1
|
Abramov AY, Myers I, Angelova PR. Carbon Monoxide: A Pleiotropic Redox Regulator of Life and Death. Antioxidants (Basel) 2024; 13:1121. [PMID: 39334780 PMCID: PMC11428877 DOI: 10.3390/antiox13091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Despite recent technological progress, carbon monoxide poisoning is still one of the leading causes of domestic and industrial morbidity and mortality. The brain is particularly vulnerable to CO toxicity, and thus the majority of survivors develop delayed movement and cognitive complications. CO binds to haemoglobin in erythrocytes, preventing oxygen delivery to tissues, and additionally inhibits mitochondrial respiration. This renders the effect of CO to be closely related to hypoxia reperfusion injury. Oxygen deprivation, as well as CO poisoning and re-oxygenation, are shown to be able to activate the production of reactive oxygen species and to induce oxidative stress. Here, we review the role of reactive oxygen species production and oxidative stress in the mechanism of neuronal cell death induced by carbon monoxide and re-oxygenation. We discuss possible protective mechanisms used by brain cells with a specific focus on the inhibition of CO-induced ROS production and oxidative stress.
Collapse
Affiliation(s)
| | | | - Plamena R. Angelova
- UCL Queen Square Institute of Neurology, Department of Clinical and Movement Neurosciences, Queen Square, London WC1N3BG, UK; (A.Y.A.); (I.M.)
| |
Collapse
|
2
|
Atanasova DY, Dandov AD, Lazarov NE. Neurochemical plasticity of the carotid body in hypertension. Anat Rec (Hoboken) 2023; 306:2366-2377. [PMID: 37561329 DOI: 10.1002/ar.24997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
The carotid body (CB), a main peripheral arterial chemoreceptor, has lately been implicated in the pathophysiology of various cardiovascular disorders. Emerging experimental evidence supports a causal relationship between CB dysfunction and augmented sympathetic outflow which is the common hallmark of human sympathetic-related diseases, including essential hypertension. To gain insight into the neurotransmitter profile of chemosensory cells in the hypertensive CB, we examined the expression and cellular localization of some classical neurotransmitters, neuropeptides, and gaseous signaling molecules as well as neurotrophic factors and their receptors in the CB of spontaneously hypertensive rats, a common animal model of hypertension. Our immunohistochemical experiments revealed an elevated catecholamine and serotonin content in the hypertensive CB compared to normotensive controls. GABA immunostaining was seen in some peripherally located glomus cells in the CB of SHR and it was significantly lower than in control animals. The density of substance P and vasoactive intestinal peptide-immunoreactive fibers was diminished whereas that of neuropeptide Y-immunostained nerve fibers was increased and that of calcitonin gene-related peptide-containing fibers remained almost unchanged in the hypertensive CB. We have further demonstrated that in the hypertensive state the production of nitric oxide is impaired and that the components of the neurotrophin signaling system display an abnormal enhanced expression. Our results provide immunohistochemical evidence that the altered transmitter phenotype of CB chemoreceptor cells and the elevated production of neurotrophic factors modulate the chemosensory processing in hypertensive animals which contributes to autonomic dysfunction and elicits sympathetic hyperactivity, consequently leading to elevated blood pressure.
Collapse
Affiliation(s)
- Dimitrinka Y Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Angel D Dandov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria
| | - Nikolai E Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
3
|
Getsy PM, Coffee GA, Lewis SJ. Loss of ganglioglomerular nerve input to the carotid body impacts the hypoxic ventilatory response in freely-moving rats. Front Physiol 2023; 14:1007043. [PMID: 37008015 PMCID: PMC10060956 DOI: 10.3389/fphys.2023.1007043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The carotid bodies are the primary sensors of blood pH, pO2 and pCO2. The ganglioglomerular nerve (GGN) provides post-ganglionic sympathetic nerve input to the carotid bodies, however the physiological relevance of this innervation is still unclear. The main objective of this study was to determine how the absence of the GGN influences the hypoxic ventilatory response in juvenile rats. As such, we determined the ventilatory responses that occur during and following five successive episodes of hypoxic gas challenge (HXC, 10% O2, 90% N2), each separated by 15 min of room-air, in juvenile (P25) sham-operated (SHAM) male Sprague Dawley rats and in those with bilateral transection of the ganglioglomerular nerves (GGNX). The key findings were that 1) resting ventilatory parameters were similar in SHAM and GGNX rats, 2) the initial changes in frequency of breathing, tidal volume, minute ventilation, inspiratory time, peak inspiratory and expiratory flows, and inspiratory and expiratory drives were markedly different in GGNX rats, 3) the initial changes in expiratory time, relaxation time, end inspiratory or expiratory pauses, apneic pause and non-eupneic breathing index (NEBI) were similar in SHAM and GGNX rats, 4) the plateau phases obtained during each HXC were similar in SHAM and GGNX rats, and 5) the ventilatory responses that occurred upon return to room-air were similar in SHAM and GGNX rats. Overall, these changes in ventilation during and following HXC in GGNX rats raises the possibility the loss of GGN input to the carotid bodies effects how primary glomus cells respond to hypoxia and the return to room-air.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Paulina M. Getsy,
| | - Gregory A. Coffee
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Lazarov NE, Atanasova DY. Neurochemical Anatomy of the Mammalian Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:63-103. [PMID: 37946078 DOI: 10.1007/978-3-031-44757-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Carotid body (CB) glomus cells in most mammals, including humans, contain a broad diversity of classical neurotransmitters, neuropeptides and gaseous signaling molecules as well as their cognate receptors. Among them, acetylcholine, adenosine triphosphate and dopamine have been proposed to be the main excitatory transmitters in the mammalian CB, although subsequently dopamine has been considered an inhibitory neuromodulator in almost all mammalian species except the rabbit. In addition, co-existence of biogenic amines and neuropeptides has been reported in the glomus cells, thus suggesting that they store and release more than one transmitter in response to natural stimuli. Furthermore, certain metabolic and transmitter-degrading enzymes are involved in the chemotransduction and chemotransmission in various mammals. However, the presence of the corresponding biosynthetic enzyme for some transmitter candidates has not been confirmed, and neuroactive substances like serotonin, gamma-aminobutyric acid and adenosine, neuropeptides including opioids, substance P and endothelin, and gaseous molecules such as nitric oxide have been shown to modulate the chemosensory process through direct actions on glomus cells and/or by producing tonic effects on CB blood vessels. It is likely that the fine balance between excitatory and inhibitory transmitters and their complex interactions might play a more important than suggested role in CB plasticity.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
5
|
Lazarov NE, Atanasova DY. Carotid Body Dysfunction and Mechanisms of Disease. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:123-138. [PMID: 37946080 DOI: 10.1007/978-3-031-44757-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Emerging evidence shows that the carotid body (CB) dysfunction is implicated in various physiological and pathophysiological conditions. It has been revealed that the CB structure and neurochemical profile alter in certain human sympathetic-related and cardiometabolic diseases. Specifically, a tiny CB with a decrease of glomus cells and their dense-cored vesicles has been seen in subjects with sleep disordered breathing such as sudden infant death syndrome and obstructive sleep apnea patients and people with congenital central hypoventilation syndrome. Moreover, the CB degranulation is accompanied by significantly elevated levels of catecholamines and proinflammatory cytokines in such patients. The intermittent hypoxia stimulates the CB, eliciting augmented chemoreflex drive and enhanced cardiorespiratory and sympathetic responses. High CB excitability due to blood flow restrictions, oxidative stress, alterations in neurotransmitter gases and disruptions of local mediators is also observed in congestive heart failure conditions. On the other hand, the morpho-chemical changes in hypertension include an increase in the CB volume due to vasodilation, altered transmitter phenotype of chemoreceptor cells and elevated production of neurotrophic factors. Accordingly, in both humans and animal models CB denervation prevents the breathing instability and lowers blood pressure. Knowledge of the morphofunctional aspects of the CB, a better understanding of its role in disease and recent advances in human CB translational research would contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
6
|
Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:103-123. [PMID: 35965023 PMCID: PMC9906984 DOI: 10.1016/b978-0-323-91534-2.00009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This chapter reviews cardiorespiratory adaptations to chronic hypoxia (CH) experienced at high altitude and cardiorespiratory pathologies elicited by chronic intermittent hypoxia (CIH) occurring with obstructive sleep apnea (OSA). Short-term CH increases breathing (ventilatory acclimatization to hypoxia) and blood pressure (BP) through carotid body (CB) chemo reflex. Hyperplasia of glomus cells, alterations in ion channels, and recruitment of additional excitatory molecules are implicated in the heightened CB chemo reflex by CH. Transcriptional activation of hypoxia-inducible factors (HIF-1 and 2) is a major molecular mechanism underlying respiratory adaptations to short-term CH. High-altitude natives experiencing long-term CH exhibit blunted hypoxic ventilatory response (HVR) and reduced BP due to desensitization of CB response to hypoxia and impaired processing of CB sensory information at the central nervous system. Ventilatory changes evoked by long-term CH are not readily reversed after return to sea level. OSA patients and rodents subjected to CIH exhibit heightened CB chemo reflex, increased hypoxic ventilatory response, and hypertension. Increased generation of reactive oxygen species (ROS) is a major cellular mechanism underlying CIH-induced enhanced CB chemo reflex and the ensuing cardiorespiratory pathologies. ROS generation by CIH is mediated by nontranscriptional, disrupted HIF-1 and HIF-2-dependent transcriptions as well as epigenetic mechanisms.
