1
|
Puyo CA, Peruzzi D, Earhart A, Roller E, Karanikolas M, Kollef MH, Krupnick AS, Kreisel D, Ibrahim M, Gelman AE. Endotracheal tube-induced sore throat pain and inflammation is coupled to the release of mitochondrial DNA. Mol Pain 2018; 13:1744806917731696. [PMID: 28929859 PMCID: PMC5598795 DOI: 10.1177/1744806917731696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the absence of infection, the pathophysiology of endotracheal tube-induced sore throat pain is unclear. Activated neutrophils release elastase, reactive oxygen species, and inflammatory cytokines known to contribute to neuropathic pain. Sterile tissue injury can cause the release of damage-associated molecular patterns such as mitochondrial DNA that promote neutrophil activation. We hypothesized that endotracheal tube-induced sore throat pain is linked to mitochondrial DNA-mediated neutrophil inflammation. A nonrandomized prospective survey for sore throat pain was conducted in 31 patients who required short-term intubation and had no evidence of upper airway infection. Patterns of neutrophil abundance, activation, and mitochondrial DNA levels were analyzed in tracheal lavage fluid following intubation and prior to extubation. Thirteen of 31 patients reported sore throat pain. Sore throat patients had high neutrophilia with elevated adhesion molecule and TLR9 expression and constitutive reactive oxygen species generation. Tracheal lavage fluid from sore throat patients accumulated mitochondrial DNA and stimulated neutrophils to release mediators associated with pain in a TLR9- and DNAse-dependent fashion. Endotracheal tube-induced sore throat is linked to the release of mitochondrial DNA and can drive TLR9-mediated inflammatory responses by neutrophils reported to cause pain. Mitigating the effects of cell-free mitochondrial DNA may prove beneficial for the prevention of endotracheal tube-mediated sore throat pain.
Collapse
Affiliation(s)
- Carlos A Puyo
- 1 Department of Anesthesiology and Critical Care, 12275 Washington University School of Medicine in St. Louis , MO, USA
| | - Daniela Peruzzi
- 2 Department of Surgery, 12275 Washington University School of Medicine in St. Louis , MO, USA.,3 Department of Medical-Surgical Science and Translational Medicine, Sapienza University, Rome, Italy
| | - Alexander Earhart
- 1 Department of Anesthesiology and Critical Care, 12275 Washington University School of Medicine in St. Louis , MO, USA
| | - Evan Roller
- 1 Department of Anesthesiology and Critical Care, 12275 Washington University School of Medicine in St. Louis , MO, USA
| | - Menelaos Karanikolas
- 1 Department of Anesthesiology and Critical Care, 12275 Washington University School of Medicine in St. Louis , MO, USA
| | - Marin H Kollef
- 5 Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alexander S Krupnick
- 2 Department of Surgery, 12275 Washington University School of Medicine in St. Louis , MO, USA.,4 Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Daniel Kreisel
- 2 Department of Surgery, 12275 Washington University School of Medicine in St. Louis , MO, USA
| | - Mohsen Ibrahim
- 2 Department of Surgery, 12275 Washington University School of Medicine in St. Louis , MO, USA.,3 Department of Medical-Surgical Science and Translational Medicine, Sapienza University, Rome, Italy
| | - Andrew E Gelman
- 2 Department of Surgery, 12275 Washington University School of Medicine in St. Louis , MO, USA.,3 Department of Medical-Surgical Science and Translational Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Schwingshackl A. The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target? Am J Physiol Lung Cell Mol Physiol 2016; 311:L639-52. [PMID: 27521425 DOI: 10.1152/ajplung.00458.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Mechanical ventilation (MV) and oxygen therapy (hyperoxia; HO) comprise the cornerstones of life-saving interventions for patients with acute respiratory distress syndrome (ARDS). Unfortunately, the side effects of MV and HO include exacerbation of lung injury by barotrauma, volutrauma, and propagation of lung inflammation. Despite significant improvements in ventilator technologies and a heightened awareness of oxygen toxicity, besides low tidal volume ventilation few if any medical interventions have improved ARDS outcomes over the past two decades. We are lacking a comprehensive understanding of mechanotransduction processes in the healthy lung and know little about the interactions between simultaneously activated stretch-, HO-, and cytokine-induced signaling cascades in ARDS. Nevertheless, as we are unraveling these mechanisms we are gathering increasing evidence for the importance of stretch-activated ion channels (SACs) in the activation of lung-resident and inflammatory cells. In addition to the discovery of new SAC families in the lung, e.g., two-pore domain potassium channels, we are increasingly assigning mechanosensing properties to already known Na(+), Ca(2+), K(+), and Cl(-) channels. Better insights into the mechanotransduction mechanisms of SACs will improve our understanding of the pathways leading to ventilator-induced lung injury and lead to much needed novel therapeutic approaches against ARDS by specifically targeting SACs. This review 1) summarizes the reasons why the time has come to seriously consider SACs as new therapeutic targets against ARDS, 2) critically analyzes the physiological and experimental factors that currently limit our knowledge about SACs, and 3) outlines the most important questions future research studies need to address.
