1
|
Necolau MI, Ionita M, Pandele AM. Poly(propylene fumarate) Composite Scaffolds for Bone Tissue Engineering: Innovation in Fabrication Techniques and Artificial Intelligence Integration. Polymers (Basel) 2025; 17:1212. [PMID: 40362996 PMCID: PMC12073892 DOI: 10.3390/polym17091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Over the past three decades, the biodegradable polymer known as poly(propylene fumarate) (PPF) has been the subject of numerous research due to its unique properties. Its biocompatibility and controllable mechanical properties have encouraged numerous scientists to manufacture and produce a wide range of PPF-based materials for biomedical purposes. Additionally, the ability to tailor the degradation rate of the scaffold material to match the rate of new bone tissue formation is particularly relevant in bone tissue engineering, where synchronized degradation and tissue regeneration are critical for effective healing. This review thoroughly summarizes the advancements in different approaches for PPF and PPF-based composite scaffold preparation for bone tissue engineering. Additionally, the challenges faced by each approach, such as biocompatibility, degradation, mechanical features, and crosslinking, were emphasized, and the noteworthy benefits of the most pertinent synthesis strategies were highlighted. Furthermore, the synergistic outcome between tissue engineering and artificial intelligence (AI) was addressed, along with the advantages brought by the implication of machine learning (ML) as well as the revolutionary impact on regenerative medicines. Future advances in bone tissue engineering could be facilitated by the enormous potential for individualized and successful regenerative treatments that arise from the combination of tissue engineering and artificial intelligence. By assessing a patient's reaction to a certain drug and choosing the best course of action depending on the patient's genetic and clinical characteristics, AI can also assist in the treatment of illnesses. AI is also used in drug research and discovery, target identification, clinical trial design, and predicting the safety and effectiveness of novel medications. Still, there are ethical issues including data protection and the requirement for reliable data management systems. AI adoption in the healthcare sector is expensive, involving staff and facility investments as well as training healthcare professionals on its application.
Collapse
Affiliation(s)
- Madalina I. Necolau
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, 011062 Bucharest, Romania; (M.I.N.); (M.I.)
| | - Mariana Ionita
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, 011062 Bucharest, Romania; (M.I.N.); (M.I.)
| | - Andreea M. Pandele
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, 011062 Bucharest, Romania; (M.I.N.); (M.I.)
- Department of Analytical Chemistry and Environmental Engineering, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, 011062 Bucharest, Romania
| |
Collapse
|
2
|
Bahnick AJ, Ruppert D, Krisanic GA, Everitt JI, Fowler VG, Levinson H, Becker ML. Bioresorbable Suture Anchor Clips for Soft Tissue Wound Repair. Biomacromolecules 2025; 26:1709-1724. [PMID: 39919151 DOI: 10.1021/acs.biomac.4c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Mesh suture is an emerging technology for closing high-tension soft tissue wounds. However, bulky mesh surgical knots can irritate surrounding tissue and harbor bacteria, leading to an increased risk of infection and palpability. Thus, a degradable knotless anchoring system is needed to secure mesh sutures. Here, novel anchor clip devices are fabricated via continuous liquid interface production (CLIP) three-dimensional (3D) printing using poly(propylene fumarate-co-propylene succinate) (PPFPS) oligomers. Thiol-ene cross-linking yields fully degradable thermoset devices with tunable mechanical properties. For comparison, high-resolution anchor clips are also fabricated via traditional injection molding using poly(l-lactide-co-glycolide) (PLGA). The PLGA anchor clips show similar mechanical performance to predicate soft tissue fixation techniques in a benchtop abdominal wall reconstruction model. Both PLGA and PPFPS anchor clips demonstrate satisfactory in vivo biocompatibility in a porcine abdominal implantation model. This work outlines the development of bioresorbable anchor clips for soft tissue fixation and illustrates their potential for clinical translation.
Collapse
Affiliation(s)
- Alexander J Bahnick
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David Ruppert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Gabriella A Krisanic
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University, Durham, North Carolina 27708, United States
| | - Vance G Fowler
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 27710, United States
- Duke Clinical Research Institute, Durham, North Carolina 27701, United States
| | - Howard Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Bahnick AJ, Dziewior CS, Li Y, Chou A, Segal M, Augustine EK, Ji RR, Becker ML. Controlled Transdermal Delivery of Dexamethasone for Pain Management via Photochemically 3D-Printed Bioresorbable Microneedle Arrays. Adv Healthc Mater 2024; 13:e2402113. [PMID: 39132866 DOI: 10.1002/adhm.202402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Microneedle array patches (MAPs) are extensively studied for transdermal drug delivery. Additive manufacturing enables precise control over MAP customization and rapid fabrication. However, the scope of 3D-printable, bioresorbable materials is limited. Dexamethasone (DXM) is widely used to manage inflammation and pain, but its application is limited by systemic side effects. Thus, it is crucial to achieve high local drug concentrations while maintaining low serum levels. Here, poly(propylene fumarate-co-propylene succinate) oligomers are fabricated into DXM-loaded, bioresorbable MAPs via continuous liquid interface production 3D printing. Thiol-ene click chemistry yields MAPs with tailorable mechanical and degradation properties. DXM-loaded MAPs exhibit controlled elution of drug in vitro. Transdermal application of DXM-loaded MAPs in a murine tibial fracture model leads to substantial relief of postoperative pain. Pharmacokinetic analysis shows that MAP administration is able to control pain at a significantly lower dose than intravenous administration. This work expands the material properties of 3D-printed poly(propylene fumarate-co-propylene succinate) copolyesters and their use in drug delivery applications.
Collapse
Affiliation(s)
| | | | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Amy Chou
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Maddison Segal
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
4
|
Takeuchi M, Amao Y. An effective visible-light driven fumarate production from gaseous CO 2 and pyruvate by the cationic zinc porphyrin-based photocatalytic system with dual biocatalysts. Dalton Trans 2024; 53:418-422. [PMID: 38032087 DOI: 10.1039/d3dt03492e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Fumaric acid is a useful unsaturated dicarboxylic acid that serves as a precursor for the biodegradable plastics poly(butylene succinate) and poly(propylene fumarate). Currently, fumaric acid is mainly synthesised from petroleum resources such as benzene. It is therefore desirable to develop methods to produce fumaric acid from renewable resources such as those derived from biomass. In this work, an effective visible-light driven fumarate production from gaseous CO2 and pyruvate with the system consisting of triethanolamine, cationic water-soluble zinc porphyrin, zinc tetrakis(4-N,N,N-trimethylaminophenyl)porphyrin, pentamethylcyclopentadienyl coordinated rhodium(III) 2,2'-bipyridyl complex, NAD+, malate dehydrogenase (NAD+-dependent oxaloacetate-decarboxylating) and fumarase was developed.
