antiapoptotic activities.
Collapse
Affiliation(s)
- Antoine K Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé IYaoundé, Cameroon.,Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon
| | - Germain S Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of BueaBuea, Cameroon
| | - Fleur C O Moto
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaounde IYaounde, Cameroon
| | - Gwladys T Ngoupaye
- Department of Animal Biology, Faculty of Science, University of DschangDschang, Cameroon
| | - Gisele C N Nkantchoua
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon
| | | | - Jean P O Omam
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon.,Department of Biological Sciences, Higher Teachers' Training College, University of Yaounde IYaounde, Cameroon
| | - Simon Pale
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon.,Department of Zoology and Animal Physiology, Faculty of Science, University of BueaBuea, Cameroon
| | - Nadege Kouemou
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon.,Department of Zoology and Animal Physiology, Faculty of Science, University of BueaBuea, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon.,Institute of Mining and Petroleum Industries, University of MarouaKaele, Cameroon
| |
Collapse
|
7
|
Continuous neurodegeneration and death pathway activation in neurons and glia in an experimental model of severe chronic epilepsy. Neurobiol Dis 2015; 83:54-66. [PMID: 26264964 DOI: 10.1016/j.nbd.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/21/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022] Open
Abstract
Whether seizures might determine the activation of cell death pathways and what could be the relevance of seizure-induced cell death in epilepsy are still highly debated issues. We recently developed an experimental model of acquired focal cortical dysplasia (the MAM-pilocarpine or MP rat) in which the occurrence of status epilepticus--SE--and subsequent seizures induced progressive cellular/molecular abnormalities and neocortical/hippocampal atrophy. Here, we exploited the same model to verify when, where, and how cell death occurred in neurons and glia during epilepsy course. We analyzed Fluoro Jade (FJ) staining and the activation of c-Jun- and caspase-3-dependent pathways during epilepsy, from few hours post-SE up to six months of spontaneous recurrent seizures. FJ staining revealed that cell injury in MP rats was not temporally restricted to SE, but extended throughout the different epileptic stages. The region-specific pattern of FJ staining changed during epilepsy, and FJ(+) neurons became more prominent in the dorsal and ventral hippocampal CA at chronic epilepsy stages. Phospho-c-Jun- and caspase-3-dependent pathways were selectively activated respectively in neurons and glia, at early but even more conspicuously at late chronic stages. Phospho-c-Jun activation was associated with increased cytochrome-c staining, particularly at chronic stages, and the staining pattern of cytochrome-c was suggestive of its release from the mitochondria. Taken together, these data support the content that at least in the MP rat model the recurrence of seizures can also sustain cell death mechanisms, thus continuously contributing to the pathologic process triggered by the occurrence of SE.
Collapse
|
8
|
Bhowmik M, Khanam R, Saini N, Vohora D. Activation of AKT/GSK3β pathway by TDZD-8 attenuates kainic acid induced neurodegeneration but not seizures in mice. Neurotoxicology 2015; 46:44-52. [PMID: 25453207 DOI: 10.1016/j.neuro.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Activation of glycogen synthase kinase3β (GSK3β), an enzyme that regulates a multitude of cellular signaling pathways, is implicated in neurodegenerative processes observed in an array of CNS diseases. We examined the hypothesis that the pathological changes in an acute kainic acid (KA) induced excitotoxicity model, relevant to human temporal lobe epilepsy (TLE), could be sensitive to inhibition of GSK3β by 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) treatment in Swiss albino mice. Immediate seizure responses due to KA were recorded. Neurodegenerative and morphogenic changes were examined by western blot analysis and light microscopy, respectively, 48 h after KA administration. Although tonic-clonic seizure episodes evoked by KA were unaffected, TDZD-8 pretreatment decreased KA mediated elevation in caspase-3 cleavage as well as increased Bcl2 and phospho-GSK3β (Ser9; pGSK3β(Ser9)) expression. Likewise, microscopic examination also revealed that pretreatment with TDZD-8 attenuated cell damage elicited by KA in the CA1, CA3 and DG regions. In all the above parameters, the combined effect of a sub-effective dose of sodium valproate (SVP) with TDZD-8 was higher than that of solitary TDZD-8 treatment. The findings suggest that activated GSK3β orchestrated neurodegenerative alterations following KA treatment and its inhibition by TDZD-8 affords a distinct neuroprotective profile by activating Akt/GSK3β pathway which might act upstream of Bax/Bcl2 and caspase-3 pathways. Compounds targeting GSK3β activity might represent a novel therapeutic option for exploration as an adjunct to conventional anti-epileptic drugs in preventing neurodegenerative processes in TLE.
Collapse
Affiliation(s)
- Malay Bhowmik
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Razia Khanam
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Neeru Saini
- Institute of Genomics & Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
9
|
Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid. J Biomed Sci 2013; 20:90. [PMID: 24313976 PMCID: PMC4028745 DOI: 10.1186/1423-0127-20-90] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The roles of caspase 3 on the kainic acid-mediated neurodegeneration, dendritic plasticity alteration, neurogenesis, microglial activation and gliosis are not fully understood. Here, we investigate hippocampal changes using a mouse model that receive a single kainic acid-intracerebral ventricle injection. The effects of caspase 3 inhibition on these changes were detected during a period of 1 to 7 days post kainic acid injection. RESULT Neurodegeneration was assessed by Fluoro-Jade B staining and neuronal nuclei protein (NeuN) immunostaining. Neurogenesis, gliosis, neuritic plasticity alteration and caspase 3 activation were examined using immunohistochemistry. Dendritic plasticity, cleavvage-dependent activation of calcineurin A and glial fibrillary acidic protein cleavage were analyzed by immunoblotting. We found that kainic acid not only induced neurodegeneration but also arouse several caspase 3-mediated molecular and cellular changes including dendritic plasticity, neurogenesis, and gliosis. The acute caspase 3 activation occurred in pyramidal neurons as well as in hilar interneurons. The delayed caspase 3 activation occurred in astrocytes. The co-injection of caspase 3 inhibitor did not rescue kainic acid-mediated neurodegeneration but seriously and reversibly disturb the structural integrity of axon and dendrite. The kainic acid-induced events include microglia activation, the proliferation of radial glial cells, neurogenesis, and calcineurin A cleavage were significantly inhibited by the co-injection of caspase 3 inhibitor, suggesting the direct involvement of caspase 3 in these events. Alternatively, the kainic acid-mediated astrogliosis is not caspase 3-dependent, although caspase 3 cleavage of glial fibrillary acidic protein occurred. CONCLUSIONS Our results provide the first direct evidence of a causal role of caspase 3 activation in the cellular changes during kainic acid-mediated excitotoxicity. These findings may highlight novel pharmacological strategies to arrest disease progression and control seizures that are refractory to classical anticonvulsant treatment.
Collapse
|
10
|
Henshall DC, Engel T. Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Front Cell Neurosci 2013; 7:110. [PMID: 23882182 PMCID: PMC3712126 DOI: 10.3389/fncel.2013.00110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/22/2013] [Indexed: 01/22/2023] Open
Abstract
Neuronal cell death is a pathophysiological consequence of many brain insults that trigger epilepsy and has been implicated as a causal factor in epileptogenesis. Seizure-induced neuronal death features excitotoxic necrosis and apoptosis-associated signaling pathways, including activation of multiple members of the Bcl-2 gene family. The availability of mice in which individual Bcl-2 family members have been deleted has provided the means to determine whether they have causal roles in neuronal death and epileptogenesis in vivo. Studies show that multiple members of the Bcl-2 family are activated following status epilepticus and the seizure and damage phenotypes of eight different knockouts of the Bcl-2 family have now been characterized. Loss of certain pro-apoptotic members, including Puma, protected against seizure-induced neuronal death whereas loss of anti-apoptotic Mcl-1 and Bcl-w enhanced hippocampal damage. Notably, loss of two putatively pro-apoptotic members, Bak and Bmf, resulted in more seizure-damage while deletion of Bid had no effect, indicating the role of certain Bcl-2 family proteins in epileptic brain injury is distinct from their contributions following other stressors or in non-CNS tissue. Notably, Puma-deficient mice develop fewer spontaneous seizures after status epilepticus suggesting neuroprotection may preserve functional inhibition, either directly by preserving neuronal networks or indirectly, for example by limiting reactive gliosis and pro-inflammatory responses to neuronal death. Together, these studies support apoptosis-associated molecular mechanisms controlling neuronal death as a component of epileptogenesis which might be targetable to protect against seizure-damage, cognitive deficits and mitigate the severity of syndrome following epilepsy-precipitating injuries to the brain.
