1
|
Lara FR, Sunkavalli P, Mikaelian M, Golemb B, Chung DY, Duhaime AC, Staley K, Costine-Bartell B. Brief apnea with hypoventilation reduces seizure duration and shifts seizure location for several hours in a model of severe traumatic brain injury. Epilepsia 2024; 65:2099-2110. [PMID: 38752982 PMCID: PMC11251852 DOI: 10.1111/epi.17993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE Seizures can be difficult to control in infants and toddlers. Seizures with periods of apnea and hypoventilation are common following severe traumatic brain injury (TBI). We previously observed that brief apnea with hypoventilation (A&H) in our severe TBI model acutely interrupted seizures. The current study is designed to determine the effect of A&H on subsequent seizures and whether A&H has potential therapeutic implications. METHODS Piglets (1 week or 1 month old) received multifactorial injuries: cortical impact, mass effect, subdural hematoma, subarachnoid hemorrhage, and seizures induced with kainic acid. A&H (1 min apnea, 10 min hypoventilation) was induced either before or after seizure induction, or control piglets received subdural/subarachnoid hematoma and seizure without A&H. In an intensive care unit, piglets were sedated, intubated, and mechanically ventilated, and epidural electroencephalogram was recorded for an average of 18 h after seizure induction. RESULTS In our severe TBI model, A&H after seizure reduced ipsilateral seizure burden by 80% compared to the same injuries without A&H. In the A&H before seizure induction group, more piglets had exclusively contralateral seizures, although most piglets in all groups had seizures that shifted location throughout the several hours of seizure. After 8-10 h, seizures transitioned to interictal epileptiform discharges regardless of A&H or timing of A&H. SIGNIFICANCE Even brief A&H may alter traumatic seizures. In our preclinical model, we will address the possibility of hypercapnia with normoxia, with controlled intracranial pressure, as a therapeutic option for children with status epilepticus after hemorrhagic TBI.
Collapse
Affiliation(s)
| | | | - Michael Mikaelian
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Bryan Golemb
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - David Y. Chung
- Neurovascular Research Unit, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
| | - Ann-Christine Duhaime
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
- Department of Neurosurgery, Harvard Medical School, Boston, MA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
| | - Beth Costine-Bartell
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
- Department of Neurosurgery, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
3
|
Grove JCR, Hirano AA, de los Santos J, McHugh CF, Purohit S, Field GD, Brecha NC, Barnes S. Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina. PLoS Biol 2019; 17:e3000200. [PMID: 30933967 PMCID: PMC6459543 DOI: 10.1371/journal.pbio.3000200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 04/11/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023] Open
Abstract
The stream of visual information sent from photoreceptors to second-order bipolar cells is intercepted by laterally interacting horizontal cells that generate feedback to optimize and improve the efficiency of signal transmission. The mechanisms underlying the regulation of graded photoreceptor synaptic output in this nonspiking network have remained elusive. Here, we analyze with patch clamp recording the novel mechanisms by which horizontal cells control pH in the synaptic cleft to modulate photoreceptor neurotransmitter release. First, we show that mammalian horizontal cells respond to their own GABA release and that the results of this autaptic action affect cone voltage-gated Ca2+ channel (CaV channel) gating through changes in pH. As a proof-of-principle, we demonstrate that chemogenetic manipulation of horizontal cells with exogenous anion channel expression mimics GABA-mediated cone CaV channel inhibition. Activation of these GABA receptor anion channels can depolarize horizontal cells and increase cleft acidity via Na+/H+ exchanger (NHE) proton extrusion, which results in inhibition of cone CaV channels. This action is effectively counteracted when horizontal cells are sufficiently hyperpolarized by increased GABA receptor (GABAR)-mediated HCO3- efflux, alkalinizing the cleft and disinhibiting cone CaV channels. This demonstrates how hybrid actions of GABA operate in parallel to effect voltage-dependent pH changes, a novel mechanism for regulating synaptic output.