Collapse
Affiliation(s)
- Mika Takeuchi
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Yutaka Amao
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
- Research Centre of Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
5
|
Pandele AM, Selaru A, Dinescu S, Costache M, Vasile E, Dascălu C, Raicopol MD, Teodorescu M. Synthesis and evaluation of poly(propylene fumarate)-grafted graphene oxide as nanofiller for porous scaffolds. J Mater Chem B 2023; 11:8241-8250. [PMID: 37565837 DOI: 10.1039/d3tb01232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In an effort to obtain porous scaffolds with improved mechanical properties and biocompatibility, the current study discusses nanocomposite materials based on poly(propylene fumarate)/N-vinyl pyrrolidone(PPF/NVP) networks reinforced with polymer-modified graphene oxide (GO@PPF). The GO@PPF nanofiller was synthesized through a facile and convenient surface esterification reaction, and the successful functionalization was demonstrated by complementary techniques such as FT-IR, XPS, TGA and TEM. The PPF/NVP/GO@PPF porous scaffolds obtained using NaCl as a porogen were further characterized in terms of morphology, mechanical properties, sol fraction, and in vitro degradability. SEM and nanoCT examinations of NaCl-leached samples revealed networks of interconnected pores, fairly uniform in size and shape. We show that the incorporation of GO@PPF in the polymer matrix leads to a significant enhancement in the mechanical properties, which we attribute to the formation of denser and more homogenous networks, as suggested by a decreased sol fraction for the scaffolds containing a higher amount of GO@PPF. Moreover, the surface of mineralized PPF/NVP/GO@PPG scaffolds is uniformly covered in hydroxyapatite-like crystals having a morphology and Ca/P ratio similar to bone tissue. Furthermore, the preliminary biocompatibility assessment revealed a good interaction between PPF/PVP/GO@PPF scaffolds and murine pre-osteoblasts in terms of cell viability and proliferation.
Collapse
Affiliation(s)
- Andreea M Pandele
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania
| | - Aida Selaru
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania
| | - Constanţa Dascălu
- Department of Physics, University Politehnica of Bucharest, 313 Splaiul Independenţei, 060042, Bucharest, Romania
| | - Matei D Raicopol
- "Costin Nenitzescu" Department of Organic Chemistry, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania.
| | - Mircea Teodorescu
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu St., 011061, Bucharest, Romania
| |
Collapse
|
6
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Kim J, Park H, Yoon C. Advances in Biodegradable Soft Robots. Polymers (Basel) 2022; 14:polym14214574. [PMID: 36365570 PMCID: PMC9658808 DOI: 10.3390/polym14214574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Biodegradable soft robots have been proposed for a variety of intelligent applications in soft robotics, flexible electronics, and bionics. Biodegradability offers an extraordinary functional advantage to soft robots for operations accompanying smart shape transformation in response to external stimuli such as heat, pH, and light. This review primarily surveyed the current advanced scientific and engineering strategies for integrating biodegradable materials within stimuli-responsive soft robots. It also focused on the fabrication methodologies of multiscale biodegradable soft robots, and highlighted the role of biodegradable soft robots in enhancing the multifunctional properties of drug delivery capsules, biopsy tools, smart actuators, and sensors. Lastly, the current challenges and perspectives on the future development of intelligent soft robots for operation in real environments were discussed.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Harim Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence:
| |
Collapse
|
8
|
Wang L, Chen B, Ji M, Guo D, He X, Lashari NUR, Fu C, Zheng J. Development and properties of
UV
‐cured poly (propylene fumarate)/hydroxyapatite composites coatings as potential application for bone adhesive tape. J Appl Polym Sci 2022. [DOI: 10.1002/app.52289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang Wang
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an China
| | - Bing‐yu Chen
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Meng‐hao Ji
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Da‐gang Guo
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an China
| | - Xin‐hai He
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Najeeb ur Rehman Lashari
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Chong Fu
- Xi’an Key Laboratory of Textile Composites, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Jing Zheng
- Shaanxi Key Laboratory of Biomedical Metal Materials Northwest Institute for Non‐ferrous Metal Research Xi'an China
| |
Collapse
|
9
|
In vitro biocompatiability and mechanical properties of bone adhesive tape composite based on poly(butyl fumarate)/poly(propylene fumarate)-diacrylate networks. J Mech Behav Biomed Mater 2022; 126:105049. [PMID: 34991046 DOI: 10.1016/j.jmbbm.2021.105049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022]
Abstract
Polyfumarate has been considered as injectable and biodegradable bone cement. However, its mechanical and degradation properties are particularly important. Therefore, the current study aimed to develop the properties by compositing poly (butyl fumarate)-based networks with hydroxyapatite nano-powders. In this regard, the poly (butyl fumarate) (PBF) matrix composite was compared with different components by evaluating their composition, mechanical properties, hydrophilicity, and biodegradability. Furthermore, their bioactivity in the phosphate-buffered saline (PBS) and, via applying mouse embryo osteoblast precursor cells (MC3T3-E1), their cell interaction, including adhesion, proliferation, and in vitro cytotoxicity assay, were assessed. The addition of hydroxyapatite improved the mechanical strength and modulus of PBF matrix composite. The composite reinforced with 3 wt% hydroxyapatite showed a higher lap-shear strength (1.68 MPa) and bonding strength (4.30 MPa), a maximum compression strength at fracture (95.18 MPa), modulus (925.29 MPa), and compression strength at yield (31.43 MPa), respectively. Also, hydrophilicity and in vitro degradation of the composite were enhanced in the presence of hydroxyapatite. In this condition, after a period of immersion (52 weeks) in PBS, the weight loss rate, and degradation rate of the composite increased. The composite proliferation, adhesion, and toxicity of MC3T3-E1 cells improved in comparison to the PBF matrix composite. Accordingly, controllable strength and degradation of the composite, along with its proven biocompatibility, make the composite a candidate for the treatment of comminuted fractures.
Collapse
|
10
|
Liu ZC, Wang M, Huang S, Yang H. Biodegradable and Crosslinkable Poly(propylene fumarate) Liquid Crystal Polymers. Polym Chem 2022. [DOI: 10.1039/d1py01475g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, liquid crystal polymers (LCPs) have attracted extensive attention due to their widespread applications in artificial muscles, engineering plastics and high-modulus fibers, etc. However, the design and fabrication...
Collapse
|
11
|
Mudassir MA, Aslam HZ, Ansari TM, Zhang H, Hussain I. Fundamentals and Design-Led Synthesis of Emulsion-Templated Porous Materials for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102540. [PMID: 34553500 PMCID: PMC8596121 DOI: 10.1002/advs.202102540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Indexed: 05/06/2023]
Abstract
Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.