Collapse
Affiliation(s)
- David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen's GreenDublin, Ireland
| | | |
Collapse
|
11
|
Sözmen SÇ, Kurul SH, Yiş U, Tuğyan K, Baykara B, Yılmaz O. Neuroprotective effects of recombinant human erythropoietin in the developing brain of rat after lithium-pilocarpine induced status epilepticus. Brain Dev 2012; 34:189-95. [PMID: 21600713 DOI: 10.1016/j.braindev.2011.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
Status epilepticus triggers a mixture of apoptotic and necrotic cell death within the hippocampus. This neuronal loss may result in the development of epilepsy and cognitive deficits. Erythropoietin mediates a number of biological actions within the central nervous system and has been shown to be neuroprotective. In the present study, we investigated the effects of recombinant human erythropoietin on hippocampus of rat after lithium-pilocarpine induced status epilepticus. Twenty-one dam reared Wistar male rats, 21-day-old were divided into three groups: control group, lithium-pilocarpine induced status epilepticus and lithium-pilocarpine induced status epilepticus and erythropoietin treated group. Erythropoietin treated group received recombinant human erythropoietin 10 U/g intraperitoneally 40 min after pilocarpine injection for 5 days. Rats were sacrificed and brain tissues were collected at 5th day of experiment. Neuronal cell death and apoptosis were evaluated. Histopathological examination showed that erythropoietin significantly decreased neuronal cell death in CA1, CA2, CA3 and dentate gyrus regions of hippocampus. It also diminished apoptosis in the CA1 and dentate gyrus regions of hippocampus. In conclusion, erythropoietin may preserve the number of neurons and decrease apoptosis in model of status epilepticus induced by lithium-pilocarpine. This experimental study suggests that erythropoietin administration may be neuroprotective in status epilepticus.
Collapse
Affiliation(s)
- Sule Çağlayan Sözmen
- Department of Pediatrics, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | | | | | | | | | | |
Collapse
|
12
|
Nowak B, Zadrożna M, Ossowska G, Sowa-Kućma M, Gruca P, Papp M, Dybała M, Pilc A, Nowak G. Alterations in hippocampal calcium-binding neurons induced by stress models of depression: a preliminary assessment. Pharmacol Rep 2011; 62:1204-10. [PMID: 21273679 DOI: 10.1016/s1734-1140(10)70383-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/12/2010] [Indexed: 12/27/2022]
Abstract
In this study, the neuropathological changes induced by chronic unpredictable stress (CUS) and chronic mild stress (CMS) in calbindin D-28K (CB) and parvalbumin (PV) immunoreactive neurons in the rat hippocampus were demonstrated. We used immunohistochemical techniques to quantify the numerical density and morphological changes of PV immunoreactive and CB immunoreactive neurons in the dentate gyrus (DG) and the CA1 and CA3 regions of the hippocampus. We also assessed cell proliferation (Ki-67) and apoptotic processes (active caspase-3) in the DG. We found a significant decrease (16.6% for CUS and 13.3% for CMS) in the numerical density of granule cells (GC), alterations in the CB immunoreactive cells of the GC in the DG and an impairment of mossy fiber CB immunolabelling in the CA3. These changes were not accompanied by a decrease in Ki-67 labeling or the level of caspase-3 in the DG. These data indicate a stress-induced reduction of calcium binding neuron parameters, which may be related to the behavioral paradigms exhibited in these models.
Collapse
Affiliation(s)
- Barbara Nowak
- Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bozzi Y, Dunleavy M, Henshall DC. Cell signaling underlying epileptic behavior. Front Behav Neurosci 2011; 5:45. [PMID: 21852968 PMCID: PMC3151612 DOI: 10.3389/fnbeh.2011.00045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a complex disease, characterized by the repeated occurrence of bursts of electrical activity (seizures) in specific brain areas. The behavioral outcome of seizure events strongly depends on the brain regions that are affected by overactivity. Here we review the intracellular signaling pathways involved in the generation of seizures in epileptogenic areas. Pathways activated by modulatory neurotransmitters (dopamine, norepinephrine, and serotonin), involving the activation of extracellular-regulated kinases and the induction of immediate early genes (IEGs) will be first discussed in relation to the occurrence of acute seizure events. Activation of IEGs has been proposed to lead to long-term molecular and behavioral responses induced by acute seizures. We also review deleterious consequences of seizure activity, focusing on the contribution of apoptosis-associated signaling pathways to the progression of the disease. A deep understanding of signaling pathways involved in both acute- and long-term responses to seizures continues to be crucial to unravel the origins of epileptic behaviors and ultimately identify novel therapeutic targets for the cure of epilepsy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | | | | |
Collapse
|
14
|
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010; 62:668-700. [PMID: 21079040 PMCID: PMC3014230 DOI: 10.1124/pr.110.003046] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce "epileptogenesis," a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis or disease modification. This article reviews these areas of progress and discusses the challenges associated with discovery of antiepileptogenic therapies.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, Hannover, Germany.
| | | |
Collapse
|
15
|
Epileptic tolerance is associated with enduring neuroprotection and uncoupling of the relationship between CA3 damage, neuropeptide Y rearrangement and spontaneous seizures following intra-amygdala kainic acid-induced status epilepticus in mice. Neuroscience 2010; 171:556-65. [PMID: 20837105 DOI: 10.1016/j.neuroscience.2010.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 01/19/2023]
Abstract
Brief, non-harmful seizures can activate endogenous protective programmes which render the brain resistant to damage caused by prolonged seizure episodes. Whether protection in epileptic tolerance is long-lasting or influences the subsequent development of epilepsy is uncertain. Presently, we investigated the relationship between hippocampal pathology, neuropeptide Y rearrangement and spontaneous seizures in sham- and seizure-preconditioned mice after status epilepticus induced by intra-amygdala kainate. Seizure-induced neuronal death at 24 h was significantly reduced in the ipsilateral hippocampal CA3 and hilus of tolerance mice compared to sham-preconditioned animals subject to status epilepticus. Damage to the CA3-hilus remained reduced in tolerance mice 21 days post-status. In sham-preconditioned mice subject to status epilepticus correlative statistics showed there was a strong inverse relationship between CA3, but not hilar, neuron counts and the number of spontaneous seizures. A strong positive association was also found between neuropeptide Y score and spontaneous seizure count in these mice. In contrast, there was no significant association between spontaneous seizure count and CA3 neuron loss or neuropeptide Y rearrangement in the tolerance mice. These data show that tolerance-conferred neuroprotection is long-lasting and that tolerance disrupts the normal association between CA3 damage, synaptic rearrangement and occurrence of spontaneous seizures in this model.