Collapse
Affiliation(s)
- James C. R. Grove
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of California, San Francisco, California, United States of America
| | - Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Janira de los Santos
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Cyrus F. McHugh
- Doheny Eye Institute, University of California, Los Angeles, California, United States of America
| | - Shashvat Purohit
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Greg D. Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Doheny Eye Institute, University of California, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Calero CI, Vickers E, Moraga Cid G, Aguayo LG, von Gersdorff H, Calvo DJ. Allosteric modulation of retinal GABA receptors by ascorbic acid. J Neurosci 2011; 31:9672-82. [PMID: 21715633 PMCID: PMC3160198 DOI: 10.1523/jneurosci.5157-10.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 11/21/2022] Open
Abstract
Ionotropic GABA receptors (GABA(A) and GABA(C)) belong to the Cys-loop receptor family of ligand-gated ion channels. GABA(C) receptors are highly expressed in the retina, mainly localized at the axon terminals of bipolar cells. Ascorbic acid, an endogenous redox agent, modulates the function of diverse proteins, and basal levels of ascorbic acid in the retina are very high. However, the effect of ascorbic acid on retinal GABA receptors has not been studied. Here we show that the function of GABA(C) and GABA(A) receptors is regulated by ascorbic acid. Patch-clamp recordings from bipolar cell terminals in goldfish retinal slices revealed that GABA(C) receptor-mediated currents activated by tonic background levels of extracellular GABA, and GABA(C) currents elicited by local GABA puffs, are both significantly enhanced by ascorbic acid. In addition, a significant rundown of GABA puff-evoked currents was observed in the absence of ascorbic acid. GABA-evoked Cl(-) currents mediated by homomeric ρ(1) GABA(C) receptors expressed in Xenopus laevis oocytes were also potentiated by ascorbic acid in a concentration-dependent, stereo-specific, reversible, and voltage-independent manner. Studies involving the chemical modification of sulfhydryl groups showed that the two Cys-loop cysteines and histidine 141, all located in the ρ(1) subunit extracellular domain, each play a key role in the modulation of GABA(C) receptors by ascorbic acid. Additionally, we show that retinal GABA(A) IPSCs and heterologously expressed GABA(A) receptor currents are similarly augmented by ascorbic acid. Our results suggest that ascorbic acid may act as an endogenous agent capable of potentiating GABAergic neurotransmission in the CNS.
Collapse
Affiliation(s)
- Cecilia I. Calero
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Evan Vickers
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, and
| | - Gustavo Moraga Cid
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Luis G. Aguayo
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | | | - Daniel J. Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Chen Z, Huang R. Identification of residues mediating inhibition of glycine receptors by protons. Neuropharmacology 2007; 52:1606-15. [PMID: 17459427 DOI: 10.1016/j.neuropharm.2007.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 02/14/2007] [Accepted: 03/12/2007] [Indexed: 11/23/2022]
Abstract
We previously identified H109 of the glycine alpha1 subunit as a putative proton binding site. In the present studies, we explored additional proton binding site(s) as well as the mechanism underlying modulation of glycine receptors by protons. Whole-cell glycine currents were recorded from HEK 293 cells transiently expressing wild type or mutant glycine receptors. Individual mutation of 3 of 4 remaining extracellular histidine residue into alanine (i.e., alpha1 H107A, H215A or H419A), reduced the receptor sensitivity to protons to a varying extent. In contrast, mutation of alpha1 H201A did not affect proton sensitivity. Double, triple or quadruple histidine mutation of these residues caused a further reduction of proton sensitivity, suggesting multiple binding sites for proton action on glycine receptors. Furthermore, the substitution T133A, which mediates Zn(2+) inhibition, virtually abolished the proton effect on peak amplitude and current kinetics of glycine response. Replacement of T with S on position 133 partially restored receptor sensitivity to protons, suggesting the hydroxyl group of residue T133 is essential for proton-mediated modulation. In heteromeric alpha1beta receptors, mutations beta H132A and S156A, which correspond to H109 and T133 of the alpha1 subunit, respectively, also affected proton inhibition. In conclusion, multiple extracellular histidine residues (H107, H109, H215 and H419) and threonine residues of the alpha1 and beta Zn(2+) coordination sites are critical for modulation of the glycine receptor by protons.