Collapse
Affiliation(s)
- Muhammad Ahmad Mudassir
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology (KFUEIT)Rahim Yar Khan64200Pakistan
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Hafiz Zohaib Aslam
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| | - Tariq Mahmood Ansari
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
| | - Haifei Zhang
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Irshad Hussain
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| |
Collapse
|
12
|
Razazpour F, Najafi F, Moshaverinia A, Fatemi SM, Sima S. Synthesis and characterization of a photo-cross-linked bioactive polycaprolactone-based osteoconductive biocomposite. J Biomed Mater Res A 2021; 109:1858-1868. [PMID: 33830598 DOI: 10.1002/jbm.a.37178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In this study, a light cross-linkable biocomposite scaffold based on a photo-cross-linkable poly (propylene fumarate) (PPF)-co-polycaprolactone (PCL) tri-block copolymer was synthesized and characterized. The developed biodegradable scaffold was further modified with β-tricalcium phosphate (β-TCP) bioceramic for bone tissue engineering applications. The developed biocomposite was characterized using H nuclear magnetic resonance and Fourier transform infrared spectroscopy. Moreover, the bioceramic particle size distribution and morphology were evaluated using Brunauer-Emmett-Teller method, X-ray diffraction, and scanning electron microscopy. The mechanical properties and biodegradation of the scaffolds were also evaluated. Cytotoxicity and mineralization assays were performed to analyze the biocompatibility and bioactivity capacity of the developed biocomposite. The characterization data confirmed the development of a biodegradable and photo-cross-linkable PCL-based biocomposite reinforced with β-TCP bioceramic. In vitro analyses demonstrated the biocompatibility and mineralization potential of the synthesized bioceramic. Altogether, the results of the present study suggest that the photo-cross-linkable PCL-PPF-PCL tri-block copolymer reinforced with β-TCP is a promising biocomposite for bone tissue engineering applications. According to the results, this newly synthesized material has a proper chemical composition for further clinically-relevant studies in tissue engineering.
Collapse
Affiliation(s)
- Fateme Razazpour
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Alireza Moshaverinia
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, USA
| | - Seyyed Mostafa Fatemi
- Department of Dental Materials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Laser Research Center, ACER, Tehran, Iran
| | - Shahabi Sima
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Dental Biomaterials Association, Tehran, Iran
| |
Collapse
|
13
|
Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. CRYSTALS 2021. [DOI: 10.3390/cryst11040353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.
Collapse
|
14
|
Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5030078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preventive and regenerative techniques have been suggested to minimize the aesthetic and functional effects caused by intraoral bone defects, enabling the installation of dental implants. Among them, porous three-dimensional structures (scaffolds) composed mainly of bioabsorbable ceramics, such as hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) stand out for reducing the use of autogenous, homogeneous, and xenogenous bone grafts and their unwanted effects. In order to stimulate bone formation, biodegradable polymers such as cellulose, collagen, glycosaminoglycans, polylactic acid (PLA), polyvinyl alcohol (PVA), poly-ε-caprolactone (PCL), polyglycolic acid (PGA), polyhydroxylbutyrate (PHB), polypropylenofumarate (PPF), polylactic-co-glycolic acid (PLGA), and poly L-co-D, L lactic acid (PLDLA) have also been studied. More recently, hybrid scaffolds can combine the tunable macro/microporosity and osteoinductive properties of ceramic materials with the chemical/physical properties of biodegradable polymers. Various methods are suggested for the manufacture of scaffolds with adequate porosity, such as conventional and additive manufacturing techniques and, more recently, 3D and 4D printing. The purpose of this manuscript is to review features concerning biomaterials, scaffolds macro and microstructure, fabrication techniques, as well as the potential interaction of the scaffolds with the human body.
Collapse
|
15
|
Kovylin RS, Aleynik DY, Fedushkin IL. Modern Porous Polymer Implants: Synthesis, Properties, and Application. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The needs of modern surgery triggered the intensive development of transplantology, medical materials science, and tissue engineering. These directions require the use of innovative materials, among which porous polymers occupy one of the leading positions. The use of natural and synthetic polymers makes it possible to adjust the structure and combination of properties of a material to its particular application. This review generalizes and systematizes the results of recent studies describing requirements imposed on the structure and properties of synthetic (or artificial) porous polymer materials and implants on their basis and the advantages and limitations of synthesis methods. The most extensively employed, promising initial materials are considered, and the possible areas of application of polymer implants based on these materials are highlighted.
Collapse
|
16
|
Liang R, Gu Y, Wu Y, Bunpetch V, Zhang S. Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration. ACS Biomater Sci Eng 2020; 7:806-816. [PMID: 33715367 DOI: 10.1021/acsbiomaterials.9b01818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fabrication of scaffolds that precisely mimic the natural structure and physiochemical properties of bone is still one of the most challenging tasks in bone tissue engineering. 3D printing techniques have drawn increasing attention due to their ability to fabricate scaffolds with complex structures and multiple bioinks. For bone tissue engineering, lithography-based 3D bioprinting is frequently utilized due to its printing speed, mild printing process, and cost-effective benefits. In this review, lithography-based 3D bioprinting technologies including SLA and DLP are introduced; their typical applications in biological system and bioinks are also explored and summarized. Furthermore, we discussed possible evolution of the hardware/software systems and bioinks of lithography-based 3D bioprinting, as well as their future applications.
Collapse
Affiliation(s)
- Renjie Liang
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuqing Gu
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yicong Wu
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shufang Zhang
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
17
|
Aldemir Dikici B, Claeyssens F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front Bioeng Biotechnol 2020; 8:875. [PMID: 32903473 PMCID: PMC7435020 DOI: 10.3389/fbioe.2020.00875] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Cemali G, Aruh A, Köse GT, Can E. Biodegradable polymeric networks of poly(propylene fumarate) and phosphonic acid‐based monomers. POLYM INT 2020. [DOI: 10.1002/pi.6077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Görkem Cemali
- Genetics and Bioengineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Avram Aruh
- Chemical Engineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Gamze Torun Köse
- Genetics and Bioengineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Erde Can
- Chemical Engineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| |
Collapse
|
19
|
Le Fer G, Becker ML. 4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22444-22452. [PMID: 32337967 DOI: 10.1021/acsami.0c01444] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3D/4D printing is enabling transformative advances in device manufacturing and medicine but remains limited by the lack of printable resorbable materials with advanced properties and functions. Herein, we report the rapid and precise 4D printing of shape-memory scaffolds based on poly(propylene fumarate) (PPF) star polymers. Scaffolds with tunable and distinguishable properties can be produced with identical polymer formulation and stoichiometry. The resulting scaffold glass transition temperatures and Young's moduli increase with the postcuring time. Significantly, both the extent and rate of shape recovery following compression can be tuned by varying the strut design, the postcuring step duration, and/or the temperature applied for the recovery step. Finally, accelerated degradation studies confirmed the resorbability of the PPF star polymer gyroid scaffolds.
Collapse
Affiliation(s)
- Gaëlle Le Fer
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
20
|
Gaihre B, Liu X, Lee Miller A, Yaszemski M, Lu L. Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1758718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Karfarma M, Esnaashary MH, Rezaie HR, Javadpour J, Naimi-Jamal MR. Poly(propylene fumarate)/magnesium calcium phosphate injectable bone composite: Effect of filler size and its weight fraction on mechanical properties. Proc Inst Mech Eng H 2019; 233:1165-1174. [PMID: 31545134 DOI: 10.1177/0954411919877277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to produce a composite of poly(propylene fumarate)/magnesium calcium phosphate as a substitutional implant in the treatment of trabecular bone defects. So, the effect of magnesium calcium phosphate particle size, magnesium calcium phosphate:poly(propylene fumarate) weight ratio on compressive strength, Young's modulus, and toughness was assessed by considering effective fracture mechanisms. Micro-sized (∼30 µm) and nano-sized (∼50 nm) magnesium calcium phosphate particles were synthesized via emulsion precipitation and planetary milling methods, respectively, and added to poly(propylene fumarate) up to 20 wt.%. Compressive strength, Young's modulus, and toughness of the composites were measured by compressive test, and effective fracture mechanisms were evaluated by imaging fracture surface. In both micro- and nano-composites, the highest compressive strength was obtained by adding 10 wt.% magnesium calcium phosphate particles, and the enhancement in nano-composite was superior to micro-one. The micrographs of fracture surface revealed different mechanisms such as crack pinning, void plastic growth, and particle cleavage. According to the results, the produced composite can be considered as a candidate for substituting hard tissue.