Collapse
|
16
|
Engel T, Murphy BM, Hatazaki S, Jimenez-Mateos EM, Concannon CG, Woods I, Prehn JHM, Henshall DC. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. FASEB J 2009; 24:853-61. [PMID: 19890018 DOI: 10.1096/fj.09-145870] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The functional significance of neuronal death for pathogenesis of epilepsy and the underlying molecular mechanisms thereof remain incompletely understood. The p53 transcription factor has been implicated in seizure damage, but its target genes and the influence of cell death under its control on epilepsy development are unknown. In the present study, we report that status epilepticus (SE) triggered by intra-amygdala kainic acid in mice causes rapid p53 accumulation and subsequent hippocampal damage. Expression of p53-up-regulated mediator of apoptosis (Puma), a proapoptotic Bcl-2 homology domain 3-only protein under p53 control, was increased within a few hours of SE. Induction of Puma was blocked by pharmacologic inhibition of p53, and hippocampal damage was also reduced. Puma induction was also blocked in p53-deficient mice subject to SE. Compared to Puma-expressing mice, Puma-deficient mice had significantly smaller hippocampal lesions after SE. Long-term, continuous telemetric EEG monitoring revealed a approximately 60% reduction in the frequency of epileptic seizures in the Puma-deficient mice compared to Puma-expressing mice. These are the first data showing genetic deletion of a proapoptotic protein acting acutely to influence neuronal death subsequently alters the phenotype of epilepsy in the long-term, supporting the concept that apoptotic pathway activation is a trigger of epileptogenesis.-Engel, T., Murphy, B. M., Hatazaki, S., Jimenez-Mateos, E. M., Concannon, C. G., Woods, I., Prehn, J. H. M., Henshall, D. C. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Jimenez-Mateos EM, Hatazaki S, Johnson MB, Bellver-Estelles C, Mouri G, Bonner C, Prehn JHM, Meller R, Simon RP, Henshall DC. Hippocampal transcriptome after status epilepticus in mice rendered seizure damage-tolerant by epileptic preconditioning features suppressed calcium and neuronal excitability pathways. Neurobiol Dis 2008; 32:442-53. [PMID: 18804535 DOI: 10.1016/j.nbd.2008.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/25/2008] [Accepted: 08/13/2008] [Indexed: 02/07/2023] Open
Abstract
Preconditioning brain with a sub-lethal stressor can temporarily generate a damage-refractory state. Microarray analyses have defined the changes in hippocampal gene expression that follow brief preconditioning seizures, but not the transcriptome after a prolonged and otherwise injurious seizure in previously preconditioned brain. Presently, microarray analysis was performed 24 h after status epilepticus in mice that had received previously either seizure preconditioning (tolerance) or sham-preconditioning (injury). Transcriptional changes in the hippocampal CA3 subfield of >or=2 fold were detected for 1357 genes in the tolerance group compared to a non-seizure control group, with 54% up-regulated. Of these regulated genes, 792 were also regulated in the injury group. Among the remaining 565 genes regulated only in tolerance, 73% were down-regulated. Analysis of the genes differentially suppressed in tolerance identified calcium signaling, ion channels and excitatory neurotransmitter receptors, and the synapse as over-represented among pathways, functions and compartments. Finally, 12 days continuous EEG recordings determined mice with induced tolerance had fewer spontaneous electrographic seizures compared to the injury group. Our data suggest the transcriptional phenotype of neuroprotection in tolerance may be dictated by the biology of the preconditioning stressor, functions by transcriptional reduction of vulnerability to excitotoxicity, and has anti-epileptogenic effects.
Collapse
Affiliation(s)
- Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Mouri G, Jimenez-Mateos E, Engel T, Dunleavy M, Hatazaki S, Paucard A, Matsushima S, Taki W, Henshall DC. Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res 2008; 1213:140-51. [PMID: 18455706 DOI: 10.1016/j.brainres.2008.03.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 02/08/2023]
Abstract
Mesial temporal lobe epilepsy is the most common, intractable seizure disorder in adults. It is associated with an asymmetric pattern of hippocampal neuron loss within the endfolium (hilus and CA3) and CA1, with limited pathology in extra-hippocampal regions. We previously developed a model of focally-evoked seizure-induced neuronal death using intra-amygdala kainic acid (KA) microinjection and characterized the acute hippocampal pathology. Here, we sought to characterize the full extent of hippocampal and potential extra-hippocampal damage in this model, and the temporal onset of epileptic seizures. Seizure damage assessed at four stereotaxic levels by FluoroJade B staining was most prominent in ipsilateral hippocampal CA3 where it extended from septal to temporal pole. Minor but significant neuronal injury was present in ipsilateral CA1. Extra-hippocampal neuronal damage was generally limited in extent and restricted to the lateral septal nucleus, injected amygdala and select regions of neocortex ipsilateral to the seizure elicitation side. Continuous surface EEG recorded with implanted telemetry units in freely-moving mice detected spontaneous, epileptic seizures by five days post-KA in all mice. Epileptic seizure number averaged 1-4 per day. Hippocampi from epileptic mice 15 days post-KA displayed unilateral CA3 lesions, astrogliosis and increased neuropeptide Y immunoreactivity suggestive of mossy fiber rearrangement. These studies characterize a mouse model of unilateral hippocampal-dominant neuronal damage and short latency epileptogenesis that may be suitable for studying the cell and molecular pathogenesis of human mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Genshin Mouri
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Neuroprotection following status epilepticus should encompass not only the prevention of neuronal death, but also preservation of neuronal and network function. This is critical because these aims are not necessarily equivalent; prevention of neuronal loss, for example, does not inevitably prevent epileptogenesis. There are endogenous neuroprotective mechanisms that can serve dichotomous roles (e.g. ERK 1/2 activation can result in either neuroprotection or promote neuronal death). The roles of potential endogenous mechanisms can depend upon the pattern and timing of their activation. The simplest exogenous neuroprotective mechanism is to halt seizure activity. Other approaches consist of early NMDA receptor antagonism or later inhibition of apoptotic pathways. The problem with the latter approach is that calcium accumulation results in the activation of a number of downstream pathways, the importance of which varies from region to region and in a cell-type specific manner. Neuroprotection in epilepsy is not a straightforward concept, and we need to be clear about our eventual objectives (e.g. preventing cognitive decline). There are numerous possible approaches to neuroprotection, and the efficacy of these depends upon their timing, the specific aims and even the method of status epilepticus induction.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Clinical & Experimental Epilepsy, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Box 29, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
21
|
Lakshmikuttyamma A, Selvakumar P, Tuchek J, Sharma RK. Myristoyltransferase and calcineurin: Novel molecular therapeutic target for epilepsy. Prog Neurobiol 2008; 84:77-84. [DOI: 10.1016/j.pneurobio.2007.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/08/2007] [Accepted: 09/24/2007] [Indexed: 11/30/2022]
|
22
|
Antonucci F, Di Garbo A, Novelli E, Manno I, Sartucci F, Bozzi Y, Caleo M. Botulinum neurotoxin E (BoNT/E) reduces CA1 neuron loss and granule cell dispersion, with no effects on chronic seizures, in a mouse model of temporal lobe epilepsy. Exp Neurol 2007; 210:388-401. [PMID: 18177862 DOI: 10.1016/j.expneurol.2007.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/02/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
Mesial temporal lobe epilepsy (MTLE) is often the result of an early insult that induces a reorganization in hippocampal circuitry leading, after a latent period, to chronic epilepsy. Hippocampal rearrangements during the latent phase include neuronal loss, axonal and dendritic plasticity, neurogenesis, and cell repositioning, but the role of these changes in epilepsy development is unclear. Here we have tested whether administration of the synaptic blocker botulinum neurotoxin E (BoNT/E) interferes with development of spontaneous seizures and histopathological changes following an episode of status epilepticus (SE). SE was induced by unilateral intrahippocampal injection of kainic acid in mice and BoNT/E was delivered to the same hippocampus 3 h later. We found that treatment with BoNT/E prolonged the duration of the latent period but did not block the occurrence of spontaneous seizures. At the histopathological level, BoNT/E reduced loss of CA1 pyramidal neurons and dispersion of dentate granule cells. Downregulation of reelin expression along the hippocampal fissure was also suppressed by BoNT/E treatment. Our findings indicate that administration of BoNT/E after SE inhibits specific morphological changes in hippocampal circuitry but not the development of spontaneous seizures. This indicates a dissociation between certain anatomical modifications and establishment of chronic epilepsy in MTLE.