Collapse
|
3
|
Potassium ion channels and allergic asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 838:35-45. [PMID: 25315623 DOI: 10.1007/5584_2014_76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High-conductive calcium-sensitive potassium channels (BK+Ca) and ATP-sensitive potassium (K+ATP) channels play a significant role in the airway smooth muscle cell and goblet cell function, and cytokine production. The present study evaluated the therapeutic potential of BK+Ca and K+ATP openers, NS 1619 and pinacidil, respectively, in an experimental model of allergic inflammation. Airway allergic inflammation was induced with ovalbumine in guinea pigs during 21 days, which was followed by a 14-day treatment with BK+Ca and K+ATP openers. The outcome measures were airway smooth muscle cells reactivity in vivo and in vitro, cilia beating frequency and the level of exhaled NO (ENO), and the level of pro-inflammatory cytokines in the plasma and bronchoalveolar lavage fluid. The openers of both channels decreased airway smooth muscle cells reactivity, cilia beating frequency, and cytokine levels in the serum. Furthermore, NS1619 reduced ENO and inflammatory cells infiltration. The findings confirmed the presence of beneficial effects of BK+Ca and K+ATP openers on airway defence mechanisms. Although both openers dampened pro-inflammatory cytokines and mast cells infiltration, an evident anti-inflammatory effect was provided only by NS1619. Therefore, we conclude that particularly BK+Ca channels represent a promising new drug target in treatment of airway's allergic inflammation.
Collapse
|
4
|
Li BY, Glazebrook P, Kunze DL, Schild JH. KCa1.1 channel contributes to cell excitability in unmyelinated but not myelinated rat vagal afferents. Am J Physiol Cell Physiol 2011; 300:C1393-403. [PMID: 21325638 DOI: 10.1152/ajpcell.00278.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High conductance calcium-activated potassium (BK(Ca)) channels can modulate cell excitability and neurotransmitter release at synaptic and afferent terminals. BK(Ca) channels are present in primary afferents of most, if not, all internal organs and are an intriguing target for pharmacological manipulation of visceral sensation. Our laboratory has a long-standing interest in the neurophysiological differences between myelinated and unmyelinated visceral afferent function. Here, we seek to determine whether there is a differential distribution of BK(Ca) channels in myelinated and unmyelinated vagal afferents. Immunocytochemistry studies with double staining for the BK-type K(Ca)1.1 channel protein and isolectin B4 (IB4), a reliable marker of unmyelinated peripheral afferents, reveal a pattern of IB4 labeling that strongly correlates with the expression of the K(Ca)1.1 channel protein. Measures of cell size and immunostaining intensity for K(Ca)1.1 and IB4 cluster into two statistically distinct (P < 0.05) populations of cells. Smaller diameter neurons most often presented with strong IB4 labeling and are presumed to be unmyelinated (n = 1,390) vagal afferents. Larger diameter neurons most often lacked or exhibited a very weak IB4 labeling and are presumed to be myelinated (n = 58) vagal afferents. Complimentary electrophysiological studies reveal that the BK(Ca) channel blockers charybdotoxin (ChTX) and iberiotoxin (IbTX) bring about a comparable elevation in excitability and action potential widening in unmyelinated neurons but had no effect on the excitability of myelinated vagal afferents. This study is the first to demonstrate using combined immunohistochemical and electrophysiological techniques that K(Ca)1.1 channels are uniquely expressed in unmyelinated C-type vagal afferents and do not contribute to the dynamic discharge characteristics of myelinated A-type vagal afferents. This unique functional distribution of BK-type K(Ca) channels may provide an opportunity for afferent selective pharmacological intervention across a wide range of visceral pathophysiologies, particularly those with a reflexogenic etiology and pain.