Collapse
Affiliation(s)
- Masoud Karfarma
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Hamid Reza Rezaie
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Javadpour
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
22
|
Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. POLYMERIC BIOMATERIALS FOR SCAFFOLD-BASED BONE REGENERATIVE ENGINEERING. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:128-154. [PMID: 31423461 PMCID: PMC6697158 DOI: 10.1007/s40883-018-0072-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use. These favorable attributes have contributed to the rise of scaffold-based polymeric tissue regeneration. Critical components in the scaffold-based polymeric regenerative engineering approach often include 1. The existence of biodegradable polymeric porous structures with properties selected to promote tissue regeneration and while providing appropriate mechanical support during tissue regeneration. 2. Cellular populations that can influence and enhance regeneration. 3. The use of growth and morphogenetic factors which can influence cellular migration, differentiation and tissue regeneration in vivo. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and their ability to produce biocompatible degradation products. This paper presents an overview of polymeric scaffold-based bone tissue regeneration and reviews approaches as well as the particular roles of biodegradable polymers currently in use.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tahereh Jafari
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jorge L. Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
23
|
Cai Z, Wan Y, Becker ML, Long YZ, Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials 2019; 208:45-71. [PMID: 30991217 DOI: 10.1016/j.biomaterials.2019.03.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/04/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Poly(propylene fumarate) (PPF) is a biodegradable polymer that has been investigated extensively over the last three decades. It has led many scientists to synthesize and fabricate a variety of PPF-based materials for biomedical applications due to its controllable mechanical properties, tunable degradation and biocompatibility. This review provides a comprehensive overview of the progress made in improving PPF synthesis, resin formulation, crosslinking, device fabrication and post polymerization modification. Further, we highlight the influence of these parameters on biodegradation, biocompatibility, and their use in a number of regenerative medicine applications, especially bone tissue engineering. In particular, the use of 3D printing techniques for the fabrication of PPF-based scaffolds is extensively reviewed. The recent invention of a ring-opening polymerization method affords precise control of PPF molecular mass, molecular mass distribution (ƉM) and viscosity. Low ƉM facilitates time-certain resorption of 3D printed structures. Novel post-polymerization and post-printing functionalization methods have accelerated the expansion of biomedical applications that utilize PPF-based materials. Finally, we shed light on evolving uses of PPF-based materials for orthopedics/bone tissue engineering and other biomedical applications, including its use as a hydrogel for bioprinting.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, United States.
| | - Yong Wan
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China; Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China.
| | - David Dean
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
24
|
Luo Y, Le Fer G, Dean D, Becker ML. 3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties. Biomacromolecules 2019; 20:1699-1708. [PMID: 30807696 DOI: 10.1021/acs.biomac.9b00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex three-dimensional (3D) pore geometries, useful for tissue engineering scaffolds, can be fabricated via photo-crosslinking of resorbable poly(propylene fumarate) (PPF) resins using stereolithography (SLA) and/or continuous digital light processing (cDLP) methods. Physico-chemical parameters inherent to 3D printable resin design, include viscosity, polymer concentration, degree of polymerization, and resin printing temperature. We report here on our study of these parameters and their influence the cDLP 3D printing process and the resulting mechanical properties. A series of PPF oligomers were synthesized by the ring-opening copolymerization (ROCOP) of maleic anhydride and propylene oxide followed by a base-catalyzed isomerization. The resin viscosities were measured as a function of number-average molecular mass ([Formula: see text]) of the PPF oligomers (1.1, 1.7 and 2.0 kDa), concentrations of PPF in the reactive diluent diethyl fumarate (DEF) (50 and 75 wt %) and resin temperature (25 to 55 °C). The zero-shear viscosity (η0) of the resins was found to be temperature-dependent and follow a linear Arrhenius relationship. Tensile tests demonstrated mechanical properties within the range of trabecular bone, with the ultimate strength at break above 15 MPa and elastic moduli between 178 and 199 MPa.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Gaëlle Le Fer
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - David Dean
- Department of Plastic Surgery , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Matthew L Becker
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
25
|
Li J, Liu X, Park S, Miller AL, Terzic A, Lu L. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. J Biomed Mater Res A 2019; 107:631-642. [PMID: 30422387 PMCID: PMC7224963 DOI: 10.1002/jbm.a.36579] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Incorporation of hydroxyapatite (HA) into polymer networks is a promising strategy to enhance the mechanical properties and osteoinductivity of the composite scaffolds for bone tissue engineering. In this study, we designed a group of nanocomposite scaffolds based on cross-linkable poly(propylene fumarate) (PPF) and 30 wt % strontium-hydroxyapatite (Sr-HA) nanoparticles. Four different Sr contents [Sr:(Sr + Ca), molar ratio] in the Sr-HA particles were studied: 0% (HA), 5% (Sr5-HA), 10% (Sr10-HA), and 20% (Sr20-HA). Two-dimensional (2D) disks were prepared using a thermal crosslinking method. The structure and surface morphology of different Sr-HA and PPF/Sr-HA composites were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). To detect cellular responses in vitro, MC3T3-E1 cells were seeded and cultured on the different PPF/Sr-HA composite disks. Cell morphology after 24 h and 5 days were imaged using Live/Dead live cell staining and SEM, respectively. Cell proliferation was quantified using an MTS assay at 1, 4, and 7 days. Osteogenic differentiation of the cells was examined by alkaline phosphatase (ALP) staining at 10 days and quantified using ALP activity and osteocalcin assays at 7, 14, and 21 days. The sizes of the HA, Sr5-HA, Sr10-HA, and Sr20-HA particles were mainly between 10 × 20 nm and 10 × 250 nm, and these nanoparticles were dispersed or clustered in the composite scaffolds. in vitro cell studies showed that the PPF/Sr10-HA scaffold was significantly better than the other three groups (PPF/HA, PPF/Sr5-HA, and PPF/Sr20-HA) in supporting MC3T3-E1 cell adhesion, proliferation, and differentiation. PPF/Sr10-HA may, therefore, serve as a promising scaffold material for bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 631-642, 2019.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
26
|
van Bochove B, Grijpma DW. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:77-106. [DOI: 10.1080/09205063.2018.1553105] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bas van Bochove
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre University of Twente, Enschede, The Netherlands
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Centre, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Le Fer G, Luo Y, Becker ML. Poly(propylene fumarate) stars, using architecture to reduce the viscosity of 3D printable resins. Polym Chem 2019. [DOI: 10.1039/c9py00738e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Additive manufacturing is changing tissue engineering by offering pathways to otherwise unattainable, highly complex scaffold morphologies.