Collapse
|
23
|
Henshall DC, Murphy BM. Modulators of neuronal cell death in epilepsy. Curr Opin Pharmacol 2007; 8:75-81. [PMID: 17827063 DOI: 10.1016/j.coph.2007.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Experimental and human data have shown that certain seizures cause damage to brain. Such neuronal loss may result in cognitive impairments and perhaps contribute to the development or phenotype of emergent epilepsy. Recent work using genetically modified mice, Tat protein transduction, and viral vectors has shown functional effects of manipulating Bcl-2 and Bcl-w, heat shock proteins, caspases, and their regulators and endonucleases on neuronal death in models of status epilepticus. Ancillary effects on seizure induction and excitability thresholds have emerged for several genes suggesting additional properties of therapeutic potential. Differing hippocampal expression of certain Bcl-2 family genes, elevated endoplasmic reticulum stress chaperones, and death receptor pathway modulation in epilepsy patients support clinical relevance of this focus. These findings may yield potentially valuable adjunctive neuroprotective or anti-epileptogenic strategies.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| | | |
Collapse
|
24
|
Xi ZQ, Wang LY, Sun JJ, Liu XZ, Zhu X, Xiao F, Guan LF, Li JM, Wang L, Wang XF. TDAG51 in the anterior temporal neocortex of patients with intractable epilepsy. Neurosci Lett 2007; 425:53-8. [PMID: 17870236 DOI: 10.1016/j.neulet.2007.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 07/25/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
TDAG51 (T cell death-associated gene 51) is an apoptosis-associated protein. Our aim was to investigate TDAG51 expression in the anterior temporal neocortex of patients with intractable epilepsy (IE), and then to discuss the possible role of TDAG51 in IE. Tissue samples from the anterior temporal neocortex of 33 patients who had surgery for IE were used to detect TDAG51 expression by immunohistochemistry, immunofluorescence, and Western blotting. We compared these tissues with nine histologically normal anterior temporal lobes from intracranial hypertension patients who had decompression procedures. TDAG51 was mainly expressed in the cytoplasm of neurons and glial cells. TDAG51 in IE was significantly higher than that in the controls. These findings were consistently observed using Western blotting, immunofluorescence, and immunohistochemistry techniques. TDAG51 in patients with IE was significantly higher when compared with levels in the controls. This finding suggests TDAG51 is consistent with a possible role of this gene in the evolution of the pathology in IE.
Collapse
Affiliation(s)
- Zhi-qin Xi
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, 1 You Yi Road, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Neurodegeneration in limbic circuits is a hallmark feature of chronic temporal lobe epilepsy (TLE). Studies in experimental animal models and human patients indicate that seizure-induced neuronal injury involves some active, as well as passive cell death processes. Experimental approaches that inhibit active steps in cell death programs have been shown to reduce neuronal cell death and sclerosis, but not to prevent epileptogenesis in animal models of TLE. These findings suggest that we need additional research using both animal models and brain slices from human patients to understand the pathological mechanisms underlying seizure generation. Such comparative studies will also aid in evaluating the potential therapeutic value of inhibiting cell death in seizure disorders.
Collapse
Affiliation(s)
- Janice R Naegele
- Department of Biology, Room 257, Hall-Atwater Laboratory, Lawn Avenue, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
26
|
Karhunen H, Bezvenyuk Z, Nissinen J, Sivenius J, Jolkkonen J, Pitkänen A. Epileptogenesis after cortical photothrombotic brain lesion in rats. Neuroscience 2007; 148:314-24. [PMID: 17629408 DOI: 10.1016/j.neuroscience.2007.05.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 05/15/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022]
Abstract
We investigated epileptogenesis after cortical photothrombotic stroke induced with Rose Bengal dye in adult Sprague-Dawley rats. To detect spontaneous seizures, video-electroencephalograms were recorded at 2, 4, 6, 8, and 10 months for 7-14 days (24 h/day). At the end, spatial and emotional learning and memory were assessed using the Morris water-maze and fear-conditioning test, respectively, and the brains were processed for histologic analysis. Seizures were detected in 18% of rats that received photothrombosis. The average seizure frequency was 0.39 seizures per recording day and mean seizure duration was 117 s. Over 60% of seizures occurred during the dark hours. Rats with photothrombotic lesions were impaired in the water-maze (P<0.05) but not in the fear-conditioning test as compared with controls. Histology revealed that lesion depth varied from cortical layers I to VI in photothrombotic rats with epilepsy. Epileptic rats had light mossy fiber sprouting in the inner molecular layer of the dentate gyrus both ipsilateral and contralateral to the lesion. This study extends the current understanding of epileptogenesis and functional impairment after cortical lesions induced by photothrombosis. Our observations support the hypothesis that photothrombotic stroke in rats is a useful animal model for investigating the mechanisms of post-stroke epileptogenesis.
Collapse
Affiliation(s)
- H Karhunen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Narkilahti S, Jutila L, Alafuzoff I, Karkola K, Paljärvi L, Immonen A, Vapalahti M, Mervaala E, Kälviäinen R, Pitkänen A. Increased expression of caspase 2 in experimental and human temporal lobe epilepsy. Neuromolecular Med 2007; 9:129-44. [PMID: 17627033 DOI: 10.1007/bf02685887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 01/24/2023]
Abstract
Temporal lobe epilepsy (TLE) is often caused by a neurodegenerative brain insult that triggers epileptogenesis, and eventually results in spontaneous seizures, i.e., epilepsy. Understanding the mechanisms of cell death is a key for designing new drug therapies for preventing the neurodegeneration associated with TLE. Here, we investigated the expression of caspase 2, a protein involved in programmed cell death, during the course of epilepsy. We investigated caspase 2 expression in hippocampal samples derived from patients operated on for drug refractory TLE. To understand the evolution of altered-caspase 2 expression during the epileptic process, we also examined caspase 2 expression and activity in the rat hippocampus after status epilepticus-induced acute damage, during epileptogenesis, and after the onset of epilepsy. Caspase 2 expression was enhanced in the hippocampal neurons in chronic TLE patients. In rats, status epilepticus-induced caspase 2 labeling paralleled the progression of neurodegeneration. Proteolytic activation and cleavage of caspase 2 was also detected in the rat brain undergoing epileptogenesis. Our data suggest that caspase 2-mediated programmed cell death participates in the seizure-induced degenerative process in experimental and human TLE.
Collapse
Affiliation(s)
- Susanna Narkilahti
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, and Department of Neurology, Kuopio University Hospital, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Henshall DC. Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy. Biochem Soc Trans 2007; 35:421-3. [PMID: 17371290 DOI: 10.1042/bst0350421] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delineating the molecular pathways underlying seizure-induced neuronal death may yield novel strategies for brain protection against prolonged or repetitive seizures. Glutamate-mediated excitotoxicity and necrosis is a primary contributing mechanism but seizures also activate programmed (apoptotic) cell death pathways. Apoptosis signalling pathways are typically initiated following perturbation of intracellular organelle function (intrinsic pathway) or by activated cell-surface-expressed death receptors (extrinsic pathway), with signalling cascades orchestrated in part by the Bcl-2 and caspase gene families. In this review, evidence for these pathways from experimental seizure modelling and clinical material from patients with intractable temporal lobe epilepsy is examined. Seizures cause mitochondrial dysfunction and activate intrinsic pathway components including pro-apoptotic Bcl-2 family proteins and caspases, processes that may be partly calcium-induced. The ER (endoplasmic reticulum) has emerged as a major intrinsic pathway trigger for apoptosis and its function may also be compromised following seizures and in epilepsy. The extrinsic, death-receptor-dependent pathway is also rapidly engaged following experimental seizures and in patient brain, supporting a previously unexpected apical role for a calcium-independent pathway. When considered alongside emerging functions of apoptosis-regulatory proteins in non-cell-death processes, including regulating intracellular calcium release and neuronal (re)structuring, apoptosis signalling pathways can be viewed as an important developing focus of research into how to obviate the deleterious impact of seizures on the brain.