Collapse
Affiliation(s)
- Bai-Yan Li
- Dept. of Biomedical Engineering, Indiana University Purdue University, 723 W. Michigan St., Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
5
|
Lee LY. Respiratory sensations evoked by activation of bronchopulmonary C-fibers. Respir Physiol Neurobiol 2009; 167:26-35. [PMID: 18586581 PMCID: PMC2759402 DOI: 10.1016/j.resp.2008.05.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
C-fibers represent the majority of vagal afferents innervating the airways and lung, and can be activated by inhaled chemical irritants and certain endogenous substances. Stimulation of bronchopulmonary C-fibers with selective chemical activators by either inhalation or intravenous injection evokes irritation, burning and choking sensations in the throat, neck and upper chest (mid-sternum region) in healthy human subjects. These irritating sensations are often accompanied by bouts of coughs either during inhalation challenge or when a higher dose of the chemical activator is administered by intravenous injection. Dyspnea and breathless sensation are not always evoked when these afferents are activated by different types of chemical stimulants. This variability probably reflects the chemical nature of the stimulants, as well as the possibility that different subtypes of C-fibers encoded by different receptor proteins are activated. These respiratory sensations and reflex responses (e.g., cough) are believed to play an important role in protecting the lung against inhaled irritants and preventing overexertion under unusual physiological stresses (e.g., during strenuous exercise) in healthy individuals. More importantly, recent studies have revealed that the sensitivity of bronchopulmonary C-fibers can be markedly elevated in acute and chronic airway inflammatory diseases, probably caused by a sensitizing effect of certain endogenously released inflammatory mediators (e.g., prostaglandin E(2)) that act directly or indirectly on specific ion channels expressed on the sensory terminals. Normal physiological actions such as an increase in tidal volume (e.g., during mild exercise) can then activate these C-fiber afferents, and consequently may contribute, in part, to the lingering respiratory discomforts and other debilitating symptoms in patients with lung diseases.
Collapse
|
6
|
Ravi K, Kappagoda T. Rapidly adapting receptors in acute heart failure and their impact on dyspnea. Respir Physiol Neurobiol 2009; 167:107-15. [DOI: 10.1016/j.resp.2008.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 09/27/2008] [Accepted: 10/01/2008] [Indexed: 11/24/2022]
|
7
|
Gu Q, Lee LY. Hypersensitivity of pulmonary chemosensitive neurons induced by activation of protease-activated receptor-2 in rats. J Physiol 2006; 574:867-76. [PMID: 16709636 PMCID: PMC1817730 DOI: 10.1113/jphysiol.2006.110312] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study was carried out to determine the effect of protease-activated receptor-2 (PAR2) activation on the pulmonary chemoreflex responses and on the sensitivity of isolated rat vagal pulmonary chemosensitive neurons. In anaesthetized, spontaneously breathing rats, intratracheal instillation of trypsin (0.8 mg ml(-1), 0.1 ml), an endogenous agonist of PAR2, significantly amplified the capsaicin-induced pulmonary chemoreflex responses. The enhanced responses were completely abolished by perineural capsaicin treatment of both cervical vagi, suggesting the involvement of pulmonary C-fibre afferents. In patch-clamp recording experiments, pretreatment with trypsin (0.1 microM, 2 min) potentiated the capsaicin-induced whole-cell inward current in isolated pulmonary sensory neurons. The potentiating effect of trypsin was mimicked by PAR2-activating peptide (PAR2-AP) in a concentration-dependent