Collapse
|
7
|
Ventilatory responses during and following hypercapnic gas challenge are impaired in male but not female endothelial NOS knock-out mice. Sci Rep 2021; 11:20557. [PMID: 34663876 PMCID: PMC8523677 DOI: 10.1038/s41598-021-99922-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
The roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO2, 21% O2, 74% N2) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.
Collapse
|
8
|
Getsy PM, Sundararajan S, May WJ, von Schill GC, McLaughlin DK, Palmer LA, Lewis SJ. Short-term facilitation of breathing upon cessation of hypoxic challenge is impaired in male but not female endothelial NOS knock-out mice. Sci Rep 2021; 11:18346. [PMID: 34526532 PMCID: PMC8443732 DOI: 10.1038/s41598-021-97322-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Decreases in arterial blood oxygen stimulate increases in minute ventilation via activation of peripheral and central respiratory structures. This study evaluates the role of endothelial nitric oxide synthase (eNOS) in the expression of the ventilatory responses during and following a hypoxic gas challenge (HXC, 10% O2, 90% N2) in freely moving male and female wild-type (WT) C57BL6 and eNOS knock-out (eNOS-/-) mice. Exposure to HXC caused an array of responses (of similar magnitude and duration) in both male and female WT mice such as, rapid increases in frequency of breathing, tidal volume, minute ventilation and peak inspiratory and expiratory flows, that were subject to pronounced roll-off. The responses to HXC in male eNOS-/- mice were similar to male WT mice. In contrast, several of the ventilatory responses in female eNOS-/- mice (e.g., frequency of breathing, and expiratory drive) were greater compared to female WT mice. Upon return to room-air, male and female WT mice showed similar excitatory ventilatory responses (i.e., short-term potentiation phase). These responses were markedly reduced in male eNOS-/- mice, whereas female eNOS-/- mice displayed robust post-HXC responses that were similar to those in female WT mice. Our data demonstrates that eNOS plays important roles in (1) ventilatory responses to HXC in female compared to male C57BL6 mice; and (2) expression of post-HXC responses in male, but not female C57BL6 mice. These data support existing evidence that sex, and the functional roles of specific proteins (e.g., eNOS) have profound influences on ventilatory processes, including the responses to HXC.
Collapse
Affiliation(s)
- Paulina M. Getsy
- grid.67105.350000 0001 2164 3847Department of Pediatrics, Biomedical Research Building BRB 319, Case Western Reserve University, 10900 Euclid Avenue Mail Stop 1714, Cleveland, OH 44106-1714 USA ,grid.67105.350000 0001 2164 3847Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH USA
| | - Sripriya Sundararajan
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.411024.20000 0001 2175 4264Present Address: Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Walter J. May
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Graham C. von Schill
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Dylan K. McLaughlin
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Lisa A. Palmer
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Stephen J. Lewis
- grid.67105.350000 0001 2164 3847Department of Pediatrics, Biomedical Research Building BRB 319, Case Western Reserve University, 10900 Euclid Avenue Mail Stop 1714, Cleveland, OH 44106-1714 USA ,grid.67105.350000 0001 2164 3847Department of Pharmacology, Case Western Reserve University, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
9
|
Bock JM, Hanson BE, Asama TF, Feider AJ, Hanada S, Aldrich AW, Dyken ME, Casey DP. Acute inorganic nitrate supplementation and the hypoxic ventilatory response in patients with obstructive sleep apnea. J Appl Physiol (1985) 2021; 130:87-95. [PMID: 33211592 DOI: 10.1152/japplphysiol.00696.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Patients with obstructive sleep apnea (OSA) have increased cardiovascular disease risk largely attributable to hypertension. Heightened peripheral chemoreflex sensitivity (i.e., exaggerated responsiveness to hypoxia) facilitates hypertension in these patients. Nitric oxide blunts the peripheral chemoreflex, and patients with OSA have reduced nitric oxide bioavailability. We therefore investigated the dose-dependent effects of acute inorganic nitrate supplementation (beetroot juice), an exogenous nitric oxide source, on blood pressure and cardiopulmonary responses to hypoxia in patients with OSA using a randomized, double-blind, placebo-controlled crossover design. Fourteen patients with OSA (53 ± 10 yr, 29.2 ± 5.8 kg/m2, apnea-hypopnea index = 17.8 ± 8.1, 43%F) completed three visits. Resting brachial blood pressure and cardiopulmonary responses to inspiratory hypoxia were measured before, and 2 h after, acute inorganic nitrate supplementation [∼0.10 mmol (placebo), 4.03 mmol (low dose), and 8.06 mmol (high dose)]. Placebo increased neither plasma [nitrate] (30 ± 52 to 52 ± 23 μM, P = 0.26) nor [nitrite] (266 ± 153 to 277 ± 164 nM, P = 0.21); however, both increased following low (29 ± 17 to 175 ± 42 μM, 220 ± 137 to 514 ± 352 nM) and high doses (26 ± 11 to 292 ± 90 μM, 248 ± 155 to 738 ± 427 nM, respectively, P < 0.01 for all). Following placebo, systolic blood pressure increased (120 ± 9 to 128 ± 10 mmHg, P < 0.05), whereas no changes were observed following low (121 ± 11 to 123 ± 8 mmHg, P = 0.19) or high doses (124 ± 13 to 124 ± 9 mmHg, P = 0.96). The peak ventilatory response to hypoxia increased following placebo (3.1 ± 1.2 to 4.4 ± 2.6 L/min, P < 0.01) but not low (4.4 ± 2.4 to 5.4 ± 3.4 L/min, P = 0.11) or high doses (4.3 ± 2.3 to 4.8 ± 2.7 L/min, P = 0.42). Inorganic nitrate did not change the heart rate responses to hypoxia (beverage-by-time P = 0.64). Acute inorganic nitrate supplementation appears to blunt an early-morning rise in systolic blood pressure potentially through suppression of peripheral chemoreflex sensitivity in patients with OSA.NEW & NOTEWORTHY The present study is the first to examine the acute effects of inorganic nitrate supplementation on resting blood pressure and cardiopulmonary responses to hypoxia (e.g., peripheral chemoreflex sensitivity) in patients with obstructive sleep apnea (OSA). Our data indicate inorganic nitrate supplementation attenuates an early-morning rise in systolic blood pressure potentially attributable to blunted peripheral chemoreflex sensitivity. These data show proof-of-concept that inorganic nitrate supplementation could reduce the risk of cardiovascular disease in patients with OSA.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Brady E Hanson
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Thomas F Asama
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Aric W Aldrich
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Mark Eric Dyken
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
10
|
Busco G, Robert E, Chettouh-Hammas N, Pouvesle JM, Grillon C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic Biol Med 2020; 161:290-304. [PMID: 33039651 DOI: 10.1016/j.freeradbiomed.2020.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
The maintenance of skin integrity is crucial to ensure the physiological barrier against exogenous compounds, microorganisms and dehydration but also to fulfill social and aesthetic purposes. Besides the development of new actives intended to enter a formulation, innovative technologies based on physical principles have been proposed in the last years. Among them, Cold Atmospheric Plasma (CAP) technology, which already showed interesting results in dermatology, is currently being studied for its potential in skin treatments and cares. CAP bio-medical studies gather several different expertise ranging from physics to biology through chemistry and biochemistry, making this topic hard to pin. In this review we provide a broad survey of the interactions between CAP and skin. In the first section, we tried to give some fundamentals on skin structure and physiology, related to its essential functions, together with the main bases on cold plasma and its physicochemical properties. In the following parts we dissected and analyzed each CAP parameter to highlight the already known and the possible effects they can play on skin. This overview aims to get an idea of the potential of cold atmospheric plasma technology in skin biology for the future developments of dermo-cosmetic treatments, for example in aging prevention.
