1
|
Su Z, Shi C, Fan Y, Gao Y, Wang L, Ren X, Shen Y, Wang M. Engineering a two-enzyme system in Mycolicibacterium neoaurum for efficient biotransformation of phytosterols to dihydrotestosterone. Int J Biol Macromol 2025; 287:138443. [PMID: 39645107 DOI: 10.1016/j.ijbiomac.2024.138443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Dihydrotestosterone (DHT) is a valuable steroid drug with widespread clinical applications, but traditional chemical synthesis is environmentally harmful and requires complex reaction conditions. This study introduces a one-step microbial transformation method for the production of DHT from inexpensive phytosterols (PS) using engineered Mycolicibacterium neoaurum (MNR). The heterologous expression of 5α-reductase (5α-R) and 17β-hydroxysteroid dehydrogenase (17β-HSD) in MNR enabled the efficient conversion of PS to DHT. To further enhance 5α-R activity, semi-rational mutagenesis was employed, which significantly increasing DHT production. Molecular dynamics simulations provided insights into the underlying mechanisms driving this enhancement. Additionally, the incorporation of a PntAB-based NADPH regeneration system further improved DHT yield. Process optimization resulted in a maximum DHT concentration of 1.123 g·L-1, representing the first gram-scale microbial production of DHT. Compared to traditional chemical synthesis, this biotransformation method offers milder reaction conditions, reduced environmental impact, and eliminates the need for toxic catalysts. This work demonstrates a sustainable and efficient microbial method for DHT production, with significant industrial potential for the greener manufacturing of steroid hormone drugs.
Collapse
Affiliation(s)
- Zhenhua Su
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chang Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yunshuang Fan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuanyuan Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoxian Ren
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Michetti C, Ferrante D, Parisi B, Ciano L, Prestigio C, Casagrande S, Martinoia S, Terranova F, Millo E, Valente P, Giovedi' S, Benfenati F, Baldelli P. Low glycemic index diet restrains epileptogenesis in a gender-specific fashion. Cell Mol Life Sci 2023; 80:356. [PMID: 37947886 PMCID: PMC10638170 DOI: 10.1007/s00018-023-04988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Daniele Ferrante
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Barbara Parisi
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Lorenzo Ciano
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Fabio Terranova
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Giovedi'
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
3
|
Xiao Q, Wang L, Supekar S, Shen T, Liu H, Ye F, Huang J, Fan H, Wei Z, Zhang C. Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nat Commun 2020; 11:5430. [PMID: 33110062 PMCID: PMC7591894 DOI: 10.1038/s41467-020-19249-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023] Open
Abstract
Human steroid 5α-reductase 2 (SRD5A2) is an integral membrane enzyme in steroid metabolism and catalyzes the reduction of testosterone to dihydrotestosterone. Mutations in the SRD5A2 gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride, as SRD5A2 inhibitors, are widely used antiandrogen drugs for benign prostate hyperplasia. The molecular mechanisms underlying enzyme catalysis and inhibition for SRD5A2 and other eukaryotic integral membrane steroid reductases remain elusive due to a lack of structural information. Here, we report a crystal structure of human SRD5A2 at 2.8 Å, revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the transmembrane domain. Structural analysis together with computational and mutagenesis studies reveal the molecular mechanisms of the catalyzed reaction and of finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region that regulate NADPH/NADP+ exchange. Mapping disease-causing mutations of SRD5A2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and may facilitate drug development.
Collapse
Affiliation(s)
- Qingpin Xiao
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Faculty of Health Sciences, University of Macau, 999078, Macau, SAR, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shreyas Supekar
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Tao Shen
- Tencent AI Lab, 518000, Shenzhen, Guangdong, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Fei Ye
- Tencent AI Lab, 518000, Shenzhen, Guangdong, China
| | | | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore.
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
4
|
Xiao Q, Wang L, Supekar S, Shen T, Liu H, Ye F, Huang J, Fan H, Wei Z, Zhang C. Structure of human steroid 5α-reductase 2 with anti-androgen drug finasteride. RESEARCH SQUARE 2020:rs.3.rs-40159. [PMID: 32702725 PMCID: PMC7373137 DOI: 10.21203/rs.3.rs-40159/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human steroid 5α-reductase 2 (SRD5α2) as a critical integral membrane enzyme in steroid metabolism catalyzes testosterone to dihydrotestosterone. Mutations on its gene have been linked to 5α-reductase deficiency and prostate cancer. Finasteride and dutasteride as SRD5α2 inhibitors are widely used anti-androgen drugs for benign prostate hyperplasia, which have recently been indicated in the treatment of COVID-19. The molecular mechanisms underlying enzyme catalysis and inhibition remained elusive for SRD5α2 and other eukaryotic integral membrane steroid reductases due to a lack of structural information. Here, we report a crystal structure of human SRD5α2 at 2.8 Å revealing a unique 7-TM structural topology and an intermediate adduct of finasteride and NADPH as NADP-dihydrofinasteride in a largely enclosed binding cavity inside the membrane. Structural analysis together with computational and mutagenesis studies reveals molecular mechanisms for the 5α-reduction of testosterone and the finasteride inhibition involving residues E57 and Y91. Molecular dynamics simulation results indicate high conformational dynamics of the cytosolic region regulating the NADPH/NADP + exchange. Mapping disease-causing mutations of SRD5α2 to our structure suggests molecular mechanisms for their pathological effects. Our results offer critical structural insights into the function of integral membrane steroid reductases and will facilitate drug development.