manner. PAR2-AP pretreatment (100 microM, 2 min) also markedly enhanced the acid-evoked inward currents in these sensory neurons. Furthermore, the sensitizing effect of PAR2 was completely abolished by pretreatment with either U73122 (1 microM, 4 min), a phospholipase C inhibitor, or chelerythrine (10 microM, 4 min), a protein kinase C (PKC) inhibitor. In summary, our results have demonstrated that activation of PAR2 upregulates the pulmonary chemoreflex sensitivity in vivo and the excitability of isolated pulmonary chemosensitive neurons in vitro, and this effect of PAR2 activation was mediated through the PKC-dependent transduction pathway. These results further suggest that the hypersensitivity of these neurons may play a part in the development of airway hyper-responsiveness resulting from PAR2 activation.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
8
|
Gu Q, Lee LY. Sensitization of pulmonary chemosensitive neurons by bombesin-like peptides in rats. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1104-12. [PMID: 16040630 PMCID: PMC1783972 DOI: 10.1152/ajplung.00163.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small cell lung cancer (SCLC) patients suffer from pulmonary stresses such as dyspnea and chest pain, and the pathogenic mechanisms are not known. SCLC cells secrete a variety of bioactive neuropeptides, including bombesin-like peptides. We hypothesize that these peptides may enhance the sensitivity of the pulmonary chemosensitive nerve endings, contributing to the development of these pulmonary stresses in SCLC patients. This study was therefore carried out to determine the effects of bombesin and gastrin-releasing peptide (GRP), a major bombesin-like peptide, on the sensitivities of pulmonary chemoreflex and isolated pulmonary vagal chemosensitive neurons. In anesthetized, spontaneously breathing rats, intravenous infusion of bombesin or GRP significantly amplified the pulmonary chemoreflex responses to chemical stimulants such as capsaicin and ATP. The enhanced responses were completely abolished by perineural capsaicin treatment of both cervical vagi, suggesting the involvement of pulmonary C-fiber afferents. In isolated pulmonary vagal chemosensitive neurons, pretreatment with bombesin or GRP potentiated the capsaicin-induced Ca(2+) transient. This sensitizing effect was further demonstrated in patch-clamp recording studies; the sensitivities of these neurons to both chemical (capsaicin and ATP) and electrical stimuli were significantly enhanced by the presence of either bombesin or GRP. In summary, our results have demonstrated that bombesin and GRP upregulate the pulmonary chemoreflex sensitivity in vivo and the excitability of isolated pulmonary chemosensitive neurons in vitro.
Collapse
Affiliation(s)
- Qihai Gu
- Dept. of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
9
|
Abstract
The Third International Symposium on Cough focused on acute and chronic cough, both clinical and basic science. Cough is a defensive and clearing mechanism, and can cause discomfort and nuisance; it is also an important symptom of many chronic airway diseases. In this Symposium, several issues concerning the relationship of cough to disease processes, different types of cough, and the concept of idiopathic cough will be discussed. Characterization of cough receptor(s) and identification of peripheral and central mechanisms for cough sensitization are current areas of investigation for delineating the cause of chronic cough. Peripheral mechanisms may be most important for acute cough such as after viral infections. The role of pathological changes at the level of the airway mucosa and of cortical pathways will be reviewed. Finally, therapeutic inhibition of the cough reflex remains an area of active research.