Collapse
Affiliation(s)
- Giovanni Busco
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France; Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France.
| | - Eric Robert
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | | | - Jean-Michel Pouvesle
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France.
| |
Collapse
|
11
|
Atanasova DY, Dandov AD, Dimitrov ND, Lazarov NE. Histochemical and immunohistochemical localization of nitrergic structures in the carotid body of spontaneously hypertensive rats. Acta Histochem 2020; 122:151500. [PMID: 31918956 DOI: 10.1016/j.acthis.2019.151500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The carotid body (CB) is a multipurpose metabolic sensor that acts to initiate cardiorespiratory reflex adjustments to maintain homeostasis of blood-borne chemicals. Emerging evidence suggests that nitric oxide increases the CB chemosensory activity and this enhanced peripheral chemoreflex sensitivity contributes to sympathoexcitation and consequent pathology. The aim of this study was to examine by means of NADPH-diaphorase histochemistry and nitric oxide synthase (NOS) immunohistochemistry the presence and distribution of nitrergic structures in the CB of spontaneously hypertensive rats (SHRs) and to compare their expression patterns to that of age-matched normotensive Wistar rats (NWRs). Histochemistry revealed that the chemosensory glomus cells were NADPH-d-negative but were encircled by fine positive varicosities, which were also dispersed in the stroma around the glomeruli. The NADPH-d-reactive fibers showed the same distributional pattern in the CB of SHRs, however their staining activity was weaker when compared with NWRs. Thin periglomerular, intraglomerular and perivascular varicose fibers, but not glomus or sustentacular cells in the hypertensive CB, constitutively expressed two isoforms of NOS, nNOS and eNOS. In addition, clusters of glomus cells and blood vessels in the CB of SHRs exhibited moderate immunoreactivity for the third known NOS isoenzyme, iNOS. The present study demonstrates that in the hypertensive CB nNOS and eNOS protein expression shows statistically significant down-regulation whereas iNOS expression is up-regulated in the glomic tissue compared to normotensive controls. Our results suggest that impaired NO synthesis could contribute to elevated blood pressure in rats via an increase in chemoexcitation and sympathetic nerve activity in the CB.
Collapse
Affiliation(s)
- Dimitrinka Y Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria.
| | - Angel D Dandov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria.
| | - Nikolay D Dimitrov
- Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria.
| | - Nikolai E Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria.
| |
Collapse
|
12
|
Lin CC, Hsiao LD, Cho RL, Yang CM. Carbon Monoxide Releasing Molecule-2-Upregulated ROS-Dependent Heme Oxygenase-1 Axis Suppresses Lipopolysaccharide-Induced Airway Inflammation. Int J Mol Sci 2019; 20:ijms20133157. [PMID: 31261663 PMCID: PMC6651427 DOI: 10.3390/ijms20133157] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
The up-regulation of heme oxygenase-1 (HO-1) is mediated through nicotinamaide adenine dinucleotide phosphate (NADPH) oxidases (Nox) and reactive oxygen species (ROS) generation, which could provide cytoprotection against inflammation. However, the molecular mechanisms of carbon monoxide-releasing molecule (CORM)-2-induced HO-1 expression in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we found that pretreatment with CORM-2 attenuated the lipopolysaccharide (LPS)-induced intercellular adhesion molecule (ICAM-1) expression and leukocyte count through the up-regulation of HO-1 in mice, which was revealed by immunohistochemistrical staining, Western blot, real-time PCR, and cell count. The inhibitory effects of HO-1 by CORM-2 were reversed by transfection with HO-1 siRNA. Next, Western blot, real-time PCR, and promoter activity assay were performed to examine the HO-1 induction in HTSMCs. We found that CORM-2 induced HO-1 expression via the activation of protein kinase C (PKC)α and proline-rich tyrosine kinase (Pyk2), which was mediated through Nox-derived ROS generation using pharmacological inhibitors or small interfering ribonucleic acids (siRNAs). CORM-2-induced HO-1 expression was mediated through Nox-(1, 2, 4) or p47phox, which was confirmed by transfection with their own siRNAs. The Nox-derived ROS signals promoted the activities of extracellular signal-regulated kinase 1/2 (ERK1/2). Subsequently, c-Fos and c-Jun-activator protein-1 (AP-1) subunits-were up-regulated by activated ERK1/2, which turned on transcription of the HO-1 gene by regulating the HO-1 promoter. These results suggested that in HTSMCs, CORM-2 activates PKCα/Pyk2-dependent Nox/ROS/ERK1/2/AP-1, leading to HO-1 up-regulation, which suppresses the lipopolysaccharide (LPS)-induced airway inflammation.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan.
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan 33302, Taiwan.
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
13
|
Li Y, Xie J, Li Y, Yang Y, Yang L. Literature data based systems pharmacology uncovers the essence of "body fire" in traditional Chinese medicine: A case by Huang-Lian-Jie-Du-Tang. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:266-285. [PMID: 30922854 DOI: 10.1016/j.jep.2019.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Like other concepts in traditional Chinese medical theory, "body fire", a concept that has already been well-known and widely used in describing the symptoms and the treatment of corresponding diseases, is, however, still under suspicions in the western medicine due to its vague essence and symptoms. Presently, Huang-Lian-Jie-Du-Tang (HLJDT), a typical popular TCM formula in cleansing the "body fire", is studied as a probe by a systems pharmacology method we produced, with purpose to explore the mechanisms of the potion, as well as to interpret the essence of "body fire" disease. METHODS The systematic process includes a pharmacokinetics prescreening, pharmacodynamics targets and pathways identification, and candidate-target-pathway network construction. RESULTS Through this method, 145 chemicals and 91 proteins are identified as active ingredients and "body fire"-related targets. And we find that the mechanism of HLJDT prescription for cleansing "body fire" lies in three, i.e., anti-OS/NS, anti-inflammation and anti-infection function modules, which are mainly executed through four, i.e., PI3K-AKT, MAPK, VEGF as well as Calcium signaling pathways. CONCLUSIONS Accordingly, the essence of "body fire" is a gradual process which is an integration of OS/NS, inflammation and infection. This work, we hope, may not only offer a systemic methodology for exploring and elucidating TCM concepts from a multi-scale perspective, but also provide an efficient way for herbal drug discovery.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Jing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Yaying Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Yinfeng Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
CO-Releasing Molecule-2 Induces Nrf2/ARE-Dependent Heme Oxygenase-1 Expression Suppressing TNF-α-Induced Pulmonary Inflammation. J Clin Med 2019; 8:jcm8040436. [PMID: 30934992 PMCID: PMC6517967 DOI: 10.3390/jcm8040436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/16/2022] Open
Abstract
The upregulation of heme oxygenase-1 (HO-1) by the carbon monoxide-releasing molecule (CORM)-2 may be mediated through the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases [Nox] and reactive oxygen species (ROS) generation, which could provide cytoprotection against various cellular injuries. However, the detailed mechanisms of CORM-2-induced HO-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain largely unknown. Therefore, we dissected the mechanisms underlying CORM-2-induced HO-1 expression in HPAEpiCs. We found that the administration of mice with CORM-2 attenuated the tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule-1 (ICAM-1) expression and leukocyte count as revealed by immunohistochemical staining, western blot, real-time polymerase chain reaction (PCR), and cell count. Furthermore, TNF-α-induced ICAM-1 expression associated with monocyte adhesion to HPAEpiCs was attenuated by infection with adenovirus (adv)-HO-1 or incubation with CORM-2. These inhibitory effects of HO-1 were reversed by pretreatment with hemoglobin (Hb). Moreover, CORM-2-induced HO-1 expression was mediated via the phosphorylation of p47phox, c-Src, epidermal growth factor receptor (EGFR), Akt, and NF-E2-related factor 2 (Nrf2), which were inhibited by their pharmacological inhibitors, including diphenyleneiodonium (DPI) or apocynin (APO), ROS [N-acetyl-L-cysteine (NAC)], PP1, AG1478, PI3K (LY294002), or Akt (SH-5), and small interfering RNAs (siRNAs). CORM-2-enhanced Nrf2 expression, and anti-oxidant response element (ARE) promoter activity was also inhibited by these pharmacological inhibitors. The interaction between Nrf2 and AREs was confirmed with a chromatin immunoprecipitation (ChIP) assay. These findings suggest that CORM-2 increases the formation of the Nrf2 and AREs complex and binds with ARE-binding sites via Src, EGFR, and PI3K/Akt, which further induces HO-1 expression in HPAEpiCs. Thus, the HO-1/CO system might suppress TNF-α-mediated inflammatory responses and exert a potential therapeutic strategy in pulmonary diseases.
Collapse
|
15
|
Gattuso A, Garofalo F, Cerra MC, Imbrogno S. Hypoxia Tolerance in Teleosts: Implications of Cardiac Nitrosative Signals. Front Physiol 2018; 9:366. [PMID: 29706897 PMCID: PMC5906588 DOI: 10.3389/fphys.2018.00366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
Changes in environmental oxygen (O2) are naturally occurring phenomena which ectotherms have to face on. Many species exhibit a striking capacity to survive and remain active for long periods under hypoxia, even tolerating anoxia. Some fundamental adaptations contribute to this capacity: metabolic suppression, tolerance of pH and ionic unbalance, avoidance and/or repair of free-radical-induced cell injury during reoxygenation. A remarkable feature of these species is their ability to preserve a normal cardiovascular performance during hypoxia/anoxia to match peripheral (tissue pO2) requirements. In this review, we will refer to paradigms of hypoxia- and anoxia-tolerant teleost fish to illustrate cardiac physiological strategies that, by involving nitric oxide and its metabolites, play a critical role in the adaptive responses to O2 limitation. The information here reported may contribute to clarify the molecular and cellular mechanisms underlying heart vulnerability vs. resistance in relation to O2 availability.