Collapse
Affiliation(s)
- D C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
29
|
Tokuhara D, Sakuma S, Hattori H, Matsuoka O, Yamano T. Kainic acid dose affects delayed cell death mechanism after status epilepticus. Brain Dev 2007; 29:2-8. [PMID: 16790331 DOI: 10.1016/j.braindev.2006.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/12/2006] [Accepted: 05/08/2006] [Indexed: 01/05/2023]
Abstract
Kainic acid (KA)-induced status epilepticus (SE) produces hippocampal neuronal death, which varies from necrosis to apoptosis or programmed cell death (PCD). We examined whether the type of neuronal death was dependent on KA dose. Adult rats were induced SE by intraperitoneal injection of KA at 9 mg/kg (K9) or 12 mg/kg (K12). Hippocampal neuronal death was assessed by TUNEL staining, electron microscopy, and Western blotting of caspase-3 on days 1, 3 and 7 after SE induction. K12 rats showed higher a mortality rate and shorter latency to the onset of SE when compared with K9 rats. In both groups, acidophilic and pyknotic neurons were evident in CA1 at 24h after SE and neuronal loss developed from day 3. The degenerated neurons became TUNEL-positive on days 3 and 7 in K9 rats but not in K12 rats. Caspase-3 activation was detected on days 3 and 7 in K9 rats but was undetectable in K12 rats. Ultrastructural study revealed shrunken neurons exhibiting pyknotic nuclei containing small and dispersed chromatin clumps 24h after SE in CA1. No cells exhibited apoptosis. On days 3 and 7, the degenerated neurons were necrotic with high electron density and small chromatin clumps. There were no ultrastructural differences between the K9 and K12 groups. These results revealed that differences in KA dose affected the delayed cell death (3 and 7 days after SE); however, no effect was seen on the early cell death (24h after SE). Moderate-dose KA induced necrosis, while low-dose KA induced PCD.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.
| | | | | | | | | |
Collapse
|
30
|
Karhunen H, Nissinen J, Sivenius J, Jolkkonen J, Pitkänen A. A long-term video-EEG and behavioral follow-up after endothelin-1 induced middle cerebral artery occlusion in rats. Epilepsy Res 2006; 72:25-38. [PMID: 16911865 DOI: 10.1016/j.eplepsyres.2006.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/04/2006] [Indexed: 10/24/2022]
Abstract
The aim was to test the hypothesis that occlusion of the middle cerebral artery (MCA) results in the development of epilepsy in rats. Further, we investigated whether lesion volume, hippocampal pathology, early seizures, or severity of behavioral impairment is associated with the development and severity of epilepsy or interictal spiking. MCA occlusion was induced by intracerebral injection of endothelin-1 (ET; 120 pmol). One group of ET-injected rats were followed-up for 6 months (n = 15) and another for 12 months (n = 20). Sham-operated animals were injected with saline (n = 12). Occurrence of early and late seizures was monitored by intermittent video-electroencephalography. Sensorimotor function was tested with the running wheel and tapered beam-walking tests. Emotional learning and memory were assessed with the fear conditioning test and spatial learning and memory with the Morris water maze. Finally, brains were processed for histology. Only one rat developed late spontaneous seizures (i.e., epilepsy). Epileptiform interictal spiking was detected in 9 of 26 animals. Early seizures did not predict the development of epilepsy, spiking activity, or severity of behavioral impairment. Production of MCA stroke by intracerebral injection of ET was not a strong trigger of epileptogenesis in adult rats. Further studies are needed to investigate the effect of age, genetic background, and location of ET-injection on the development of hyperexcitability and the risk of post-stroke epileptogenesis.
Collapse
Affiliation(s)
- Heli Karhunen
- A I Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
31
|
Kudryashova IV, Kudryashov IE, Gulyaeva NV. Long-term potentiation in the hippocampus in conditions of inhibition of caspase-3: Analysis of facilitation in paired-pulse stimulation. ACTA ACUST UNITED AC 2006; 36:817-24. [PMID: 16964458 DOI: 10.1007/s11055-006-0092-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Indexed: 11/25/2022]
Abstract
Treatment of hippocampal slices with the caspase-3 inhibitor Z-DEVD-FMK led to a decrease in the magnitude of long-term potentiation (LTP), which developed over time. Testing with paired stimuli separated by an interval of 70 msec showed that after caspase-3 inhibition, as compared with control slices, the second response in the pair showed no increase in amplitude in conditions of LTP. In these conditions, the magnitude of LTP depended on differences in the amplitudes of the first and second responses before induction of LTP. LTP was absent in slices with initially highly efficient afferent stimulation and correspondingly low levels of facilitation in paired-pulse stimulation. It is suggested that inhibition of caspase-3 prevents the structural rearrangements in LTP associated with the involvement of new synapses and neurons in the response.
Collapse
Affiliation(s)
- I V Kudryashova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerov Street, 117485 Moscow, Russia
| | | | | |
Collapse
|
32
|
Kemppainen EJS, Nissinen J, Pitkänen A. Fear conditioning is impaired in systemic kainic acid and amygdala-stimulation models of epilepsy. Epilepsia 2006; 47:820-9. [PMID: 16686646 DOI: 10.1111/j.1528-1167.2006.00542.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The lateral nucleus of the amygdala is critical for fear conditioning, a paradigm of emotional learning, which requires recognition of an unconditioned stimulus as aversive and association of conditioned stimuli with an unconditioned stimulus. Some patients with temporal lobe epilepsy have amygdaloid damage associated with impaired emotional learning. Fear conditioning also is impaired at least in some animal models of epilepsy. We studied whether contextual or tone-cued fear conditioning is impaired in two status epilepticus models of epilepsy and whether impairment correlates with the extent of damage in the lateral nucleus of the amygdala. METHODS We induced epilepsy in rats by either systemic kainic acid administration or electrical amygdala stimulation. Behavioral reactions in all phases of fear conditioning were analyzed from videotapes. Damage to the lateral nucleus of the amygdala was analyzed from thionin-stained sections both histologically and by volumetry. RESULTS Immediate reflexive responses to unconditioned and conditioned stimuli were preserved, whereas the freezing response to an unconditioned stimulus was reduced. Contextual conditioning was severely impaired, whereas tone-cued conditioning was better preserved. The lateral nucleus pathology did not correlate with impaired fear conditioning. CONCLUSIONS These data suggest that processing of complex contextual stimuli is severely affected in experimental epilepsy, whereas conditioning to simple cues is better preserved.