Collapse
Affiliation(s)
- Gaëlle Le Fer
- Department of Polymer Science
- University of Akron
- Akron
- USA
| | - Yuanyuan Luo
- Department of Polymer Science
- University of Akron
- Akron
- USA
| | - Matthew L. Becker
- Department of Polymer Science
- University of Akron
- Akron
- USA
- Department of Chemistry
| |
Collapse
|
28
|
Teng Y, Giambini H, Rezaei A, Liu X, Lee Miller A, Waletzki BE, Lu L. Poly(Propylene Fumarate)-Hydroxyapatite Nanocomposite Can Be a Suitable Candidate for Cervical Cages. J Biomech Eng 2018; 140:2683663. [PMID: 30029248 PMCID: PMC6056183 DOI: 10.1115/1.4040458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/29/2018] [Indexed: 11/08/2022]
Abstract
A wide range of materials have been used for the development of intervertebral cages. Poly(propylene fumarate) (PPF) has been shown to be an excellent biomaterial with characteristics similar to trabecular bone. Hydroxyapatite (HA) has been shown to enhance biocompatibility and mechanical properties of PPF. The purpose of this study was to characterize the effect of PPF augmented with HA (PPF:HA) and evaluate the feasibility of this material for the development of cervical cages. PPF was synthesized and combined with HA at PPF:HA wt:wt ratios of 100:0, 80:20, 70:30, and 60:40. Molds were fabricated for testing PPF:HA bulk materials in compression, bending, tension, and hardness according to ASTM standards, and also for cage preparation. The cages were fabricated with and without holes and with porosity created by salt leaching. The samples as well as the cages were mechanically tested using a materials testing frame. All elastic moduli as well as the hardness increased significantly by adding HA to PPF (p < 0.0001). The 20 wt % HA increased the moduli significantly compared to pure PPF (p < 0.0001). Compressive stiffness of all cages also increased with the addition of HA. HA increased the failure load of the porous cages significantly (p = 0.0018) compared with nonporous cages. PPF:HA wt:wt ratio of 80:20 proved to be significantly stiffer and stronger than pure PPF. The current results suggest that this polymeric composite can be a suitable candidate material for intervertebral body cages.
Collapse
Affiliation(s)
- Yong Teng
- Department of Physiology and
Biomedical Engineering,
Mayo Clinic College of Medicine,
Rochester, MN 55905
- Department of Orthopedic Surgery,Mayo Clinic College of Medicine,
Rochester, MN 55905
- Orthopedic Center,General Hospital of Xinjiang
Military Region PLA,
Uygur Autonomous Region,
Xinjiang 830000, China
e-mail:
| | - Hugo Giambini
- Department of Orthopedic Surgery,
Mayo Clinic College of Medicine,
Rochester, MN 55905
e-mail:
| | - Asghar Rezaei
- Department of Physiology and
Biomedical Engineering,
Mayo Clinic College of Medicine,
Rochester, MN 55905
e-mail:
| | - Xifeng Liu
- Department of Physiology andBiomedical Engineering,
Mayo Clinic College of Medicine,
Rochester, MN 55905
- Department of Orthopedic Surgery,Mayo Clinic College of Medicine,
Rochester, MN 55905
e-mail:
| | - A. Lee Miller
- Department of Orthopedic Surgery,
Mayo Clinic College of Medicine,
Rochester, MN 55905
e-mail:
| | - Brian E. Waletzki
- Department of Orthopedic Surgery,
Mayo Clinic College of Medicine,
Rochester, MN 55905
e-mail:
| | - Lichun Lu
- Department of Physiology andBiomedical Engineering,
Mayo Clinic College of Medicine,
Rochester, MN 55905
- Department of Orthopedic Surgery,Mayo Clinic College of Medicine,
Rochester, MN 55905
e-mail:
| |
Collapse
|
29
|
Abstract
Strategies to refine the degradation behavior of polyester biomaterials, particularly to overcome the limitations of slow hydrolytic degradation, would broaden their utility. Herein, we examine the complexities of polyester degradation behavior, its assessment and strategies for refinement. The factors governing polyester degradation are strikingly complex. In addition to the half-life of the hydrolytically-labile bond, a series of interdependent material properties must be considered. Thus, methods used to characterize such material properties, both before and during degradation, must be carefully selected. Assessment of degradation behavior is further complicated by the variability of reported test protocols and the need for accelerated rather than real-time in vitro testing conditions. Ultimately, through better control of degradation behavior and correlation of in vitro, simulated degradation to that observed in vivo, the development of superior devices prepared with polyester biomaterials may be achieved.
Collapse
Affiliation(s)
- Lindsay N. Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
30
|
Shahbazi S, Zamanian A, Pazouki M, Jafari Y. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [PMID: 29525086 DOI: 10.1016/j.msec.2017.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new total biomimetic technique based on both the water uptake and degradation processes is introduced in this study to provide an interesting procedure to fabricate a bioactive and biodegradable synthetic scaffold, which has a good mechanical and structural properties. The optimization of effective parameters to scaffold fabrication was done by response surface methodology/central composite design (CCD). With this method, a synthetic scaffold was fabricated which has a uniform and open-interconnected porous structure with the largest pore size of 100-200μm. The obtained compressive ultimate strength of ~35MPa and compression modulus of 58MPa are similar to some of the trabecular bone. The pore morphology, size, and distribution of the scaffold were characterized using a scanning electron microscope and mercury porosimeter. Fourier transform infrared spectroscopy, EDAX and X-ray diffraction analyses were used to determine the chemical composition, Ca/P element ratio of mineralized microparticles, and the crystal structure of the scaffolds, respectively. The optimum biodegradable synthetic scaffold based on its raw materials of polypropylene fumarate, hydroxyethyl methacrylate and nano bioactive glass (PPF/HEMA/nanoBG) as 70/30wt/wt%, 20wt%, and 1.5wt/wt% (PHB.732/1.5) with desired porosity, pore size, and geometry were created by 4weeks immersion in SBF. This scaffold showed considerable biocompatibility in the ranging from 86 to 101% for the indirect and direct contact tests and good osteoblast cell attachment when studied with the bone-like cells.
Collapse
Affiliation(s)
- Sara Shahbazi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Alborz, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Alborz, Iran.
| | - Mohammad Pazouki
- Department of Energy, Materials and Energy Research Center, Karaj, Alborz, Iran
| | - Yaser Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
31
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
32
|
Partridge SW, Benning MJ, German MJ, Dalgarno KW. Development of an arthroscopically compatible polymer additive layer manufacture technique. Proc Inst Mech Eng H 2017. [PMID: 28639513 DOI: 10.1177/0954411917690560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article describes a proof of concept study designed to evaluate the potential of an in vivo three-dimensional printing route to support minimally invasive repair of the musculoskeletal system. The study uses a photocurable material to additively manufacture in situ a model implant and demonstrates that this can be achieved effectively within a clinically relevant timescale. The approach has the potential to be applied with a wide range of light-curable materials and with development could be applied to create functionally gradient structures in vivo.