Collapse
Affiliation(s)
- Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Filippo Garofalo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
16
|
Atanasova DY, Dimitrov ND, Lazarov NE. Expression of nitric oxide-containing structures in the rat carotid body. Acta Histochem 2016; 118:770-775. [PMID: 27692876 DOI: 10.1016/j.acthis.2016.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022]
Abstract
The carotid body (CB) is a major peripheral arterial chemoreceptor organ that evokes compensatory reflex responses so as to maintain gas homeostasis. It is dually innervated by sensory fibers from petrosal ganglion (PG) neurons, and autonomic fibers from postganglionic sympathetic neurons of the superior cervical ganglion (SCG) and parasympathetic vasomotor fibers of intrinsic ganglion cells in the CB. The presence of nitric oxide (NO), a putative gaseous neurotransmitter substance in a number of neuronal and non-neuronal structures, was examined in the CB, PG and SCG of the rat using nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry, nitric oxide synthase (NOS) immunohistochemistry and retrograde tracing. One week after injecting the retrograde tracer Fast Blue (FB) in the CB, we found that a subset of perikarya in the caudal portions of the PG and SCG were FB-labeled. Histochemistry and immunohistochemistry revealed that the majority of large- and medium-sized PG and SCG cells were NADPH-d positive and displayed a strong NOS immunostaining. We also observed that many varicose nerve fibers penetrating the CB and enveloping the glomus cells and blood vessels were NADPH-d reactive and expressed the constitutive isoforms of NOS, nNOS and eNOS. In addition, some autonomic microganglion cells embedded within, or located at the periphery of the CB, and not glomus or sustentacular cells were nNOS-immunopositive while CB microvasculature expressed eNOS. The present results suggest that NO is a transmitter in the autonomic nerve endings supplying the CB and is involved in efferent chemoreceptor inhibition by a dual mechanism.
Collapse
|
17
|
Tzaneva V, Perry SF. Role of endogenous carbon monoxide in the control of breathing in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2016; 311:R1262-R1270. [PMID: 27581810 DOI: 10.1152/ajpregu.00094.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
Carbon monoxide (CO) is a gaseous signaling molecule and is produced in vivo from the intracellular breakdown of heme via the heme oxygenase (HO) family of enzymes. In this study we investigated the role of the HO-1/CO system in the control of ventilation in zebrafish, Danio rerio Immunohistochemistry revealed the presence of HO-1 in the chemoreceptive neuroepithelial cells (NECs) of larvae (4 days postfertilization) and adults, indicating the potential for endogenous CO production in the NECs. Hypoxia (20 min, water Po2 of 30 mmHg) caused a significant increase in HO-1 activity in whole larvae and in the gills of adult fish. Zebrafish with reduced HO-1 activity (via HO-1 knockdown in larvae or zinc protoporphyrin IX treatment in adults) exhibited increased ventilation frequency (Vf) under normoxic but not hypoxic conditions. The addition of exogenous CO restored resting Vf in fish with diminished CO production, and in some cases (e.g., hypoxic sham larvae) CO modestly reduced Vf below resting levels. Larval fish were treated with phenylhydrazine (PHZ) to eliminate the potential confounding effects of CO-hemoglobin interactions that might influence ventilation. PHZ treatment did not cause changes in Vf of normoxic larvae, and the addition of CO to PHZ-exposed larvae resulted in a significant decrease in sham and HO-1-deficient fish under normoxic conditions. This study demonstrates for the first time that CO plays an inhibitory role in the control of breathing in larval and adult zebrafish.
Collapse
Affiliation(s)
- Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
The sensing of respiratory gases in fish: Mechanisms and signalling pathways. Respir Physiol Neurobiol 2016; 224:71-9. [DOI: 10.1016/j.resp.2015.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/29/2022]
|
19
|
López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 2016; 310:C629-42. [PMID: 26764048 DOI: 10.1152/ajpcell.00265.2015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxygen (O2) is fundamental for cell and whole-body homeostasis. Our understanding of the adaptive processes that take place in response to a lack of O2(hypoxia) has progressed significantly in recent years. The carotid body (CB) is the main arterial chemoreceptor that mediates the acute cardiorespiratory reflexes (hyperventilation and sympathetic activation) triggered by hypoxia. The CB is composed of clusters of cells (glomeruli) in close contact with blood vessels and nerve fibers. Glomus cells, the O2-sensitive elements in the CB, are neuron-like cells that contain O2-sensitive K(+)channels, which are inhibited by hypoxia. This leads to cell depolarization, Ca(2+)entry, and the release of transmitters to activate sensory fibers terminating at the respiratory center. The mechanism whereby O2modulates K(+)channels has remained elusive, although several appealing hypotheses have been postulated. Recent data suggest that mitochondria complex I signaling to membrane K(+)channels plays a fundamental role in acute O2sensing. CB activation during exposure to low Po2is also necessary for acclimatization to chronic hypoxia. CB growth during sustained hypoxia depends on the activation of a resident population of stem cells, which are also activated by transmitters released from the O2-sensitive glomus cells. These advances should foster further studies on the role of CB dysfunction in the pathogenesis of highly prevalent human diseases.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
20
|
Xu C, Lu HX, Wang YX, Chen Y, Yang SH, Luo YJ. Association between smoking and the risk of acute mountain sickness: a meta-analysis of observational studies. Mil Med Res 2016; 3:37. [PMID: 27980800 PMCID: PMC5146861 DOI: 10.1186/s40779-016-0108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND People rapidly ascending to high altitudes (>2500 m) may suffer from acute mountain sickness (AMS). The association between smoking and AMS risk remains unclear. Therefore, we performed a meta-analysis to evaluate the association between smoking and AMS risk. METHODS The association between smoking and AMS risk was determined according to predefined criteria established by our team. Meta-analysis was conducted according to the PRISMA guidelines. We included all relevant studies listed in the PubMed and Embase databases as of September 2015 in this meta-analysis and performed systemic searches using the terms "smoking", "acute mountain sickness" and "risk factor". The included studies were required to provide clear explanations regarding their definitions of smoking, the final altitudes reached by their participants and the diagnostic criteria used to diagnose AMS. Odds ratios (ORs) were used to evaluate the association between smoking and AMS risk across the studies, and the Q statistic was used to test OR heterogeneity, which was considered significant when P < 0.05. We also computed 95% confidence intervals (CIs). Data extracted from the articles were analyzed with Review Manager 5.3 (Cochrane Collaboration, Oxford, UK). RESULTS We used seven case-control studies including 694 smoking patients and 1986 non-smoking controls to analyze the association between smoking and AMS risk. We observed a significant association between AMS and smoking (OR = 0.71, 95% CI 0.52-0.96, P = 0.03). CONCLUSIONS We determined that smoking may protect against AMS development. However, we do not advise smoking to prevent AMS. More studies are necessary to confirm the role of smoking in AMS risk.
Collapse
Affiliation(s)
- Chen Xu
- Department of Military Medical Geography, Third Military Medical University, Chongqing, 400038 China ; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, 400038 China ; Key Laboratory of High Altitude Environmental Medicine (Ministry of Education), Third Military Medical University, Chongqing, 400038 China
| | - Hong-Xiang Lu
- Department of Military Medical Geography, Third Military Medical University, Chongqing, 400038 China ; Key Laboratory of High Altitude Environmental Medicine (Ministry of Education), Third Military Medical University, Chongqing, 400038 China
| | - Yu-Xiao Wang
- Department of Military Medical Geography, Third Military Medical University, Chongqing, 400038 China ; Key Laboratory of High Altitude Environmental Medicine (Ministry of Education), Third Military Medical University, Chongqing, 400038 China
| | - Yu Chen
- Department of Military Medical Geography, Third Military Medical University, Chongqing, 400038 China ; Key Laboratory of High Altitude Environmental Medicine (Ministry of Education), Third Military Medical University, Chongqing, 400038 China
| | - Sheng-Hong Yang
- Mountain Sickness Research Institute, 18th Hospital of PLA, Yecheng, Xinjiang 844900 China
| | - Yong-Jun Luo
- Department of Military Medical Geography, Third Military Medical University, Chongqing, 400038 China ; Key Laboratory of High Altitude Environmental Medicine (Ministry of Education), Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
21
|
An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish. J Comp Physiol B 2015; 186:145-59. [DOI: 10.1007/s00360-015-0949-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
22
|
Development of a Clinically Applicable Protocol for Assessment of Hypoxic Response Through Measurement of the Endogenous Gasotransmitter Hydrogen Sulfide in Human Plasma. J Neurosurg Anesthesiol 2014; 27:257-61. [PMID: 25514494 DOI: 10.1097/ana.0000000000000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gasotransmitters are endogenously made, biologically active gases with unique physiological properties. In addition to participation in the hypoxic respiratory reflex of the carotid body, the gasotransmitter hydrogen sulfide (H(2)S) is thought to play a role in more localized vasodilatory hypoxic tissue responses. This pilot project describes a methodology suitable to the clinical environment that allows for H(2)S gas capture in human plasma utilizing the fluorescent trapping agent dansyl azide. METHODS Under an IRB-approved pilot project, 10 healthy male volunteers were spontaneously ventilated on room air, hypoxic (15% oxygen, 85% nitrogen), and hyperoxic (100%) gas mixtures through a nonrebreather system. Venous whole-blood samples were collected at both internal jugular and antecubital sites following 7 minutes of exposure to the tested oxygen environments. Resultant plasma aliquots were treated with dansyl azide and submitted to fluorescence reading (excitation 340 nm, emission 517 nm). RESULTS Compiled mean data from volunteer plasma samples demonstrated statistically significant findings (P<0.05) in measurement of increased fluorescent intensity between those samples collected under mildly hypoxic conditions compared with normoxic and hyperoxic samples submitted to the same laboratory criteria. CONCLUSIONS To study the role of H(2)S as a marker of hypoxic response in humans, a reliable, robust, and safe protocol amenable to standard hospital laboratory procedures is needed. Through modification to methodologies described in the biochemistry literature, this pilot project demonstrates the feasibility of utilizing a fluorescent H2S gas trapping agent for assessment of hypoxic response in humans within the confines of a typical clinical collection and analysis environment.