Collapse
Affiliation(s)
- E J Samuli Kemppainen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | | | | |
Collapse
|
33
|
Yamamoto A, Murphy N, Schindler CK, So NK, Stohr S, Taki W, Prehn JHM, Henshall DC. Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. J Neuropathol Exp Neurol 2006; 65:217-25. [PMID: 16651883 DOI: 10.1097/01.jnen.0000202886.22082.2a] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Apoptosis signaling pathways are implicated in the pathogenesis of temporal lobe epilepsy (TLE), but the role of endoplasmic reticulum (ER) stress and ER-localized apoptosis signaling components remains largely unexplored. Presently, we investigated ER stress and ER localization of proapoptotic Bcl-2 family members and initiator and effector caspases in resected hippocampus from patients with intractable TLE and compared findings with autopsy controls. Hippocampal immunoreactivity for KDEL (Lys-Asp-Glu-Leu), a motif in ER stress chaperones glucose-regulated proteins 78 and 94, and calnexin, was significantly higher in TLE hippocampus compared with controls. The ER-containing microsomal fraction in control brain contained Bid, Bim, and caspase 3, whereas Bad and caspases 6, 7, and 9 were very low or absent. In contrast, caspases 6, 7, and 9 were present within the microsomal fraction of TLE brain. Furthermore, cleaved caspases 7 and 9 were detected in TLE samples but not controls, and KDEL-expressing neurons coexpressed cleaved caspase 9. Potentially adaptive changes were also detected, including lowered Bim levels in this fraction, and binding of caspase 7 to the X-linked inhibitor of apoptosis protein. These data suggest seizures may induce ER stress and trigger proapoptotic signaling pathways in the ER that are counteracted by antiapoptotic signals in chronic human TLE.
Collapse
Affiliation(s)
- Akitaka Yamamoto
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Meller R, Clayton C, Torrey DJ, Schindler CK, Lan JQ, Cameron JA, Chu XP, Xiong ZG, Simon RP, Henshall DC. Activation of the caspase 8 pathway mediates seizure-induced cell death in cultured hippocampal neurons. Epilepsy Res 2006; 70:3-14. [PMID: 16542823 PMCID: PMC1618926 DOI: 10.1016/j.eplepsyres.2006.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 01/06/2006] [Accepted: 02/03/2006] [Indexed: 11/21/2022]
Abstract
In response to harmful stresses, cells induce programmed cell death (PCD) or apoptosis. Seizures can induce neural damage and activate biochemical pathways associated with PCD. Since seizures trigger intracellular calcium overload, it has been presumed that the intrinsic cell death pathway mediated by mitochondrial dysfunction would modulate cell death following seizures. However, previous work suggests that the extrinsic cell death pathway may initiate the damage program. Here we investigate intrinsic versus extrinsic cell death pathway activation using caspase cleavage as a marker for activation of these pathways in a rat in vitro model of seizures. Hippocampal cells, chronically treated with kynurenic acid, had kynurenic acid withdrawn to induce seizure-like activity for 40 min. Subjecting rat hippocampal cultures to seizures increased cell death and apoptosis-like DNA fragmentation using TUNEL staining. Seizure-induced cell death was blocked by both MK801 (10 microM) and CNQX (40 microM), which suggests multiple glutamate receptors regulate seizure-induced cell death. Cleavage of the initiator caspases, caspase 8 and 12 were increased 4h following seizure, and cleavage of the quintessential executioner caspase, caspase 3 was increased 4h following seizure. In contrast, caspase 9 cleavage only increased 24h following seizure. Using an affinity labeling approach to trap activated caspases in situ, we show that caspase 8 is the apical caspase activated following seizures. Finally, we show that the caspase 8 inhibitor Ac-IETD-CHO was more effective at blocking seizure-induced cell death than the caspase 9 inhibitor Ac-LEHD-CHO. Taken together, our data suggests the extrinsic cell death pathway-associated caspase 8 is activated following seizures in vitro.
Collapse
Affiliation(s)
- R Meller
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dichter MA. Models of epileptogenesis in adult animals available for antiepileptogenesis drug screening. Epilepsy Res 2006; 68:31-5. [PMID: 16377136 DOI: 10.1016/j.eplepsyres.2005.09.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 09/14/2005] [Indexed: 11/24/2022]
Abstract
Epileptogenesis is the process by which parts of a normal brain are converted to a hyperexcitable brain, often after an injury. Researchers must understand this process before they know where and how to change it. Animal models are used to evaluate the process of epileptogenesis by studing status epelepticus, electrical kindling, or other methods that provoke injuries. All are associated with neuronal loss to more or less degree, synaptic reorganization, axon sprouting, neurogenesis, gliosis, and changes in gene expression in neurons and astrocytes. He describes several types of animal models and how they might be useful in developing effective strategies for preventing epilepsy.
Collapse
|
36
|
Lakshmikuttyamma A, Selvakumar P, Charavaryamath C, Singh B, Tuchek J, Sharma RK. Expression of calcineurin and its interacting proteins in epileptic fowl. J Neurochem 2006; 96:366-73. [PMID: 16336633 DOI: 10.1111/j.1471-4159.2005.03567.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcineurin (CaN), a Ca2+-calmodulin (CaM)-dependent protein phosphatase, is important for Ca2+-mediated signal transduction. The main objective of this study was to examine the potential role of CaN in epileptic brain and its involvement in neuronal apoptosis. We investigated CaN expression and its interaction with various signaling molecules in normal, carrier and epileptic brain tissues of chicken. Our results revealed higher Ca2+-CaM-dependent phosphatase activity of CaN and a correspondingly strong immunoreactive band of CaN A in epileptic and carrier brain samples compared with normal brain. Furthermore, immunohistochemical analysis showed a higher level of expression of CaN in epileptic brain tissue. However, the intensity of immunoreactivity was less in carrier than epileptic brain. We observed that the interaction of CaN with m-calpain and micro-calpain was strong in carrier and epileptic chickens compared with that in normal birds. In addition, the interaction of CaN with Bcl-2, caspase-3 and p53 was greater in carrier and epileptic fowl than in normal chickens. The greater interaction of CaN with various apoptotic factors in epileptic chickens adds to our understanding of the mechanism of CaN signaling in neuronal apoptosis.
Collapse
Affiliation(s)
- Ashakumary Lakshmikuttyamma
- Department of Pathology, College of Medicine and Health Research Division, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Epilepsy is a common, chronic neurologic disorder characterized by recurrent unprovoked seizures. Experimental modeling and clinical neuroimaging of patients has shown that certain seizures are capable of causing neuronal death. Such brain injury may contribute to epileptogenesis, impairments in cognitive function or the epilepsy phenotype. Research into cell death after seizures has identified the induction of the molecular machinery of apoptosis. Here, the authors review the clinical and experimental evidence for apoptotic cell death pathway function in the wake of seizure activity. We summarize work showing intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathway function after seizures, activation of the caspase and Bcl-2 families of cell death modulators and the acute and chronic neuropathologic impact of intervening in these molecular cascades. Finally, we describe evolving data on nonlethal roles for these proteins in neuronal restructuring and cell excitability that have implications for shaping the epilepsy phenotype. This review highlights the work to date on apoptosis pathway signaling during seizure-induced neuronal death and epileptogenesis, and speculates on how emerging roles in brain remodeling and excitability have enriched the number of therapeutic strategies for protection against seizure-damage and epileptogenesis.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | |
Collapse
|
38
|
Selvakumar P, Lakshmikuttyamma A, Charavaryamath C, Singh B, Tuchek J, Sharma RK. Expression of myristoyltransferase and its interacting proteins in epilepsy. Biochem Biophys Res Commun 2005; 335:1132-9. [PMID: 16129091 DOI: 10.1016/j.bbrc.2005.07.190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 07/21/2005] [Indexed: 11/23/2022]
Abstract
N-Myristoylation is a co-translational, irreversible addition of a fatty acyl moiety to the amino terminus of many eukaryotic cellular proteins. This modification is catalyzed by N-myristoyltransferase (NMT) and is recognized to be a widespread and functionally important modification of proteins. The myristoylated Src family kinases are involved in various signaling cascades, including the N-methyl-d-aspartate receptor functions. We examined the expression of NMT and its interacting proteins to gain further insight into the mechanisms in epileptic fowl. Higher expression of NMT1 and NMT2 was observed in carrier and epileptic fowl whereas expression of heat shock cognate protein 70, an inhibitor of NMT, was lower. Furthermore, protein-protein interaction of NMT with m-calpain, caspase-3, and p53 was established. The interaction of NMT2 with caspase-3 and p53 was weak in epileptic fowl compared with normal chicks while the interaction of NMT1 with m-calpain was weak in epileptics. Understanding the regulation of NMT by specific inhibitors may help us to control the action of this enzyme on its specific substrates and may lead to improvements in the management of various neurological disorders like Alzheimer's disease, ischemia, and epilepsy.