Collapse
Affiliation(s)
- Simon W Partridge
- 1 School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Benning
- 1 School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J German
- 2 Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kenneth W Dalgarno
- 1 School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Ronca A, Ronca S, Forte G, Zeppetelli S, Gloria A, De Santis R, Ambrosio L. Synthesis and characterization of divinyl-fumarate poly-ε-caprolactone for scaffolds with controlled architectures. J Tissue Eng Regen Med 2017; 12:e523-e531. [PMID: 27690189 DOI: 10.1002/term.2322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/06/2016] [Accepted: 09/26/2016] [Indexed: 11/11/2022]
Abstract
A vinyl-terminated polycaprolactone has been developed for tissue engineering applications using a one-step synthesis and functionalization method based on ring opening polymerization (ROP) of ε-Caprolactone, with hydroxyl ethyl vinyl ether (HEVE) acting both as the initiator of ROP and as photo-curable functional group. The proposed method employs a catalyst based on aluminium, instead of the most popular Tin(II) 2-ethylhexanoate, to reduce the cytotoxicity. Following the synthesis of the vinyl-terminated polycaprolactone, its reaction with fumaryl chloride (FuCl) results in a divinyl-fumarate polycaprolactone (VPCLF). The polymers obtained were thoroughly characterized using Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) techniques. The polymer has been successfully employed, in combination with N-vinyl pyrrolidone (NVP), to fabricate films and computer-designed porous scaffolds by micro-stereolithography (μ-SL) with gyroid and diamond architectures. Characterization of the networks indicated the influence of NVP content on the network properties. Human mesenchymal stem cells adhered and spread onto VPCLF/NVP networks showing good biological properties and no cytotoxic effect. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alfredo Ronca
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Sara Ronca
- Department of Materials, Loughborough University, Leicestershire, UK
| | - Giuseppe Forte
- Department of Materials, Loughborough University, Leicestershire, UK
| | - Stefania Zeppetelli
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Antonio Gloria
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Roberto De Santis
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy.,Department of Chemical Science and Materials Technology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
34
|
Liu X, Paulsen A, Giambini H, Guo J, Miller AL, Lin PC, Yaszemski MJ, Lu L. A New Vertebral Body Replacement Strategy Using Expandable Polymeric Cages. Tissue Eng Part A 2017; 23:223-232. [PMID: 27835935 PMCID: PMC5346914 DOI: 10.1089/ten.tea.2016.0246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
We have developed a novel polymeric expandable cage that can be delivered via a posterior-only surgical approach for the treatment of noncontained vertebral defects. This approach is less invasive than an anterior-only or combined approach and much more cost-effective than currently used expandable metal cages. The polymeric expandable cage is composed of oligo poly(ethylene glycol) fumarate (OPF), a hydrogel that has been previously shown to have excellent nerve and bone tissue biocompatibility. OPF hydrogel cages can expand to twice their original diameter and length within a surgical time frame following hydration. Modulation of parameters such as polymeric network crosslink density or the introduction of charge to the network allowed for precise expansion kinetics. To meet specific requirements due to size variations in patient vertebral bodies, we fabricated a series of molds with varied diameters and explored the expansion kinetics of the OPF cages. Results showed a stable expansion ratio of approximately twofold to the original size within 20 min, regardless of the absolute value of the cage size. Following implantation of a dried OPF cage into a noncontained vertebral defect and its in situ expansion with normal saline, other augmentation biomaterials, such as poly(propylene fumarate) (PPF), can be injected to the lumen of the OPF cage and allowed to crosslink in situ. The OPF/PPF composite scaffold can provide the necessary rigidity and stability to the augmented spine.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Alex Paulsen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Hugo Giambini
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ji Guo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Po-Chun Lin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Wang L, Guo DG. Preparation and Performance of Poly(butyl fumarate)-Based Material for Potential Application in LED Encapsulation. MATERIALS 2017; 10:ma10020149. [PMID: 28772524 PMCID: PMC5459098 DOI: 10.3390/ma10020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
Abstract
A UV-curable poly(butyl fumarate) (PBF)/poly(propylene fumarate)-diacrylate (PPF-DA) hybrid material with good performance for LED encapsulation is introduced in the paper. They have been prepared by radical polymerization using PBF and PPF-DA macromers with a UV curing system. PBF and PPF-DA were characterized by Fourier-transform infrared (FT-IR) and H-nuclear magnetic resonance (1H NMR). The thermal behavior, optical and mechanical properties of the material were examined by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy (UV–vis), and a material testing system mechanical testing machine, respectively. The results indicated that the hybrid material has a suitable refractive index (n = 1.537) and high transmittance (99.64% in visible range) before/after thermal aging. With the increasing of the double bond ratio from 0.5 to 2, the water absorption ratios of the prepared encapsulation material were 1.22%, 1.87% and 2.88%, respectively. The mechanical property experiments showed that bonding strength was in the range of 1.86–3.40 MPa, tensile-shear strength ranged from 0.84 MPa to 1.57 MPa, and compression strength was in the range of 5.10–27.65 MPa. The cured PBF/PPF-DA hybrid material can be used as a light-emitting diode (LED) encapsulant, owing to its suitable refractive index, high transparency, excellent thermal stability, lower water absorption, and good mechanical properties.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Da-Gang Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
36
|
Whitely ME, Robinson JL, Stuebben MC, Pearce HA, McEnery MAP, Cosgriff-Hernandez E. Prevention of Oxygen Inhibition of PolyHIPE Radical Polymerization using a Thiol-based Crosslinker. ACS Biomater Sci Eng 2017; 3:409-419. [PMID: 29104917 DOI: 10.1021/acsbiomaterials.6b00663] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions (polyHIPEs) are highly porous constructs currently under investigation as tissue engineered scaffolds. We previously reported on the potential of redox-initiated polyHIPEs as injectable bone grafts that space fill irregular defects with improved integration and rapid cure. Upon subsequent investigation, the radical-initiated cure of these systems rendered them susceptible to oxygen inhibition with an associated increase in uncured macromer in the clinical setting. In the current study, polyHIPEs with increased resistance to oxygen inhibition were fabricated utilizing a tetrafunctional thiol, pentaerythritol tetrakis(3-mercaptoproprionate), and the biodegradable macromer, propylene fumarate dimethacrylate. Increased concentrations of the tetrathiol additive provided improved oxygen resistance as confirmed by polyHIPE gel fraction while retaining the requisite rapid cure rate, compressive properties, and pore architecture for use as an injectable bone graft. Additionally, thiol-methacrylate polyHIPEs exhibited increased degradation under accelerated conditions and supported critical markers of human mesenchymal stem cell activity. In summary, we have improved upon current methods of fabricating injectable polyHIPE grafts to meet translational design goals of improved polymerization kinetics under clinically relevant conditions without sacrificing key scaffold properties.