Collapse
|
23
|
Prabhakar NR, Peers C. Gasotransmitter regulation of ion channels: a key step in O2 sensing by the carotid body. Physiology (Bethesda) 2014; 29:49-57. [PMID: 24382871 PMCID: PMC3929115 DOI: 10.1152/physiol.00034.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Carotid bodies detect hypoxia in arterial blood, translating this stimulus into physiological responses via the CNS. It is long established that ion channels are critical to this process. More recent evidence indicates that gasotransmitters exert powerful influences on O2 sensing by the carotid body. Here, we review current understanding of hypoxia-dependent production of gasotransmitters, how they regulate ion channels in the carotid body, and how this impacts carotid body function.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois; and
| | | |
Collapse
|
24
|
Kabil O, Motl N, Banerjee R. H2S and its role in redox signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1355-66. [PMID: 24418393 PMCID: PMC4048824 DOI: 10.1016/j.bbapap.2014.01.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as an important gaseous signaling molecule that is produced endogenously by enzymes in the sulfur metabolic network. H2S exerts its effects on multiple physiological processes important under both normal and pathological conditions. These functions include neuromodulation, regulation of blood pressure and cardiac function, inflammation, cellular energetics and apoptosis. Despite the recognition of its biological importance and its beneficial effects, the mechanism of H2S action and the regulation of its tissue levels remain unclear in part owing to its chemical and physical properties that render handling and analysis challenging. Furthermore, the multitude of potential H2S effects has made it difficult to dissect its signaling mechanism and to identify specific targets. In this review, we focus on H2S metabolism and provide an overview of the recent literature that sheds some light on its mechanism of action in cellular redox signaling in health and disease. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Omer Kabil
- University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | - Nicole Motl
- University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | - Ruma Banerjee
- University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA.
| |
Collapse
|
25
|
Song P, Zhang JH, Qin J, Gao XB, Yu J, Tang XG, Tang CF, Huang L. Smoking is associated with the incidence of AMS: a large-sample cohort study. Mil Med Res 2014; 1:16. [PMID: 25722873 PMCID: PMC4340342 DOI: 10.1186/2054-9369-1-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the number of people visiting high altitudes has increased. After rapidly ascending to a high altitude, some of these individuals, who reside on plains or other areas of low altitude, have suffered from acute mountain sickness (AMS). Smoking interferes with the body's oxygen metabolism, but research about the relationship between smoking and AMS has yielded controversial results. METHODS We collected demographic data, conducted a smoking history and performed physical examinations on 2000 potential study participants, at sea level. Blood pressure (BP) and pulse oxygen saturation (SpO2) were measured for only some of the patients due to time and manpower limitations. We ultimately recruited 520 smokers and 450 nonsmokers according to the inclusion and exclusion criteria of our study. Following acute high-altitude exposure, we examined their Lake Louise Symptom (LLS) scores, BP, HR and SpO2; however, cerebral blood flow (CBF) was measured for only some of the subjects due to limited time, manpower and equipment. RESULTS Both the incidence of AMS and Lake Louise Symptom (LLS) scores were lower in smokers than in nonsmokers. Comparing AMS-related symptoms between nonsmokers and smokers, the incidence and severity of headaches and the incidence of sleep difficulties were lower in smokers than in nonsmokers. The incidences of both cough and mental status change were higher in smokers than in nonsmokers; blood pressure, HR and cerebral blood flow velocity were lower in smokers than in nonsmokers. CONCLUSION Our findings suggest that the incidence of AMS is lower in the smoking group, possibly related to a retardation of cerebral blood flow and a relief of AMS-related symptoms, such as headache.
Collapse
Affiliation(s)
- Pan Song
- />Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Ji-hang Zhang
- />Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Jun Qin
- />Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Xu-bin Gao
- />Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Jie Yu
- />Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Xu-gang Tang
- />Institute of Internal Medicine-Neurology of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Cai-fa Tang
- />Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Lan Huang
- />Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 People’s Republic of China
| |
Collapse
|
26
|
Muñoz-Sánchez J, Chánez-Cárdenas ME. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:604981. [PMID: 25136403 PMCID: PMC4127239 DOI: 10.1155/2014/604981] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
Hemeoxygenase (HO) system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia.
Collapse
Affiliation(s)
- Jorge Muñoz-Sánchez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| | - María Elena Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| |
Collapse
|
27
|
Heme oxygenase-1 (HO-1) mediated respiratory responses to hypoxia in the goldfish, Carassius auratus. Respir Physiol Neurobiol 2014; 199:1-8. [PMID: 24780551 DOI: 10.1016/j.resp.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 12/18/2022]
Abstract
In this study we investigated the role of heme oxygenase-1 (HO-1) in modulating the hypoxic and hyperoxic ventilatory responses of goldfish (Carassius auratus) acclimated to 7 and 25°C. HO-1 was present in the neuroepithelial cells (NECs; putative branchial O2 chemoreceptors) of fish acclimated to 7°C only. Hypoxia exposure increased gill HO-1 activity in 7°C fish (14.0±1.4 to 42.5±3.2pmolbilirubinmin(-1)mgprotein(-1)). Inhibition of HO-1 activity with zinc protophorphyrin IX (ZnPPIX) increased the ventilation frequency response to acute hypoxia (30mmHg); frequency increased from 48.3±5.1 to 137.4±16.0 breaths per min (BPM) in hypoxic 7°C fish treated with ZnPPIX compared to 46.2±4.2 to 77.9±5.3 BPM in control fish. Unlike in the control (untreated) 7°C fish exposed to hyperoxia, fish injected with ZnPPIX did not significantly decrease breathing frequency. Inhibiting HO-1 activity was without effect on the hypoxic or hyperoxic ventilatory responses of fish acclimated to 25°C. Based on these observations, we suggest that HO-1 plays an inhibitory role in regulating breathing frequency but only in goldfish acclimated to 7°C.
Collapse
|
28
|
Abstract
Mammalian carotid bodies are the main peripheral arterial chemoreceptors, strategically located at the bifurcation of the common carotid artery. When stimulated these receptors initiate compensatory respiratory and cardiovascular reflexes to maintain homeostasis. Thus, in response to low oxygen (hypoxia) or increased CO2/H(+) (acid hypercapnia), chemoreceptor type I cells depolarize and release excitatory neurotransmitters, such as ATP, which stimulate postsynaptic P2X2/3 receptors on afferent nerve terminals. The afferent discharge is shaped by autocrine and paracrine mechanisms involving both excitatory and inhibitory neuromodulators such as adenosine, serotonin (5-HT), GABA and dopamine. Recent evidence suggests that paracrine activation of P2Y2 receptors on adjacent glia-like type II cells may help boost the ATP signal via the opening of pannexin-1 channels. The presence of an inhibitory efferent innervation, mediated by release of nitric oxide, provides additional control of the afferent discharge. The broad array of neuromodulators and their receptors appears to endow the carotid body with a remarkable plasticity, most apparent during natural and pathophysiological conditions associated with chronic sustained and intermittent hypoxia.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
29
|
Schultz HD, Marcus NJ, Del Rio R. Role of the carotid body in the pathophysiology of heart failure. Curr Hypertens Rep 2014; 15:356-62. [PMID: 23824499 DOI: 10.1007/s11906-013-0368-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Important recent advances implicate a role of the carotid body (CB) chemoreflex in sympathetic and breathing dysregulation in several cardio-respiratory diseases, drawing renewed interest in its potential implications for clinical treatment. Evidence from both chronic heart failure (CHF) patients and animal models indicates that the CB chemoreflex is enhanced in CHF, and contributes to the tonic elevation in sympathetic nerve activity (SNA) and periodic breathing associated with the disease. Although this maladaptive change likely derives from altered function at all levels of the reflex arc, a change in afferent function of the CB is likely to be a main driving force. This review will focus on recent advances in our understanding of the pathophysiological mechanisms that alter CB function in CHF and their potential translational impact on treatment of chronic heart failure (CHF).