Collapse
|
10
|
Yu J. Airway mechanosensors. Respir Physiol Neurobiol 2005; 148:217-43. [PMID: 16143281 DOI: 10.1016/j.resp.2004.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 12/09/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
A mechanosensory unit is a functional unit that contains multiple receptors (or encoders) with different characteristics, including rapidly adapting receptors, slowly adapting receptors, and deflation-activated-receptors. Each is capable of sensing different aspects of lung mechanics. The sensory unit is both a transducer and a processor. Significant information integration occurs at the intra-encoder and inter-encoder levels. Within an encoder, the information is encoded as analog signals and integrated by amplitude modulation. Information from each single stretch-activated channel is processed through several levels of temporal and spatial summation, producing a generator potential that encodes averaged overall information within the encoder. This analog signal is transformed into a digital signal in the form of action potentials that are encoded as frequency (frequency modulation). These all-or-none propagated action potentials from different encoders interact through a competitive selection mechanism. Such inter-encoder interaction may occur at several levels, because of the fractal nature of the sensory unit. Inter-encoder interaction retains representative information but eliminates redundant information, resulting in the final output to the central nervous system, where multiple decoders specific for different variables decipher the encoded information for further processing.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Pulmonary Medicine, Ambulatory Care Building, 3rd Floor, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
11
|
Gu Q, Lin RL, Hu HZ, Zhu MX, Lee LY. 2-aminoethoxydiphenyl borate stimulates pulmonary C neurons via the activation of TRPV channels. Am J Physiol Lung Cell Mol Physiol 2005; 288:L932-41. [PMID: 15653710 PMCID: PMC1783973 DOI: 10.1152/ajplung.00439.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study was carried out to determine the effect of 2-aminoethoxydiphenyl borate (2-APB), a common activator of transient receptor potential vanilloid (TRPV) type 1, 2, and 3 channels, on cardiorespiratory reflexes, pulmonary C fiber afferents, and isolated pulmonary capsaicin-sensitive neurons. In anesthetized, spontaneously breathing rats, intravenous bolus injection of 2-APB elicited the pulmonary chemoreflex responses, characterized by apnea, bradycardia, and hypotension. After perineural treatment of both cervical vagi with capsaicin to block the conduction of C fibers, 2-APB no longer evoked any of these reflex responses. In open-chest and artificially ventilated rats, 2-APB evoked an abrupt and intense discharge in vagal pulmonary C fibers in a dose-dependent manner. The stimulation of C fibers by 2-APB was attenuated but not abolished by capsazepine, a selective antagonist of the TRPV1, which completely blocked the response to capsaicin in these C fiber afferents. In isolated pulmonary capsaicin-sensitive neurons, 2-APB concentration dependently evoked an inward current that was partially inhibited by capsazepine but almost completely abolished by ruthenium red, an effective blocker of all TRPV channels. In conclusion, 2-APB evokes a consistent and distinct stimulatory effect on pulmonary C fibers in vivo and on isolated pulmonary capsaicin-sensitive neurons in vitro. These results establish the functional evidence demonstrating that TRPV1, V2, and V3 channels are expressed on these sensory neurons and their terminals.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology University of Kentucky Medical Center Lexington, KY, 40536, USA
| | - Ruei-Lung Lin
- Department of Physiology University of Kentucky Medical Center Lexington, KY, 40536, USA
| | - Hong-Zhen Hu
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, 43210, USA
| | - Michael X Zhu
- Department of Neuroscience and Center for Molecular Neurobiology The Ohio State University Columbus, OH, 43210, USA
| | - Lu-Yuan Lee
- Department of Physiology University of Kentucky Medical Center Lexington, KY, 40536, USA
| |
Collapse
|
12
|
Abstract
Increased sensitivity of cough pathways has been demonstrated in numerous studies. The underlying mechanisms of this sensitization are largely unknown; however, a burgeoning body of evidence suggests that vagal primary afferent neurones that innervate the airways are likely to be involved. This plasticity includes changes in anatomy, neurochemistry and function. PGE2 is an example of an inflammatory mediator that increases responsiveness to tussive stimuli. Electrophysiological studies of neurone cell bodies isolated from afferent ganglia have revealed that prostanoids modulate the function of a variety of distinct ion channels including those that carry TTX-insensitive voltage-gated sodium currents, slow post-spike hyperpolarizations and a hyperpolarization-activated cation current. Mediator-induced modulation of the function of various voltage-gated currents operating at the peripheral terminals of airway afferent neurons would probably influence input from the airways into the central nervous system and contribute to the urge to cough and increased responsiveness to tussive stimuli.