Collapse
Affiliation(s)
- Michael E Whitely
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Jennifer L Robinson
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Melissa C Stuebben
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Hannah A Pearce
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Madison A P McEnery
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A.,Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Houston, Texas, 77030, U.S.A
| |
Collapse
|
37
|
In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1201-9. [DOI: 10.1016/j.msec.2016.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022]
|
38
|
Liu X, Yaszemski MJ, Lu L. Expansile crosslinked polymersomes for pH sensitive delivery of doxorubicin. Biomater Sci 2016; 4:245-9. [PMID: 26442597 PMCID: PMC4758355 DOI: 10.1039/c5bm00269a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a new crosslinked polymersome with pH-responsive swelling properties through acidic hydrolysis of hydrophobic contents from the amphiphilic polymer chains. Its unique stability under physiological conditions and large swelling capability under low pH conditions give this polymersome promising potential for anticancer drug delivery.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA. and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA. and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA. and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Manavitehrani I, Fathi A, Badr H, Daly S, Negahi Shirazi A, Dehghani F. Biomedical Applications of Biodegradable Polyesters. Polymers (Basel) 2016; 8:E20. [PMID: 30979116 PMCID: PMC6432531 DOI: 10.3390/polym8010020] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/08/2023] Open
Abstract
The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.
Collapse
Affiliation(s)
- Iman Manavitehrani
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Ali Fathi
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Hesham Badr
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Sean Daly
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Ali Negahi Shirazi
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
40
|
Liu X, Chen W, Gustafson CT, Miller AL, Waletzki BE, Yaszemski MJ, Lu L. Tunable tissue scaffolds fabricated by in situ crosslink in phase separation system. RSC Adv 2015; 5:100824-100833. [PMID: 26989479 DOI: 10.1039/c5ra19406g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3-D) scaffolds with intrinsic porous structures are desirable in various tissue regeneration applications. In this study, a unique method that combines thermally induced phase separation with a photocrosslinking process was developed for the fabrication of 3-D crosslinked polymer scaffolds with densely interconnected porous structures. Biodegradable poly(propylene fumarate)-co-poly(L-lactic acid) with crosslinkable fumarate bonds were used as the structural polymer material and a dioxane/water binary system was applied for the phase separation. By altering the polymer composition (9, 5 and 3 wt%), different types of scaffolds with distinct morphology, mechanical strength, degradation rate, cell growth and morphology, and extracellular matrix production were fabricated. These crosslinked 3-D porous scaffolds with tunable strength and biological responses show promise for potential applications in regenerative therapies, including bone and neural tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Wenjian Chen
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Carl T Gustafson
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - A Lee Miller
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E Waletzki
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
41
|
Liu X, Miller AL, Waletzki BE, Mamo TK, Yaszemski MJ, Lu L. Hydrolysable core crosslinked particle for receptor-mediated pH-sensitive anticancer drug delivery. NEW J CHEM 2015; 39:8840-8847. [PMID: 27134519 PMCID: PMC4846283 DOI: 10.1039/c5nj01404b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biodegradable micelle systems with both extracellular stabilities and specific targeting properties are highly desirable for anti-cancer drug delivery. Here, we report a biodegradable and crosslinkable poly(propylene fumarate)-co-poly(lactide-co-glycolide)-co-poly(ethylene glycol) (PPF-PLGA-PEG) copolymer conjugated with folate (FA) molecules for receptor-mediated delivery of doxorubicin. Micelles with folate ligands on surface and fumarate bonds within the core were self-assembled and crosslinked, which exhibited better stability against potential physiological conditions during and after drug administration. A pH sensitive drug release profile was observed showing robust release at acidic environment due to the ester hydrolysis of PLGA (50:50). Further, micelles with folate ligands on surface showed strong targeting ability and therapeutic efficacy through receptor-mediated endocytosis, as evidenced by efficacious cancer killing and fatal DNA damage. These results imply promising potential for ligand-conjugated core crosslinked PPF-PLGA-PEG-FA micelles as carrier system for targeted anti-cancer drug delivery.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tewodros K. Mamo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J. Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
42
|
Hydrolytic and enzymatic degradation of flexible polymer networks comprising fatty acid derivatives. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Kamel NA, Mansour SH, Abd-El-Messieh SL, Khalil WA, Abd-El Nour KN. Biophysical properties of PPF/HA nanocomposites reinforced with natural bone powder. ADVANCES IN MATERIALS RESEARCH 2015; 4:145-164. [DOI: 10.12989/amr.2015.4.3.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
44
|
Goodfriend AC, Welch TR, Nguyen KT, Wang J, Johnson RF, Nugent A, Forbess JM. Poly(gadodiamide fumaric acid): A Bioresorbable, Radiopaque, and MRI-Visible Polymer for Biomedical Applications. ACS Biomater Sci Eng 2015; 1:677-684. [DOI: 10.1021/acsbiomaterials.5b00091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Kytai T. Nguyen
- Department
of Bioengineering, University of Texas Arlington, Arlington, Texas 76019, United States
| | | | | | | | | |
Collapse
|
45
|
Wang MO, Piard CM, Melchiorri A, Dreher ML, Fisher JP. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng Part A 2015; 21:1642-53. [PMID: 25627168 PMCID: PMC4426330 DOI: 10.1089/ten.tea.2014.0495] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/26/2015] [Indexed: 01/04/2023] Open
Abstract
This study evaluated the structural, mechanical, and cytocompatibility changes of three-dimensional (3D) printed porous polymer scaffolds during degradation. Three porous scaffold designs were fabricated from a poly(propylene fumarate) (PPF) resin. PPF is a hydrolytically degradable polymer that has been well characterized for applications in bone tissue engineering. Over a 224 day period, scaffolds were hydrolytically degraded and changes in scaffold parameters, such as porosity and pore size, were measured nondestructively using micro-computed tomography. In addition, changes in scaffold mechanical properties were also measured during degradation. Scaffold degradation was verified through decreasing pH and increasing mass loss as well as the formation of micropores and surface channels. Current methods to evaluate polymer cytotoxicity have been well established; however, the ability to evaluate toxicity of an absorbable polymer as it degrades has not been well explored. This study, therefore, also proposes a novel method to evaluate the cytotoxicity of the absorbable scaffolds using a combination of degradation extract, phosphate-buffered saline, and cell culture media. Fibroblasts were incubated with this combination media, and cytotoxicity was evaluated using XTT assay and fluorescence imaging. Cell culture testing demonstrated that the 3D-printed scaffold extracts did not induce significant cell death. In addition, results showed that over a 224 day time period, porous PPF scaffolds provided mechanical stability while degrading. Overall, these results show that degradable, 3D-printed PPF scaffolds are suitable for bone tissue engineering through the use of a novel toxicity during degradation assay.
Collapse
Affiliation(s)
- Martha O. Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Charlotte M. Piard
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Anthony Melchiorri
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Maureen L. Dreher
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
46
|
Gao Q, Hu B, Ning Q, Ye C, Xie J, Ye J, Gao C. A primary study of poly(propylene fumarate)-2-hydroxyethyl methacrylate copolymer scaffolds for tarsal plate repair and reconstruction in rabbit eyelids. J Mater Chem B 2015; 3:4052-4062. [PMID: 32262627 DOI: 10.1039/c5tb00285k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eyelid reconstruction includes anterior lamella reconstruction and posterior lamella reconstruction. As an important skeletal component of the posterior lamella, tarsal plates repair is the key issue for eyelid reconstruction. Presently, neither traditional surgery nor autograft/allograft has achieved satisfactory repair effects. Poly(propylene fumarate)-co-2-hydroxyethyl methacrylate (PPF-HEMA) networks with mass ratios of 1 : 0.5, 1 : 1 and 1 : 2 were synthesized and used as the tarsal substitute in this study. Their chemical compositions, swelling ability, and mechanical properties were characterized. Porous scaffolds were fabricated by a gelatin particle leaching method. The in vitro studies of cytotoxicity on human dermal fibroblasts (HDFs) and degradation demonstrated that PPF-HEMA scaffolds did not have noticeable cell cytotoxicity and their degradation rates correlated with the ratio of PPF to HEMA. The PPF-HEMA networks, with mass ratios of 1 : 1 and 1 : 2, and an ADM control were implanted in rabbits with tarsal plate defects for in vivo biocompatibility and degradation behavior evaluation. PPF-HEMA scaffolds provided satisfactory repair results with mild tissue response and biocompatibility to fibroblast growth and fibrous capsulation compared to the ADM control. The tissue compatible and biodegradable PPF-HEMA networks with elastic mechanical properties were proven to be a suitable candidate for tarsal repair.