Collapse
Affiliation(s)
- Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| | | | | |
Collapse
|
30
|
Ullrich V, Schildknecht S. Sensing hypoxia by mitochondria: a unifying hypothesis involving S-nitrosation. Antioxid Redox Signal 2014; 20:325-38. [PMID: 22793377 DOI: 10.1089/ars.2012.4788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Sudden hypoxia requires a rapid response in tissues with high energy demand. Mitochondria are rapid sensors for a lack of oxygen, but no consistent mechanism for the sensing process and the subsequent counter-regulation has been described. RECENT ADVANCES In the present hypothesis review, we suggest an oxygen-sensing mechanism by mitochondria that is initiated at low oxygen tension by electrons from the respiratory chain, leading to the reduction of intracellular nitrite to nitric oxide ((•)NO) that would subsequently compete with oxygen for binding to cytochrome c oxidase. This allows superoxide ((•)O2(-)) formation in hypoxic areas, leading to S-nitrosation and the inhibition of mitochondrial Krebs cycle enzymes. With more formation of (•)O2(-), peroxynitrite is generated and known to damage the connection between the mitochondrial matrix and the outer membrane. CRITICAL ISSUES A fundamental question on a regulatory mechanism is its reversibility. Readmission of oxygen and opening of the mitochondrial KATP-channel would allow electrons from glycerol-3-phosphate to selectively reduce the ubiquinone pool to generate (•)O2(-) at both sides of the inner mitochondrial membrane. On the cytosolic side, superoxide is dismutated and will support H2O2/Fe(2+)-dependent transcription processes and on the mitochondrial matrix side, it could lead to the one-electron reduction and reactivation of S-nitrosated proteins. FUTURE DIRECTIONS It remains to be elucidated up to which stage the herein proposed silencing of mitochondria remains reversible and when irreversible changes that ultimately lead to classical reperfusion injury are initiated.
Collapse
Affiliation(s)
- Volker Ullrich
- Department of Biology, University of Konstanz , Konstanz, Germany
| | | |
Collapse
|
31
|
Ortega-Sáenz P, Pardal R, Levitsky K, Villadiego J, Muñoz-Manchado AB, Durán R, Bonilla-Henao V, Arias-Mayenco I, Sobrino V, Ordóñez A, Oliver M, Toledo-Aral JJ, López-Barneo J. Cellular properties and chemosensory responses of the human carotid body. J Physiol 2013; 591:6157-73. [PMID: 24167224 DOI: 10.1113/jphysiol.2013.263657] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The carotid body (CB) is the major peripheral arterial chemoreceptor in mammals that mediates the acute hyperventilatory response to hypoxia. The CB grows in response to sustained hypoxia and also participates in acclimatisation to chronic hypoxaemia. Knowledge of CB physiology at the cellular level has increased considerably in recent times thanks to studies performed on lower mammals, and rodents in particular. However, the functional characteristics of human CB cells remain practically unknown. Herein, we use tissue slices or enzymatically dispersed cells to determine the characteristics of human CB cells. The adult human CB parenchyma contains clusters of chemosensitive glomus (type I) and sustentacular (type II) cells as well as nestin-positive progenitor cells. This organ also expresses high levels of the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF). We found that GDNF production and the number of progenitor and glomus cells were preserved in the CBs of human subjects of advanced age. Moreover, glomus cells exhibited voltage-dependent Na(+), Ca(2+) and K(+) currents that were qualitatively similar to those reported in lower mammals. These cells responded to hypoxia with an external Ca(2+)-dependent increase of cytosolic Ca(2+) and quantal catecholamine secretion, as reported for other mammalian species. Interestingly, human glomus cells are also responsive to hypoglycaemia and together these two stimuli can potentiate each other's effects. The chemosensory responses of glomus cells are also preserved at an advanced age. These new data on the cellular and molecular physiology of the CB pave the way for future pathophysiological studies involving this organ in humans.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- J. López-Barneo: Instituto de Biomedicina de Sevilla (IBiS), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, 41013 Seville, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lowe M, Park SJ, Nurse CA, Campanucci VA. Purinergic stimulation of carotid body efferent glossopharyngeal neurones increases intracellular Ca2+ and nitric oxide production. Exp Physiol 2013; 98:1199-212. [PMID: 23525247 DOI: 10.1113/expphysiol.2013.072058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mammalian carotid body (CB) is a peripheral chemosensory organ that controls ventilation and is innervated by both afferent and efferent nerve fibres. The afferent pathway is stimulated by chemoexcitants, such as hypoxia, hypercapnia and acidosis. The efferent pathway causes inhibition of the sensory discharge via release of NO that originates mainly from neuronal nitric oxide synthase (nNOS)-positive autonomic neurones within the glossopharyngeal nerve (GPN). Recent studies in the rat indicate that these inhibitory GPN neurones and their processes express purinergic P2X receptors and can be activated by ATP, a key excitatory CB neurotransmitter. Here we tested the hypothesis that purinergic agonists stimulate a rise in [Ca(2+)]i, leading to nNOS activation and NO production in isolated GPN neurones, using the fluorescent probes fura-2 and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA), respectively. ATP caused a dose-dependent increase in [Ca(2+)]i in GPN neurones (EC50 ≈ 1.92 μm) that was markedly inhibited by a combination of 100 μm suramin (a non-specific P2X blocker) and 100 nm Brilliant Blue G (a selective P2X7 blocker). ATP also stimulated NO production in GPN neurones, as revealed by an increase in DAF fluorescence; this NO signal was inhibited by purinergic blockers, chelators of extracellular Ca(2+), the nNOS inhibitor l-NAME and the NO scavenger carboxy-PTIO. The P2X2/3 and P2X7 agonists α,β,-methylene ATP and benzoyl ATP mimicked the effects of ATP. Taken together, these data indicate that ATP may contribute to negative feedback inhibition of CB sensory discharge via purinergic stimulation of NO production in efferent fibres.
Collapse
Affiliation(s)
- Michael Lowe
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
33
|
Abstract
The carotid body is a sensory organ for detecting arterial blood O2 levels and reflexly mediates systemic cardiac, vascular and respiratory responses to hypoxia. This article presents a brief review of the roles of gaseous messengers in the sensory transduction at the carotid body, genetic and epigenetic influences on hypoxic sensing and the role of the carotid body chemoreflex in cardiorespiratory diseases. Type I (also called glomus) cells, the site of O2 sensing in the carotid body, express haem oxygenase-2 and cystathionine-γ-lyase, the enzymes which catalyse the generation of CO and H2S, respectively. Physiological studies have shown that CO is an inhibitory gas messenger, which contributes to the low sensory activity during normoxia, whereas H2S is excitatory and mediates sensory stimulation by hypoxia. Hypoxia-evoked H2S generation in the carotid body requires the interaction of cystathionine-γ-lyase with haem oxygenase-2, which generates CO. Hypoxia-inducible factors 1 and 2 constitute important components of the genetic make-up in the carotid body, which influence hypoxic sensing by regulating the intracellular redox state via transcriptional regulation of pro- and antioxidant enzymes. Recent studies suggest that developmental programming of the carotid body response to hypoxia involves epigenetic changes, e.g. DNA methylation of genes encoding redox-regulating enzymes. Emerging evidence implicates heightened carotid body chemoreflex in the progression of autonomic morbidities associated with cardiorespiratory diseases, such as sleep-disordered breathing with apnoea, congestive heart failure and essential hypertension.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology, Center for Systems Biology of O(2) Sensing, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Gauda EB, Shirahata M, Mason A, Pichard LE, Kostuk EW, Chavez-Valdez R. Inflammation in the carotid body during development and its contribution to apnea of prematurity. Respir Physiol Neurobiol 2013; 185:120-31. [DOI: 10.1016/j.resp.2012.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
|
35
|
Wong-Riley MTT, Liu Q, Gao XP. Peripheral-central chemoreceptor interaction and the significance of a critical period in the development of respiratory control. Respir Physiol Neurobiol 2013; 185:156-69. [PMID: 22684042 PMCID: PMC3467325 DOI: 10.1016/j.resp.2012.05.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 01/09/2023]
Abstract
Respiratory control entails coordinated activities of peripheral chemoreceptors (mainly the carotid bodies) and central chemosensors within the brain stem respiratory network. Candidates for central chemoreceptors include Phox2b-containing neurons of the retrotrapezoid nucleus, serotonergic neurons of the medullary raphé, and/or multiple sites within the brain stem. Extensive interconnections among respiratory-related nuclei enable central chemosensitive relay. Both peripheral and central respiratory centers are not mature at birth, but undergo considerable development during the first two postnatal weeks in rats. A critical period of respiratory development (∼P12-P13 in the rat) exists when abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur. Environmental perturbations, including hypoxia, intermittent hypoxia, hypercapnia, and hyperoxia alter the development of the respiratory system. Carotid body denervation during the first two postnatal weeks in the rat profoundly affects the development and functions of central respiratory-related nuclei. Such denervation delays and prolongs the critical period, but does not eliminate it, suggesting that the critical period may be intrinsically and genetically determined.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
36
|
Modulation of the carotid body sensory discharge by NO: An up-dated hypothesis. Respir Physiol Neurobiol 2012; 184:149-57. [DOI: 10.1016/j.resp.2012.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/08/2012] [Accepted: 04/15/2012] [Indexed: 11/23/2022]
|
37
|