Collapse
Affiliation(s)
- Michael J Carr
- UCB Research Inc., 840 Memorial Drive, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Abstract
Vagal afferent nerves are the primary communication pathways between the bronchopulmonary system and the central nervous system. Input from airway afferent nerves to the CNS is integrated in the brainstem and ultimately leads to sensations and various reflex outputs. Afferent nerves innervating the airways can be classified into various distinct phenotypes. However, there is no single classification scheme that takes all features, including conduction velocity, cell body diameter, ganglionic origin, and stimuli to which they respond (modality) into account. At present, bronchopulmonary afferent nerves are typically considered to belong to one of three general categories, namely C-fibres, rapidly adapting stretch receptors (RARs), and slowly adapting stretch receptors (SARs). As our understanding of bronchopulmonary afferent nerves continues to deepen, we are likely to see more sophisticated classification schemes emerge. It is clear that the function of afferent fibres can be substantively influenced by airway inflammation and remodelling. The perturbations and perversions of afferent nerve function that occur during these states almost certainly contributes to many of the signs and symptoms of inflammatory airway disease. A more lucid characterization of bronchopulmonary afferent nerves, and a better understanding of the mechanisms by which these nerves influence pulmonary physiology during health and disease anticipates future research.
Collapse
|
14
|
Abstract
The excitability and activity of vagal afferent nerves innervating the airways can be pharmacologically increased and decreased. Autacoids released as a result of airway inflammation can lead to substantial increases in afferent nerve activity, consequently altering pulmonary reflex physiology. In a manner analogous to hyperalgesia associated with inflammation in the somato-sensory system, increases in vagal afferent nerve activity in inflamed airways may lead to a heightened cough reflex, and increases in autonomic activity in the airways. These effects may contribute to many of the symptoms of inflammatory airway disease. Here we provide a brief overview of some of the mechanisms by which the afferent activity in airway nerves can be pharmacologically modified.
Collapse
Affiliation(s)
- Michael J Carr
- UCB Research Inc, 840 Memorial Drive, Cambridge, MA 02139, USA
| | | |
Collapse
|
15
|
Yu J, Wang YF, Zhang JW. Structure of slowly adapting pulmonary stretch receptors in the lung periphery. J Appl Physiol (1985) 2003; 95:385-93. [PMID: 12665534 DOI: 10.1152/japplphysiol.00137.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary sensory receptors are the initiating sites for lung reflexes; however, little is known about their structure, especially the relationship between the structure and function of these receptors. Using a novel approach (combining electrophysiological and morphological techniques), we examined the structures of the typical slowly adapting pulmonary stretch receptors (SARs) located in the lung periphery. We recorded SAR activities in the cervical vagus nerve, identified the receptive field, dissected the SARs in blocks, fixed and processed these blocks for immunohistochemical staining using anti-Na+/K+-ATPase, and examined the blocks under a confocal microscope. These SAR structures have multiple endings that have terminal knobs. Some structures that are located in the airway walls have terminal knobs buried in smooth muscle. Others are in the most peripheral part of the lung, and their terminal knobs have no obvious relation to smooth muscle, suggesting that muscle contraction may not be a direct factor for SAR activation.
Collapse
Affiliation(s)
- J Yu
- Department of Medicine, University of Louisville, Louisville, KY 40292, USA. (
| | | | | |
Collapse
|
16
|
Widdicombe J. Functional morphology and physiology of pulmonary rapidly adapting receptors (RARs). THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 270:2-10. [PMID: 12494484 DOI: 10.1002/ar.a.10003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rapidly adapting receptors (RARs) in the airway mucosa are found from the nasopharynx to the bronchi. They have thin (Adelta) vagal afferent fibres and lie in and under the epithelium, but their morphology has not been defined. They are very sensitive to mechanical stimuli, and have a rapidly adapting irregular discharge. However, with in vitro preparations they are rather insensitive to chemical stimuli, apart from acid and nonisosmolar solutions. Their pattern of response varies with site. RARs in the nasopharynx, larynx, and trachea usually respond only during the onset of stimuli, while those in the trachea often have an off-response as well. Those in the bronchi are less rapidly adapting and more chemosensitive. Their membranes have mechanosensitive and acid-sensitive ion channels, but no vanilloid receptors. In vivo RARs are sensitive to a wide range of chemical irritants and mediators, and presumably are excited secondarily to mechanical changes in the mucosa and airway smooth muscle. In the central nervous system (CNS) they interact with other vagal afferent pathways. The reflexes they cause vary with site (inspiratory efforts from the nasopharynx, cough or expiratory efforts from the larynx and trachea, and deep breaths or tachypnoea from the bronchi). Pathways from RARs and other vagal reflexes show plasticity at the peripheral, ganglionic, and CNS levels.