Collapse
Affiliation(s)
- Qi Gao
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu X, Miller AL, Yaszemski MJ, Lu L. Biodegradable and crosslinkable PPF-PLGA-PEG self-assembled nanoparticles dual-decorated with folic acid ligands and rhodamine B fluorescent probes for targeted cancer imaging. RSC Adv 2015; 5:33275-33282. [PMID: 35330847 PMCID: PMC8942413 DOI: 10.1039/c5ra04096e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Novel biodegradable and crosslinkable copolymers of hydrophobic poly(propylene fumarate)-co-poly(lactic-co-glycolic acid) (PPF-PLGA) linked with hydrophilic poly(ethylene glycol) (PEG), namely PPF-PLGA-PEG, were developed and fabricated into core-shell nanoparticles through self-assembly and photocrosslinking. A fluorescent probe, rhodamine B (RhB), was conjugated to the end of the copolymer chain (PPF-PLGA-PEG-RhB), which allows tracking of the nanoparticles through visualizing the fluorescence probe. Folic acid (FA) ligand was conjugated to another series of chains (PPF-PLGA-PEG-FA) for targeted delivery of the nanoparticles to the tumor sites by binding to the ubiquitously overexpressed FA receptors on tumor cells. Our results showed that PPF-PLGA-PEG nanoparticles incorporated with RhB fluorescence probes and FA tumor binding ligands have specific cancer cell targeting and imaging abilities. These crosslinkable nanoparticles are potentially useful to serve as a platform for conjugation of fluorescence probes as well as various antibodies and peptides for cancer targeted imaging or drug delivery.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
48
|
Breger JC, Yoon C, Xiao R, Kwag HR, Wang M, Fisher JP, Nguyen TD, Gracias DH. Self-folding thermo-magnetically responsive soft microgrippers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3398-405. [PMID: 25594664 PMCID: PMC4326779 DOI: 10.1021/am508621s] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/16/2015] [Indexed: 05/17/2023]
Abstract
Hydrogels such as poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) can be photopatterned to create a wide range of actuatable and self-folding microstructures. Mechanical motion is derived from the large and reversible swelling response of this cross-linked hydrogel in varying thermal or pH environments. This action is facilitated by their network structure and capacity for large strain. However, due to the low modulus of such hydrogels, they have limited gripping ability of relevance to surgical excision or robotic tasks such as pick-and-place. Using experiments and modeling, we design, fabricate, and characterize photopatterned, self-folding functional microgrippers that combine a swellable, photo-cross-linked pNIPAM-AAc soft-hydrogel with a nonswellable and stiff segmented polymer (polypropylene fumarate, PPF). We also show that we can embed iron oxide (Fe2O3) nanoparticles into the porous hydrogel layer, allowing the microgrippers to be responsive and remotely guided using magnetic fields. Using finite element models, we investigate the influence of the thickness and the modulus of both the hydrogel and stiff polymer layers on the self-folding characteristics of the microgrippers. Finally, we illustrate operation and functionality of these polymeric microgrippers for soft robotic and surgical applications.
Collapse
Affiliation(s)
- Joyce C. Breger
- Department of Chemical
and Biomolecular Engineering, The Johns
Hopkins University, 3400
N Charles Street, Baltimore, Maryland 21218, United
States
| | - ChangKyu Yoon
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Rui Xiao
- Department of Mechanical Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Hye Rin Kwag
- Department of Chemical
and Biomolecular Engineering, The Johns
Hopkins University, 3400
N Charles Street, Baltimore, Maryland 21218, United
States
| | - Martha
O. Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Thao D. Nguyen
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - David H. Gracias
- Department of Chemical
and Biomolecular Engineering, The Johns
Hopkins University, 3400
N Charles Street, Baltimore, Maryland 21218, United
States
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
49
|
Wang L, Guo DG, Zhu H, Xie L. Light emitting diodes (LEDs) encapsulation of polymer composites based on poly(propylene fumarate) crosslinked with poly(propylene fumarate)-diacrylate. RSC Adv 2015. [DOI: 10.1039/c5ra01667c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cured PPF/PPF-DA polymer networks material can be used as a LEDs encapsulant, owing to suitable refractive index, high transparency, appropriate tensile strength, and excellent thermal stability.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory for Mechanical Behavior of Materials
- School of Materials Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Da-Gang Guo
- State Key Laboratory for Mechanical Behavior of Materials
- School of Materials Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Hui Zhu
- State Key Laboratory for Mechanical Behavior of Materials
- School of Materials Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Lei Xie
- State Key Laboratory for Mechanical Behavior of Materials
- School of Materials Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
50
|
Liu X, Miller AL, Waletzki BE, Yaszemski MJ, Lu L. Novel biodegradable poly(propylene fumarate)- co-poly(l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications. RSC Adv 2015; 5:21301-21309. [PMID: 26989483 PMCID: PMC4792309 DOI: 10.1039/c5ra00508f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Scaffolds with intrinsically interconnected porous structures are highly desirable in tissue engineering and regenerative medicine. In this study, three-dimensional polymer scaffolds with highly interconnected porous structures were fabricated by thermally induced phase separation of novel synthesized biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) in a dioxane/water binary system. Defined porous scaffolds were achieved by optimizing conditions to attain interconnected porous structures. The effect of phase separation parameters on scaffold morphology were investigated, including polymer concentration (1, 3, 5, 7, and 9%), quench time (1, 4, and 8 min), dioxane/water ratio (83/17, 85/15, and 87/13 wt/wt), and freeze temperature (-20, -80, and -196 °C). Interesting pore morphologies were created by adjusting these processing parameters, e.g., flower-shaped (5%; 85/15; 1 min; -80 °C), spherulite-like (5%; 85/15; 8 min; -80 °C), and bead-like (5%; 87/13; 1 min; -80 °C) morphology. Modulation of phase separation conditions also resulted in remarkable differences in scaffold porosities (81% to 91%) and thermal properties. Furthermore, scaffolds with varied mechanic strengths, degradation rates, and protein adsorption capabilities could be fabricated using the phase separation method. In summary, this work provides an effective route to generate multi-dimensional porous scaffolds that can be applied to a variety of hydrophobic polymers and copolymers. The generated scaffolds could potentially be useful for various tissue engineering applications including bone tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J. Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|