Nurse CA, Piskuric NA. Signal processing at mammalian carotid body chemoreceptors. Semin Cell Dev Biol 2012; 24:22-30. [PMID: 23022231 DOI: 10.1016/j.semcdb.2012.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Mammalian carotid bodies are richly vascularized chemosensory organs that sense blood levels of O(2), CO(2)/H(+), and glucose and maintain homeostatic regulation of these levels via the reflex control of ventilation. Carotid bodies consist of innervated clusters of type I (or glomus) cells in intimate association with glial-like type II cells. Carotid bodies make afferent connections with fibers from sensory neurons in the petrosal ganglia and receive efferent inhibitory innervation from parasympathetic neurons located in the carotid sinus and glossopharyngeal nerves. There are synapses between type I (chemosensory) cells and petrosal afferent terminals, as well as between neighboring type I cells. There is a broad array of neurotransmitters and neuromodulators and their ionotropic and metabotropic receptors in the carotid body. This allows for complex processing of sensory stimuli (e.g., hypoxia and acid hypercapnia) involving both autocrine and paracrine signaling pathways. This review summarizes and evaluates current knowledge of these pathways and presents an integrated working model on information processing in carotid bodies. Included in this model is a novel hypothesis for a potential role of type II cells as an amplifier for the release of a key excitatory carotid body neurotransmitter, ATP, via P2Y purinoceptors and pannexin-1 channels.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
38
|
Schultz HD, Del Rio R, Ding Y, Marcus NJ. Role of neurotransmitter gases in the control of the carotid body in heart failure. Respir Physiol Neurobiol 2012; 184:197-203. [PMID: 22842006 DOI: 10.1016/j.resp.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 02/06/2023]
Abstract
The peripheral arterial chemoreflex, arising primarily from the carotid body in most species, plays an important role in the control of breathing and in autonomic control of cardiovascular function. The peripheral chemoreflex is enhanced in heart failure patients and animal models of heart failure and contributes to the sympathetic hyperactivity and breathing instability that exacerbates the progression of the disease. Studies in animal models have shown that carotid body chemoreceptor activity is enhanced under both normoxic and hypoxic conditions in heart failure due to disruption of local mediators that control carotid body function. This brief review highlights evidence that the alterations in the gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide in the carotid body contribute to the exaggerated carotid body function observed in heart failure.
Collapse
Affiliation(s)
- Harold D Schultz
- Department of Integrative/Cellular Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States.
| | | | | | | |
Collapse
|
39
|
Stéphan-Blanchard E, Bach V, Telliez F, Chardon K. Perinatal nicotine/smoking exposure and carotid chemoreceptors during development. Respir Physiol Neurobiol 2012; 185:110-9. [PMID: 22743051 DOI: 10.1016/j.resp.2012.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/26/2022]
Abstract
Tobacco smoking is still a common habit during pregnancy and is the most important preventable cause of many adverse perinatal outcomes. Prenatal smoking exposure can produce direct actions of nicotine in the fetus with the disruption of body and brain development, and actions on the maternal-fetal unit by causing repeated episodes of hypoxia and exposure to many toxic smoke products (such as carbon monoxide). Specifically, nicotine through binding to nicotinic acetylcholine receptors have ubiquitous effects and can affect carotid chemoreception development through structural, functional and neuroregulatory alterations of the neural circuits involved in the chemoafferent pathway, as well as by interfering with the postnatal resetting of the carotid bodies. Reduced carotid body chemosensitivity and tonic activity have thus been reported by the majority of the human and animal studies. This review focuses on the effects of perinatal exposure to tobacco smoke and nicotine on carotid chemoreceptor function during the developmental period. A description of the effects of smoking and nicotine on the control of breathing related to carotid body activity, and of the possible physiopathological mechanisms at the origin of these disturbances is presented.
Collapse
Affiliation(s)
- E Stéphan-Blanchard
- PériTox-INERIS Laboratory, Jules Verne University of Picardy, Amiens, France.
| | | | | | | |
Collapse
|
40
|
Prabhakar NR. Carbon monoxide (CO) and hydrogen sulfide (H(2)S) in hypoxic sensing by the carotid body. Respir Physiol Neurobiol 2012; 184:165-9. [PMID: 22664830 DOI: 10.1016/j.resp.2012.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/24/2012] [Accepted: 05/27/2012] [Indexed: 12/20/2022]
Abstract
Carotid bodies are sensory organs for monitoring arterial blood oxygen (O(2)) levels, and the ensuing reflexes maintain cardio-respiratory homeostasis during hypoxia. This article provides a brief update of the role of carbon monoxide (CO) and hydrogen sulfide (H(2)S) in hypoxic sensing by the carotid body. Glomus cells, the primary site of O(2) sensing in the carotid body express heme oxygenase-2 (HO-2), a CO catalyzing enzyme. HO-2 is a heme containing enzyme and has high affinity for O(2). Hypoxia inhibits HO-2 activity and reduces CO generation. Pharmacological and genetic approaches suggest that CO inhibits carotid body sensory activity. Stimulation of carotid body activity by hypoxia may reflect reduced formation of CO. Glomus cells also express cystathionine γ-lyase (CSE), an H(2)S generating enzyme. Exogenous application of H(2)S donors, like hypoxia, stimulate the carotid body activity and CSE knockout mice exhibit severely impaired sensory excitation by hypoxia, suggesting that CSE catalyzed H(2)S is an excitatory gas messenger. Hypoxia increases H(2)S generation in the carotid body, and this response was attenuated or absent in CSE knockout mice. HO inhibitor increased and CO donor inhibited H(2)S generation. It is proposed that carotid body response to hypoxia requires interactions between HO-2-CO and CSE-H(2)S systems.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, Biological Sciences Division, University of Chicago, IL 60637, USA.
| |
Collapse
|
41
|
Mkrtchian S, Kåhlin J, Ebberyd A, Gonzalez C, Sanchez D, Balbir A, Kostuk EW, Shirahata M, Fagerlund MJ, Eriksson LI. The human carotid body transcriptome with focus on oxygen sensing and inflammation--a comparative analysis. J Physiol 2012; 590:3807-19. [PMID: 22615433 DOI: 10.1113/jphysiol.2012.231084] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The carotid body (CB) is the key oxygen sensing organ. While the expression of CB specific genes is relatively well studied in animals, corresponding data for the human CB are missing. In this study we used five surgically removed human CBs to characterize the CB transcriptome with microarray and PCR analyses, and compared the results with mice data. In silico approaches demonstrated a unique gene expression profile of the human and mouse CB transcriptomes and an unexpected upregulation of both human and mouse CB genes involved in the inflammatory response compared to brain and adrenal gland data. Human CBs express most of the genes previously proposed to be involved in oxygen sensing and signalling based on animal studies, including NOX2, AMPK, CSE and oxygen sensitive K+ channels. In the TASK subfamily of K+ channels, TASK-1 is expressed in human CBs, while TASK-3 and TASK-5 are absent, although we demonstrated both TASK-1 and TASK-3 in one of the mouse reference strains. Maxi-K was expressed exclusively as the spliced variant ZERO in the human CB. In summary, the human CB transcriptome shares important features with the mouse CB, but also differs significantly in the expression of a number of CB chemosensory genes. This study provides key information for future functional investigations on the human carotid body.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Prabhakar NR, Semenza GL. Gaseous messengers in oxygen sensing. J Mol Med (Berl) 2012; 90:265-72. [PMID: 22349394 DOI: 10.1007/s00109-012-0876-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 12/23/2022]
Abstract
The carotid body is a sensory organ that detects acute changes in arterial blood oxygen (O(2)) levels and reflexly mediates systemic cardiac, vascular, and respiratory responses to hypoxia. This article provides a brief update of the roles of gas messengers as well as redox homeostasis by hypoxia-inducible factors (HIFs) in hypoxic sensing by the carotid body. Carbon monoxide (CO) and nitric oxide (NO), generated by heme oxygenase-2 (HO-2) and neuronal nitric oxide synthase (nNOS), respectively, inhibit carotid body activity. Molecular O(2) is a required substrate for the enzymatic activities of HO-2 and nNOS. Stimulation of carotid body activity by hypoxia may reflect reduced formation of CO and NO. Glomus cells, the site of O(2) sensing in the carotid body, express cystathionine γ-lyase (CSE), an H(2)S generating enzyme. Cth ( -/- ) mice, which lack CSE, exhibit severely impaired hypoxia-induced H(2)S generation, sensory excitation, and stimulation of breathing in response to low O(2). Hypoxia-evoked H(2)S generation in the carotid body requires the interaction of CSE with HO-2, which generates CO. Carotid bodies from Hif1a ( +/- ) mice with partial HIF-1α deficiency do not respond to hypoxia, whereas carotid bodies from mice with partial HIF-2α deficiency are hyper-responsive to hypoxia. The opposing roles of HIF-1α and HIF-2α in the carotid body have provided novel insight into molecular mechanisms of redox homeostasis and its role in hypoxia sensing. Heightened carotid body activity has been implicated in the pathogenesis of autonomic morbidities associated with sleep-disordered breathing, congestive heart failure, and essential hypertension. The enzymes that generate gas messengers and redox regulation by HIFs represent potential therapeutic targets for normalizing carotid body function and downstream autonomic output in these disease states.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
43
|
Hishiki T, Yamamoto T, Morikawa T, Kubo A, Kajimura M, Suematsu M. Carbon monoxide: impact on remethylation/transsulfuration metabolism and its pathophysiologic implications. J Mol Med (Berl) 2012; 90:245-54. [PMID: 22331189 PMCID: PMC3296020 DOI: 10.1007/s00109-012-0875-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
Abstract
Carbon monoxide (CO) is a gaseous product generated by heme oxygenase (HO), which oxidatively degrades heme. While the stress-inducible HO-1 has well been recognized as an anti-oxidative defense mechanism under stress conditions, recent studies suggest that cancer cells utilize the reaction for their survival. HO-2, the constitutive isozyme, also plays protective roles as a tonic regulator for neurovascular function. Although protective roles of the enzyme reaction and CO have extensively been studied, little information is available on the molecular mechanisms by which the gas exerts its biological actions. Recent studies using metabolomics revealed that CO inhibits cystathionine β-synthase (CBS), which generates H2S, another gaseous mediator. The CO-dependent CBS inhibition may impact on the remethylation cycle and related metabolic pathways including the methionine salvage pathway and polyamine synthesis. This review focuses on the gas-responsive regulation of metabolic systems, particularly the remethylation and transsulfuration pathways, and their putative implications for cancer and ischemic diseases.