Collapse
Affiliation(s)
- Zhenglan Chen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | |
Collapse
|
6
|
Qian H, Pan Y, Choi B, Ripps H. High pH accelerates GABA deactivation on perch-rho1B receptors. Neuroscience 2006; 142:1221-30. [PMID: 16920274 DOI: 10.1016/j.neuroscience.2006.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/01/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
The ionotropic GABA(C) receptor, formed by GABA rho subunits, is known to be modulated by a variety of endogenous compounds, as well as by changes in pH. In this study, we explore the proton sensitivity of the GABA rho subunits cloned from the perch retina, and report a novel action of high pH on the homomeric receptor formed by one of the GABA rho subunits, the perch-rho(1B) subunit. Raising extracellular pH to 9.5 significantly accelerated GABA deactivation responses elicited from oocytes expressing the perch-rho(1B) subunit, and reduced its sensitivity to GABA. The change in the kinetics of the GABA-offset response occurred without altering the maximum response amplitude, and the reduced GABA sensitivity was independent of membrane potential. Although acidification of the extracellular solution also accelerated GABA deactivation for all other GABA rho receptors examined in this study, the effects of high pH were unique to the homomeric receptor formed by the perch-rho(1B) subunit. In addition, we found that, unlike the effects on the response to the naturally occurring full agonist GABA, the responses elicited by partial agonists (imidazole-4-acetic acid (I4AA) and beta-alanine) in the presence of the high pH solution showed a significant reduction in the maximum response amplitude. When considered in terms of a model describing the activation of GABA(C) receptors, in which pH can potentially affect either the binding affinity or the rate of channel closure, the results were consistent with the view that external alkalization reduces the gating efficiency of the receptor. To identify the proton sensitive domain(s) of the perch-rho(1B) receptor, chimeras were constructed by domain swapping with other perch-rho subunits. Analysis of the pH sensitivities of the various chimeric receptors revealed that the alkaline-sensitive residues are located in the N-terminal region of the perch-rho(1B) subunit.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Female
- GABA Agonists/pharmacology
- Hydrogen-Ion Concentration
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Ligands
- Neural Inhibition/physiology
- Neurons/metabolism
- Oocytes
- Perches
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/physiology
- Protons
- Receptors, GABA/chemistry
- Receptors, GABA/drug effects
- Receptors, GABA/metabolism
- Receptors, GABA-B/chemistry
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/metabolism
- Synaptic Transmission/physiology
- Time Factors
- Xenopus
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- H Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
7
|
Alakuijala A, Alakuijala J, Pasternack M. Evidence for a functional role of GABAC receptors in the rat mature hippocampus. Eur J Neurosci 2006; 23:514-20. [PMID: 16420458 DOI: 10.1111/j.1460-9568.2005.04572.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both gamma-aminobutyric acid (GABA)(C) receptor subunit mRNA and protein are expressed in the stratum pyramidale in the CA1 area of the adult rat hippocampus, but so far no conclusive evidence about functional hippocampal GABA(C) receptors has been presented. Here, the contribution of GABA(C) receptors to stimulus-evoked postsynaptic potentials was studied in the hippocampal CA1 area with extracellular and intracellular recordings at the age range of 21-47 postnatal days. Activation of GABA(C) receptors with the specific agonist cis-4-aminocrotonic acid (CACA) suppressed postsynaptic excitability and increased the membrane conductance. The GABA(C) receptor antagonist 1,2,5,6-tetrahydropyridine-4-ylmethylphosphinic acid (TPMPA), but not the GABA(A) receptor antagonist bicuculline, inhibited the effects of CACA. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation of local inhibitory interneurons in the CA1 area in the presence of ionotropic glutamate receptor and GABA(B) receptor blockers were prolonged by TPMPA, indicating that GABA(C) receptors are activated under these conditions. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABA(C) receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABA(C) receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA.
Collapse
Affiliation(s)
- Anniina Alakuijala
- Institute of Biotechnology, PO Box 56, FI-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
8
|
Schnizler K, Saeger B, Pfeffer C, Gerbaulet A, Ebbinghaus-Kintscher U, Methfessel C, Franken EM, Raming K, Wetzel CH, Saras A, Pusch H, Hatt H, Gisselmann G. A Novel Chloride Channel in Drosophila melanogaster Is Inhibited by Protons. J Biol Chem 2005; 280:16254-62. [PMID: 15713676 DOI: 10.1074/jbc.m411759200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A systematic analysis of the Drosophila genome data reveals the existence of pHCl, a novel member of ligand-gated ion channel subunits. pHCl shows nearly identical similarity to glutamate-, glycine-, and histamine-gated ion channels, does however not belong to any of these ion channel types. We identified three different sites, where splicing generates multiple transcripts of the pHCl mRNA. The pHCl is expressed in Drosophila embryo, larvae, pupae, and the adult fly. In embryos, in situ hybridization detected pHCl in the neural cord and the hindgut. Functional expression of the three different splice variants of pHCl in oocytes of Xenopus laevis and Sf9 cells induces a chloride current with a linear current-voltage relationship that is inhibited by extracellular protons and activated by avermectins in a pH-dependent manner. Further, currents through pHCl channels were induced by a raise in temperature. Our data give genetic and electrophysiological evidence that pHCl is a member of a new branch of ligand-gated ion channels in invertebrates with, however, a hitherto unique combination of pharmacological and biophysical properties.