Collapse
Affiliation(s)
- Ponniah Selvakumar
- Department of Pathology, College of Medicine and Health Research Division, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 4H4
| | | | | | | | | | | |
Collapse
|
39
|
Seoane A, Apps R, Balbuena E, Herrero L, Llorens J. Differential effects oftrans-crotononitrile and 3-acetylpyridine on inferior olive integrity and behavioural performance in the rat. Eur J Neurosci 2005; 22:880-94. [PMID: 16115211 DOI: 10.1111/j.1460-9568.2005.04230.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inferior olive climbing fibre projection is key to cerebellar contributions to motor control. Here we present evidence for a novel tool, trans-crotononitrile (TCN), to selectively inactivate the olive to study its functions. Anatomical, electrophysiological and behavioural techniques have been used in rats to assess the CNS effects of TCN, with a focus on the olivocerebellar projection. These findings were compared with those obtained with 3-acetylpyridine (plus nicotinamide administered 3.5 h later, 3AP + 3.5 h). Fluoro-Jade B cell labelling showed that TCN and 3AP + 3.5 h induce neurodegeneration primarily within the inferior olive, with no other targets in common. Recordings of evoked field potentials on the cerebellar cortical surface showed that both neurotoxins can reduce transmission in climbing fibre but not mossy fibre pathways. Both histological and electrophysiological differences suggest that TCN and 3AP have distinct mechanisms of action. Estimates of the numbers of surviving cells within individual subdivisions of the olive indicate that TCN and 3AP + 3.5 h cause different patterns of subtotal olivary lesion: most surviving neurons are present in the rostral (TCN) or caudal (3AP + 3.5 h) parts of the medial accessory olive, which are associated with two different cerebellar modules: the C2 and A modules, respectively. In behavioural studies, TCN and 3AP + 3.5 h produced differences in motor deficits consistent with the notion that these cerebellar modules have distinct functional responsibilities. Thus, studies using TCN as compared with 3AP + 3.5 h have the potential to shed light on the contributions of different cerebellar modules in motor control.
Collapse
Affiliation(s)
- A Seoane
- Department of Physiology, School of Medical Sciences, University of Bristol, UK
| | | | | | | | | |
Collapse
|
40
|
Pitkänen A, Kharatishvili I, Narkilahti S, Lukasiuk K, Nissinen J. Administration of diazepam during status epilepticus reduces development and severity of epilepsy in rat. Epilepsy Res 2005; 63:27-42. [PMID: 15716080 DOI: 10.1016/j.eplepsyres.2004.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 07/12/2004] [Accepted: 10/21/2004] [Indexed: 11/24/2022]
Abstract
Prevention of epileptogenesis after brain insults, such as status epilepticus (SE), head trauma, or stroke, remains a challenge. Even if epilepsy cannot be prevented, it would be beneficial if the pathologic process could be modified to result in a less severe disease. We examined whether early discontinuation of SE reduces the risk of epilepsy or results in milder disease. Epileptogenesis was triggered with SE induced by electrical stimulation of the amygdala. Animals (n = 72) were treated with vehicle or diazepam (DZP, 20 mg/kg) 2 h or 3 h after the beginning of SE. Electrode-implanted non-stimulated rats served as controls for histology. All animals underwent continuous long-term video-electroencephalography monitoring 7-9 weeks and 11-15 weeks later to detect the occurrence and severity of spontaneous seizures. As another outcome measure, the severity of hippocampal damage was assessed in histologic sections. In the vehicle group, 94% of animals developed epilepsy. DZP treatment reduced the percentage of epileptic animals to 42% in the 2-h DZP group and to 71% in the 3-h DZP group (p < 0.001 and p < 0.05 compared to the vehicle group, respectively). If epilepsy developed, the seizures were less frequent in DZP-treated animals compared to the vehicle group (median 16.4 seizures/day), particularly in the 2-h DZP group (median 0.4 seizures/day). Finally, if DZP treatment was started 2 h, but not 3 h after SE, the severity of hippocampal cell loss was milder and the density of mossy-fiber sprouting was lower than in the vehicle group. These data indicate that treatment of SE with DZP within 2 h reduces the risk of epilepsy later in life, and if epilepsy develops, it is milder.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute, University of Kuopio, P.O. Box 1627, FIN-70 211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
41
|
Narkilahti S, Pitkänen A. Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy. Neuroscience 2005; 131:887-97. [PMID: 15749343 DOI: 10.1016/j.neuroscience.2004.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2004] [Indexed: 10/25/2022]
Abstract
The molecular basis of neuronal circuit reorganization during epileptogenesis is poorly understood. Such data are, however, critical for the search of new targets for the prevention of epileptogenesis. Here, we extended our previous studies on caspases in epileptogenesis by investigating the expression and activity of caspase 6 at different phases of the epileptic process in rats. Epileptogenesis was triggered by kainate-induced status epilepticus (SE) under video-electroencephalography-monitoring. Caspase 6 activity was measured fluorometrically in the hippocampus 8 h, 24 h, 48 h, 1 week, and 4 weeks after SE. Caspase 6 expression was examined using Western blot and immunohistochemistry. Our data demonstrated that the SE-induced increase in the expression of cleaved caspase 6 and its intraneuronal localization were dependent on the time delay from SE induction. Double-labeling with a neuronal marker, NeuN, indicated that within the first 48 h, caspase 6 immunoreactivity was present both in the hippocampal pyramidal cells and hilar neurons, some of which were also terminal transferase dUTP-end labeling-positive. This was coincident with a transient 18-fold increase in caspase 6 enzymatic activity. At the 1-week and 4-week time points, elevated caspase 6 immunoreactivity was detected in the dendritic processes and neuropil. These findings indicate that caspase 6 expression remains elevated long after the occurrence of acute cell death during epileptogenesis and epilepsy. Further, caspase 6 protein is not exclusively located in the somata of neurons, but also in dendrites. These data suggest that caspase 6 has functions other than execution of programmed cell death in epileptogenic hippocampus.
Collapse
Affiliation(s)
- S Narkilahti
- A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70 211 Kuopio, Finland
| | | |
Collapse
|
42
|
Nissinen J, Large CH, Stratton SC, Pitkänen A. Effect of lamotrigine treatment on epileptogenesis: an experimental study in rat. Epilepsy Res 2004; 58:119-32. [PMID: 15120743 DOI: 10.1016/j.eplepsyres.2004.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 01/09/2004] [Accepted: 01/14/2004] [Indexed: 11/20/2022]
Abstract
Prevention of epileptogenesis in patients with acute brain damaging insults like status epilepticus (SE) is a major challenge. We investigated whether lamotrigine (LTG) treatment started during SE is antiepileptogenic or disease-modifying. To mimic a clinical study design, LTG treatment (20 mg/kg) was started 2 h after the beginning of electrically induced SE in 14 rats and continued for 11 weeks (20 mg/kg per day for 2 weeks followed by 10 mg/kg per day for 9 weeks). One group of rats (n = 14) was treated with vehicle. Nine non-stimulated rats with vehicle treatment served as controls. Outcome measures were occurrence of epilepsy, severity of epilepsy, and histology (neuronal loss, mossy fiber sprouting). Clinical occurrence of seizures was assessed with 1-week continuous video-electroencephalography monitoring during the 11th (i.e. during treatment) and 14th week (i.e. after drug wash-out) after SE. LTG reduced the number of electrographic seizures during SE to 43% of that in the vehicle group (P < 0.05). In the vehicle group, 93% (13/14), and in the LTG group, 100% (14/14) of the animals, developed epilepsy. In both groups, 64% of the rats had severe epilepsy (seizure frequency >1 per day). The mean frequency of spontaneous seizures, seizure duration, or behavioral severity of seizures did not differ between groups. The severity of hippocampal neuronal damage and density of mossy fiber sprouting were similar. In LTG-treated rats with severe epilepsy, however, the duration of seizures was shorter (34 versus 54s, P < 0.05) and the behavioral seizure score was milder (1.4 versus 3.4, P < 0.05) during LTG treatment than after drug wash-out. LTG treatment started during SE and continued for 11 weeks was not antiepileptogenic but did not worsen the outcome. These data, together with earlier studies of other antiepileptic drugs, suggest that strategies other than Na(+)-channel blockade should be explored to modulate the molecular cascades leading to epileptogenesis after SE.