Collapse
Affiliation(s)
- Takako Hishiki
- Department of Biochemistry, JST, ERATO, Suematsu Gas Biology Project, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Prabhakar NR. Hydrogen sulfide (H(2)S): a physiologic mediator of carotid body response to hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:109-13. [PMID: 23080150 DOI: 10.1007/978-94-007-4584-1_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carotid bodies are sensory organs for monitoring arterial blood O(2) levels. Nitric oxide and carbon monoxide function as inhibitory gasotransmitters in the carotid body. Hydrogen sulfide (H2S) is another emerging gasotransmitter. The purpose of this article is to review recent studies addressing the role of H2S in carotid body.Cystathionine γ-lyase (CSE) and cystathionine β synthase (CBS) are the two major enzymes that catalyze the formation of endogenous H2S. Both CSE and CBS are expressed in glomus cells, the putative site of sensorytransduction in the carotid body. Hypoxia increases H2S generation in the carotid body. CSE knockout mice displayed absence of hypoxia-evoked H2S generation and severely impaired sensory excitation by low O2. Pharmacological inhibitors of CSE as well as CBS showed a similar phenotype in mice and rats. Like hypoxia, H2S donors stimulated the carotid body sensory activity and this response required Ca(2+) influx via voltage-gated Ca2+ channels. Evidence is emerging implicating Ca2+ activated K+ channels in glomus cells as potential targets of H2S.
Collapse
|
45
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
46
|
Zaccone D, Gopesh A, Anastasi G, Favaloro A, Sfacteria A, Marino F. Localization of neurotransmitters, peptides and nNOS in the pseudobranchial neurosecretory cell system and associated carotid labyrinth of the catfish, Clarias batrachus. Acta Histochem 2012; 114:62-7. [PMID: 21397935 DOI: 10.1016/j.acthis.2011.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/10/2011] [Accepted: 02/13/2011] [Indexed: 02/07/2023]
Abstract
The carotid labyrinth is an enigmatic endocrine structure of unknown chemosensory function lying in the gill region of the catfishes. The carotid body is found at the carotid bifurcation of amphibians and all mammalian vertebrates on the evolutionary tree. It is a vascular expansion comprised of a cluster of glomus cells with associated (afferent and efferent) innervations. In the catfish species studied (Clarias batrachus) a neurosecretory cell system consisting of pseudobranchial neurosecretory cells connect the carotid labyrinth or large vessels (both the efferent branchial artery and dorsal aorta), and is likely akin to the glomus cells, but comparing these structures in widely divergent vertebrate species, the conclusion is that the structural components are more elaborate than those of terrestrial vertebrates. However, these cells reveal both an endocrine phenotype (such as the association with capillaries and large vessels) and the presence of regulatory substances such as neurotransmitters and neuropeptides producing good evidence for high levels of conservation of these substances that are present in the glomus cells of mammalian vertebrates. VIP-immunopositive neuronal cell bodies are detected in the periphery of the carotid labyrinth. They are presumptive local neurons that differ from pseudobranchial neurosecretory cells, the latter failing to express VIP in their soma.
Collapse
|
47
|
Abstract
The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article.
Collapse
Affiliation(s)
- Prem Kumar
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom.
| | | |
Collapse
|
48
|
Evans AM, Hardie DG, Peers C, Mahmoud A. Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Curr Opin Anaesthesiol 2011; 24:13-20. [PMID: 21157304 PMCID: PMC3154643 DOI: 10.1097/aco.0b013e3283421201] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Hypoxic pulmonary vasoconstriction (HPV) is driven by the intrinsic response to hypoxia of pulmonary arterial smooth muscle and endothelial cells. These are representatives of a group of specialized O2-sensing cells, defined by their acute sensitivity to relatively small changes in pO2, which have evolved to modulate respiratory and circulatory function in order to maintain O2 supply within physiological limits. The aim of this article is to discuss recent investigations into the mechanism(s) of hypoxia-response coupling and, in light of these, provide a critical assessment of current working hypotheses. RECENT FINDINGS Upon exposure to hypoxia state-of-the-art technologies have now confirmed that mitochondrial oxidative phosphorylation is inhibited in all O2-sensing cells, including pulmonary arterial smooth muscle cells. Thereafter, evidence has been presented to indicate a role as principal effector for the 'gasotransmitters' carbon monoxide and hydrogen sulphide, reactive oxygen species or, in marked contrast, reduced cellular redox couples. Considering recent evidence in favour and against these proposals we suggest that an alternative mechanism may be key, namely the activation of adenosine monophosphate-activated protein kinase consequent to inhibition of mitochondrial oxidative phosphorylation. SUMMARY HPV supports ventilation-perfusion matching in the lung by diverting blood flow away from oxygen-deprived areas towards regions rich in O2. However, in diseases such as emphysema and cystic fibrosis, widespread HPV leads to hypoxic pulmonary hypertension and ultimately right heart failure. Determining the precise mechanism(s) that underpins hypoxia-response coupling will therefore advance understanding of the fundamental processes contributing to related pathophysiology and provide for improved therapeutics.
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
49
|
|
50
|
Ding B, Gibbs PEM, Brookes PS, Maines MD. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction. FASEB J 2010; 25:301-13. [PMID: 20876213 DOI: 10.1096/fj.10-166454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HO-2 oxidizes heme to CO and biliverdin; the latter is reduced to bilirubin by biliverdin reductase (BVR). In addition, HO-2 is a redox-sensitive K/Ca(2)-associated protein, and BVR is an S/T/Y kinase. The two enzymes are components of cellular defense mechanisms. This is the first reporting of regulation of HO-2 by BVR and that their coordinated increase in isolated myocytes and intact heart protects against cardiotoxicity of β-adrenergic receptor activation by isoproterenol (ISO). The induction of BVR mRNA, protein, and activity and HO-2 protein was maintained for ≥ 96 h; increase in HO-1 was modest and transient. In isolated cardiomyocytes, experiments with cycloheximide, proteasome inhibitor MG-132, and siBVR suggested BVR-mediated stabilization of HO-2. In both models, activation of BVR offered protection against the ligand's stimulation of apoptosis. Two human BVR-based peptides known to inhibit and activate the reductase, KKRILHC(281) and KYCCSRK(296), respectively, were tested in the intact heart. Perfusion of the heart with the inhibitory peptide blocked ISO-mediated BVR activation and augmented apoptosis; conversely, perfusion with the activating peptide inhibited apoptosis. At the functional level, peptide-mediated inhibition of BVR was accompanied by dysfunction of the left ventricle and decrease in HO-2 protein levels. Perfusion of the organ with the activating peptide preserved the left ventricular contractile function and was accompanied by increased levels of HO-2 protein. Finding that BVR and HO-2 levels, myocyte apoptosis, and contractile function of the heart can be modulated by small human BVR-based peptides offers a promising therapeutic approach for treatment of cardiac dysfunctions.
Collapse
Affiliation(s)
- Bo Ding
- University of Rochester School of Medicine and Dentistry, Department of Biochemistry and Biophysics, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|