Collapse
Affiliation(s)
- Katrin Schnizler
- Bayer AG, Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bookheimer S, Schrader LM, Rausch R, Sankar R, Engel J. Reduced anesthetization during the intracarotid amobarbital (Wada) test in patients taking carbonic anhydrase-inhibiting medications. Epilepsia 2005; 46:236-43. [PMID: 15679504 DOI: 10.1111/j.0013-9580.2005.23904.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Failure to show adequate anesthetization during the intracarotid amobarbital procedure (IAP or "Wada test") is a rare complication. After an unusually high rate of recent anesthetization failures, we sought to determine the frequency of reduced anesthetization and any common factors underlying these failures. METHODS We reviewed the records of all patients who underwent IAP tests through the UCLA Seizure Disorder Center between September 1999 and May 2002. Age, date, epileptogenic focus, radiologist, and current medications were all considered. RESULTS Of a total of 56 patients who underwent our intracarotid amobarbital examination, 11 (19.6%) showed either very rapid recovery (<or=1 min) or anesthetization failure. Of these, 10 (91%) of 11 were taking a medication with some carbonic anhydrase-inhibiting (CAI) properties (topiramate (TPM), n=7; zonisamide (ZNS), n=2; hydrochlorothiazide and furosemide, n=1 each). The only patient of 40 (2.5%) who was not taking any CAI drugs and showed an early IAP recovery (55 s) had recently discontinued TPM. IAPs performed on patients after weaning from TPM showed a correlation between length of drug discontinuation and duration of anesthesia effect. CONCLUSIONS Our data strongly suggest that recent failures of anesthetization during the IAP are associated with a possible interaction between amobarbital and medications possessing CAI properties. We suggest that the IAP be performed only after >/=8 weeks after discontinuation of such medications.
Collapse
Affiliation(s)
- Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
10
|
Alakuijala A, TalviOja K, Pasternack A, Pasternack M. Functional characterization of rat ρ2 subunits expressed in HEK 293 cells. Eur J Neurosci 2005; 21:692-700. [PMID: 15733087 DOI: 10.1111/j.1460-9568.2005.03880.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GABA(C) receptors are thought to be homo- or heteropentamers composed of rho1, rho2 and rho3 subunits. Previous work on rat rho2 subunits expressed in Xenopus oocytes has suggested that they do not form functional homo-oligomeric GABA(C) receptors, but do combine with rho1 or rho3 subunits to form hetero-oligomers. These findings are difficult to interpret because both human and mouse rho2 subunits do form functional homo-oligomeric receptors. Also, many regions of the rat brain express solely rho2 subunit transcripts which, according to presently available evidence, would not result in expression of functional GABA(C) receptors. We show here that homomeric rat rho2 receptors can be expressed in HEK 293 cells. Homo-oligomeric rat rho2 receptors expressed in mammalian cells matured slowly and displayed small but detectable GABA-induced currents with slow kinetics. Rat rho2 receptors also had a decreased sensitivity to picrotoxin and a marked sensitivity to the GABA(C) receptor agonist cis-aminocrotonic acid. Our results demonstrate for the first time the expression of functional homomeric rat rho2 receptors, and suggest that rho(2) subunits may contribute to brain function, including in areas not expressing other rho subunits.