Collapse
Affiliation(s)
- Jari Nissinen
- A.I. Virtanen Institute, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
43
|
Shinoda S, Schindler CK, Meller R, So NK, Araki T, Yamamoto A, Lan JQ, Taki W, Simon RP, Henshall DC. Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. J Clin Invest 2004; 113:1059-68. [PMID: 15057313 PMCID: PMC379318 DOI: 10.1172/jci19971] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 01/13/2004] [Indexed: 11/17/2022] Open
Abstract
Programmed cell death pathways have been implicated in the mechanism by which neurons die following brief and prolonged seizures, but the significance of proapoptotic Bcl-2 family proteins in the process remains poorly defined. Expression of the death agonist Bcl-2-interacting mediator of cell death (Bim) is under the control of the forkhead in rhabdomyosarcoma (FKHR) transcription factors. This prompted us to examine the response of this pathway to experimental seizures and in hippocampi from patients with intractable temporal lobe epilepsy. A short period of status epilepticus in rats that damaged the hippocampus activated FKHR/FKHRL-1 and induced a significant increase in expression of Bim. Blocking of FKHR/FKHRL-1 dephosphorylation after seizures improved hippocampal neuronal survival in vivo, and Bim antisense oligonucleotides were neuroprotective against seizures in vitro. Inhibition of Akt increased the FKHR/Bim response and DNA fragmentation within the normally resistant cortex. Analysis of hippocampi from patients with intractable epilepsy revealed that Bim levels were significantly lower than in controls and FKHR was inhibited; we were able to reproduce these results experimentally in rats by evoking multiple brief, noninjurious electroshock seizures. We conclude that Bim expression may be a critical determinant of whether seizures damage the brain, and that its control may be neuroprotective in status epilepticus and epilepsy.
Collapse
Affiliation(s)
- Sachiko Shinoda
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shinoda S, Schindler CK, Meller R, So NK, Araki T, Yamamoto A, Lan JQ, Taki W, Simon RP, Henshall DC. Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. J Clin Invest 2004. [DOI: 10.1172/jci200419971] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Shinoda S, Araki T, Lan JQ, Schindler CK, Simon RP, Taki W, Henshall DC. Development of a model of seizure-induced hippocampal injury with features of programmed cell death in the BALB/c mouse. J Neurosci Res 2004; 76:121-8. [PMID: 15048936 DOI: 10.1002/jnr.20064] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although mice are amenable to gene knockout, they have not been exploited in the setting of seizure-induced neurodegeneration due to the resistance to injury of key mouse strains. We refined and developed models of seizure-induced neuronal death in the C57BL/6 and BALB/c strains by focally evoking seizures using intra-amygdala kainic acid. Seizures in adult male BALB/c mice, or C57BL/6 mice as reference, caused ipsilateral death of CA1 and CA3 neurons within the hippocampus. Termination of seizures by lorazepam was more effective than diazepam in both strains, largely restricting neuronal loss to the CA3 sector. Electroencephalography (EEG) recordings defined injurious and non-injurious seizure patterns, which could not be separated adequately by behavioral observation alone. Degenerating neurons in the hippocampus were positive for DNA fragmentation and approximately a third of these exhibited morphologic features of programmed cell death. Western blot analysis revealed the cleavage of caspase-8 after seizures in both strains. These data refine our C57BL/6 model and establish a companion model of focally evoked limbic seizures in the BALB/c mouse that provides further evidence for activation of programmed cell death after seizures.
Collapse
Affiliation(s)
- Sachiko Shinoda
- Robert S Dow Neurobiology laboratories, Legacy Research, Portland, Oregon 97232, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Henshall DC, Schindler CK, So NK, Lan JQ, Meller R, Simon RP. Death-associated protein kinase expression in human temporal lobe epilepsy. Ann Neurol 2004; 55:485-94. [PMID: 15048887 DOI: 10.1002/ana.20001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental and human data suggest programmed (active) cell death may contribute to the progressive hippocampal atrophy seen in patients with refractory temporal lobe epilepsy. Death-associated protein (DAP) kinase is a novel calcium/calmodulin-activated kinase that functions in apoptosis mediated by death receptors. Because seizure-induced neuronal death involves both death receptor activation and calcium, we examined DAP kinase expression, localization, and interactions in hippocampal resections from patients with intractable temporal lobe epilepsy (n = 10) and autopsy controls (n = 6). Expression and phosphorylation of DAP kinase was significantly increased in epilepsy brain compared with control. DAP kinase and DAP kinase-interacting protein 1 (DIP-1) localized to mitochondria in control brain, whereas levels of both were increased in the cytoplasm and microsomal (endoplasmic reticulum) fraction in epilepsy samples. Coimmunoprecipitation analysis showed increased DAP kinase binding to calmodulin, DIP-1, and the Fas-associated protein with death domain (FADD) in epilepsy samples. Finally, immunohistochemistry determined DAP kinase was coexpressed with DIP-1 in neurons. This study provides the first description of DAP kinase and DIP-1 in human brain and suggests DAP kinase is a novel molecular regulator of neuronal death in epilepsy.
Collapse
Affiliation(s)
- David C Henshall
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Neurological Sciences Center, Portland, OR, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Narkilahti S, Pirttilä TJ, Lukasiuk K, Tuunanen J, Pitkänen A. Expression and activation of caspase 3 following status epilepticus in the rat. Eur J Neurosci 2003; 18:1486-96. [PMID: 14511328 DOI: 10.1046/j.1460-9568.2003.02874.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is in dispute whether caspase 3 contributes to status epilepticus (SE)-induced cell loss. We hypothesized that caspase 3-mediated cell death continues beyond the acute phase of SE. We induced SE with either kainic acid or electrical stimulation of the amygdala in Wistar and Sprague-Dawley rats. Caspase 3 immunohistochemistry, Western blot analysis and enzyme activity measurements were used to determine cellular localization and the time course of caspase 3 expression and activation. Immunohistochemistry indicated that caspase 3 protein expression increased following SE, peaking at 16-24 h. Cleavage of procaspase 3 to active fragments (p20-17) was detected 2-7 days after SE. Caspase 3 enzyme activity was elevated at 8 h and further increased up to 19.4-fold at 7 days following SE. Activation of caspase 3 after SE occurred in the hippocampus and the extrahippocampal temporal lobe but not in the thalamus. Caspase 3-immunoreactive cells represented only a minority of degenerating cells as assessed by Fluoro-Jade B and TUNEL staining. Analysis of double-labelled sections indicated that active caspase 3 was located in astrocytes rather than neurons or microglia. There was increased caspase 3 expression in both rat strains, and it was independent of the method used to induce SE. These data demonstrate that caspase 3 contributes to the cell death occurring within the first week after SE, but in only a small proportion of degenerating cells. These results suggest that, contrary to expectations, caspase 3 inhibitors would have only limited benefits in the treatment of SE.
Collapse
Affiliation(s)
- Susanna Narkilahti
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70 211 Kuopio, Finland
| | | | | | | | | |
Collapse
|