Collapse
Affiliation(s)
- John Widdicombe
- Guy's, King's and St Thomas' School of Biomedical Sciences, Human Physiology and Aerospace Medicine, London, UK.
| |
Collapse
|
17
|
Kollarik M, Undem BJ. Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J Physiol 2002; 543:591-600. [PMID: 12205192 PMCID: PMC2290522 DOI: 10.1113/jphysiol.2002.022848] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms underlying the response of airway afferent nerves to low pH were investigated in an isolated guinea-pig airway nerve preparation. Extracellular recordings were made from single jugular or nodose vagal ganglion neurons that projected their sensory fibers into the airways. The airway tissue containing the mechanically sensitive receptive fields was exposed into acidic solutions. Rapid and transient (approximately 3 s) administration of 1 mM citric acid to the receptive field consistently induced action potential discharge in nociceptive C-fibers (41/44) and nodose Adelta fibres (29/30) that are rapidly adapting low threshold mechanosensors (RAR-like fibres). In contrast, citric acid activated only 8/17 high threshold mechanosensitive jugular Adelta fibres. The RAR-like fibres were slightly more sensitive than C-fibres to acidic solutions (pH threshold > 6.7). The RAR-like fibres response to the approximately 3 s acid treatment was not affected by a vanilloid receptor 1 (VR1) antagonist, capsazepine (10 microM), and was rapidly inactivating (action potential discharge terminated before the acid administration was completed). Gradual reduction of pH did not activate the RAR-like fibres even when the pH was reduced to approximately 5.0. The C-fibres responded to the gradual reduction of pH with persistent action potential discharge that was nearly abolished by capsazepine (10 microM) and inhibited by over 70 % with another VR1 antagonist iodo-resiniferatoxin (1 microM). In contrast the C-fibre response to the transient approximately 3 s exposure to pH approximately 5.0 was not affected by the VR1 antagonists. We conclude that activation of guinea-pig airway afferents by low pH is mediated by both slowly and rapidly inactivating mechanisms. We hypothesize that the slowly inactivating mechanism, present in C-fibres but not in RAR-like fibres, is mediated by VR1. The rapidly inactivating mechanism acts independently of VR1, has characteristics similar to acid sensing ion channels (ASICs) and is found in the airway terminals of both C-fibres and RAR-like fibres.
Collapse
Affiliation(s)
- Marian Kollarik
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
18
|
Undem BJ, Carr MJ. Pharmacology of airway afferent nerve activity. Respir Res 2002; 2:234-44. [PMID: 11686889 PMCID: PMC59581 DOI: 10.1186/rr62] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Accepted: 04/03/2001] [Indexed: 01/12/2023] Open
Abstract
Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology.
Collapse
Affiliation(s)
- B J Undem
- Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
19
|
Abstract
There are many types of afferent receptor in the airways; at least five in the larynx: pressure, drive, cold, irritant and C-fibre; and at least four in the trachea and bronchi: slowly and rapidly adapting stretch receptors (SARs and RARs), C-fibre receptors, and those in neuroepithelial bodies (NEBs). Histologically enough sensory structures have been identified to account for the various patterns of afferent activity, but most correlations are poor. For the larynx, four or more sensory structures have not definitively been identified with afferent discharges and reflex responses. For the trachea and bronchi, only SARs have been clearly identified morphologically and physiologically. The reflexes and afferent discharges from RARs and C-fibre receptors are fairly clear, some at least of the sensory terminals lie in the epithelium, but receptor complexes have not been mapped out. Nerves in NEBs have been identified, but not their local and central reflex actions.
Collapse
Affiliation(s)
- J Widdicombe
- Human Physiology and Aerospace Medicine, GKT School of Biomedical Sciences, Shepherd's House, Guy's Campus, London Bridge, SE1 9RT, London, UK.
| |
Collapse
|