Collapse
Affiliation(s)
- Anniina Alakuijala
- Institute of Biotechnology, PO Box 56, FI-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
11
|
Yang L, Omori K, Omori K, Otani H, Suzukawa J, Inagaki C. GABAC receptor agonist suppressed ammonia-induced apoptosis in cultured rat hippocampal neurons by restoring phosphorylated BAD level. J Neurochem 2003; 87:791-800. [PMID: 14535961 DOI: 10.1046/j.1471-4159.2003.02069.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ammonia-induced apoptosis and its prevention by GABAC receptor stimulation were examined using primary cultured rat hippocampal neurons. Ammonia (0.5-5 mm NH4Cl) dose-dependently induced apoptosis in pyramidal cell-like neurons as assayed by double staining with Hoechst 33258 and anti-neurofilament antibody. A GABAC receptor agonist, cis-4-aminocrotonic acid (CACA, 200 microm), but not GABAA and GABAB receptor agonists, muscimol (10 micro m) and baclofen (50 microm), respectively, inhibited the ammonia (2 mm)-induced apoptosis, and this inhibition was abolished by a GABAC receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA, 15 microm). Expression of all three GABAC receptor subunits was demonstrated in the cultured neurons by RT-PCR. The ammonia-treatment also activated caspases-3 and -9 as observed in immunocytochemistry for PARP p85 and western blot. Such activation of the caspases was again inhibited by CACA in a TPMPA-sensitive manner. The anti-apoptotic effect of CACA was blocked by inhibitors for MAP kinase kinase and cAMP-dependent protein kinase, PD98059 (20 microm) and KT5720 (1 microm), suggesting possible involvement of an upstream pro-apoptotic protein, BAD. Levels of phospho-BAD (Ser112 and Ser155) were decreased by the ammonia-treatment and restored by coadministration of CACA. These findings suggest that GABAC receptor stimulation protects hippocampal pyramidal neurons from ammonia-induced apoptosis by restoring Ser112- and Ser155-phospho-BAD levels.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacology, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.
Collapse
Affiliation(s)
- R Enz
- Emil-Fischer Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Zhang D, Pan ZH, Awobuluyi M, Lipton SA. Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 2001; 22:121-32. [PMID: 11239575 DOI: 10.1016/s0165-6147(00)01625-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In less than a decade our knowledge of the GABA(C) receptor, a new type of Cl(-)-permeable ionotropic GABA receptor, has greatly increased based on studies of both native and recombinant receptors. Careful comparison of properties of native and recombinant receptors has provided compelling evidence that GABA receptor rho-subunits are the major molecular components of GABA(C) receptors. Three distinct rho-subunits from various species have been cloned and the pattern of their expression in the retina, as well as in various brain regions, has been established. The pharmacological profile of GABA(C) receptors has been refined and more specific drugs have been developed. Molecular determinants that underlie functional properties of the receptors have been assigned to specific amino acid residues in rho-subunits. This information has helped determine the subunit composition of native receptors, as well as the molecular basis underlying subtle variations among GABA(C) receptors in different species. Finally, GABA(C) receptors play a unique functional role in retinal signal processing via three mechanisms: (1) slow activation; (2) segregation from other inhibitory receptors; and (3) contribution to multi-neuronal pathways.
Collapse
Affiliation(s)
- D Zhang
- Center for Neuroscience and Aging, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
14
|
Krishek BJ, Smart TG. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development. J Physiol 2001; 530:219-33. [PMID: 11208970 PMCID: PMC2278406 DOI: 10.1111/j.1469-7793.2001.0219l.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The effect of GABAA receptor development in culture on the modulation of GABA-induced currents by external H+ was examined in cerebellar granule cells using whole-cell and single-channel recording. Equilibrium concentration-response curves revealed a lower potency for GABA between 11 and 12 days in vitro (DIV) resulting in a shift of the EC50 from 10.7 to 2.4 uM. For granule cells before 11 DIV, the peak GABA-activated current was inhibited at low external pH and enhanced at high pH with a pKa of 6.6. For the steady-state response, low pH was inhibitory with a pKa of 5.56. After 11 DIV, the peak GABA-activated current was largely pH insensitive; however, the steady-state current was potentiated at low pH with a pKa of 6.84. Single GABA-activated ion channels were recorded from outside-out patches of granule cell bodies. At pH 5.4-9.4, single GABA channels exhibited multiple conductance states occurring at 22-26, 16-17 and 12-14 pS. The conductance levels were not significantly altered over the time period of study, nor by changing the external H+ concentration. Two exponential functions were required to fit the open-time frequency histograms at both early (< 11 DIV) and late (> 11 DIV) development times at each H+ concentration. The short and long open time constants were unaffected either by the extracellular H+ concentration or by neuronal development. The distribution of all shut times was fitted by the sum of three exponentials designated as short, intermediate and long. At acidic pH, the long shut time constant decreased with development as did the relative contribution of these components to the overall distribution. This was concurrent with an increase in the mean probability of channel opening. In conclusion, this study demonstrates in cerebellar granule cells that external pH can either reduce, have no effect on, or enhance GABA-activated responses depending on the stage of development, possibly related to the subunit composition of the GABAA receptors. The mode of interaction of H+ at the single-channel level and implications of such interactions at cerebellar granule cell GABAA receptors are discussed.
Collapse
Affiliation(s)
- B J Krishek
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|