Collapse
Affiliation(s)
- Qingpin Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Shreyas Supekar
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Tao Shen
- Tencent AI Lab, Shenzhen, Guangdong 518000, China
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Fei Ye
- Tencent AI Lab, Shenzhen, Guangdong 518000, China
| | | | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| |
Collapse
|
5
|
Ramos L, Vilchis F, Chávez B, Mares L. Mutational analysis of SRD5A2: From gene to functional kinetics in individuals with steroid 5α-reductase 2 deficiency. J Steroid Biochem Mol Biol 2020; 200:105691. [PMID: 32380235 DOI: 10.1016/j.jsbmb.2020.105691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Human steroid 5α-reductase 2 (SRD5A2) plays a determinative role in the masculinization of external genitalia. To date, approximately 114 different mutations of the SRD5A2 gene have been reported; however, little information is available about their impact on catalytic function or their three-dimensional (3D) structures. We determined the effect of point mutations on the testosterone-depend kinetic constants (Km,app and Vmax,app) and structural characteristics of SRD5A2 from Mexican patients with 46,XY-steroid 5α-reductase 2 deficiency. PCR-SSCP assays identified ten distinct gene variants and sequencing analysis identified missense mutations [p.V3I, p.S14R, p.A52T, p.F118L, p.R145W, p.R171S, p.L226P, p.F229S, p.S245Y, and p.A248V]. Mutations were re-created by site-directed mutagenesis and expressed in HEK293 cells. Functional studies demonstrated that 8 variants led to partial (Km,app = 0.16-2.6 μM; Vmax,app = 224-2640 pmol/mg P/min) or complete losses of activity compared to the wild-type enzyme (Km,app = 0.7 μM; Vmax,app = 4044 pmol/mg P/min). All the mutations were assessed using multiple software tools and the results predicted that all of the mutations were associated with disease or damage. Mapping mutations on the model of a 3D structure of SRD5A2 demonstrated alterations in contact sites with their proximal amino acids. Our data show that mutations affect the catalytic efficiency (Vmax/Km) or result in residual enzymatic activity, which could be due to erroneous interactions between amino acid residues, the substrate testosterone, or NADPH.
Collapse
Affiliation(s)
- L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - F Vilchis
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - B Chávez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - L Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| |
Collapse
|
6
|
Srivilai J, Minale G, Scholfield CN, Ingkaninan K. Discovery of Natural Steroid 5 Alpha-Reductase Inhibitors. Assay Drug Dev Technol 2018; 17:44-57. [PMID: 30575417 DOI: 10.1089/adt.2018.870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human steroid 5 alpha-reductases (S5αRs) and NADPH irreversibly reduce testosterone to the more potent dihydrotestosterone (DHT). S5αR inhibitors are useful treatments for DHT-dependent diseases, including benign prostatic hyperplasia, androgenic alopecia and hair growth, and acne. There are three S5αR isozymes, and there is a need for safer and more isozyme selective inhibitors than finasteride and dutasteride currently licensed. In this study, we review the methods used to screen for S5αR inhibitory activity and describe studies that characterize the ability of herbal preparations and their constituents to inhibit S5αRs. We identified enormous variations between studies in IC50s for finasteride and dutasteride used as standards. Accordingly, we make several recommendations: Stable isozyme specific transfection systems need creating a standardized enzyme/microsome preparation and all three isozymes, as well as androgen receptor binding, should be tested; agreed reaction conditions, especially the substrate concentrations, and separation/quantitation method optimized for high throughput screening; systematic screening of herbal compounds and most extensive use of leads to develop more potent and isozyme specific inhibitors.
Collapse
Affiliation(s)
- Jukkarin Srivilai
- 1 Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,2 Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Genet Minale
- 2 Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - C Norman Scholfield
- 2 Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Kornkanok Ingkaninan
- 2 Bioscreening Unit, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
7
|
Liang JJ, Rasmusson AM. Overview of the Molecular Steps in Steroidogenesis of the GABAergic Neurosteroids Allopregnanolone and Pregnanolone. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2018; 2:2470547018818555. [PMID: 32440589 PMCID: PMC7219929 DOI: 10.1177/2470547018818555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
Abstract
Allopregnanolone and pregnanolone-neurosteroids synthesized from progesterone in the brain, adrenal gland, ovary and testis-have been implicated in a range of neuropsychiatric conditions including seizure disorders, post-traumatic stress disorder, major depression, post-partum depression, pre-menstrual dysphoric disorder, chronic pain, Parkinson's disease, Alzheimer's disease, neurotrauma, and stroke. Allopregnanolone and pregnanolone equipotently facilitate the effects of gamma-amino-butyric acid (GABA) at GABAA receptors, and when sulfated, antagonize N-methyl-D-aspartate receptors. They play myriad roles in neurophysiological homeostasis and adaptation to stress while exerting anxiolytic, antidepressant, anti-nociceptive, anticonvulsant, anti-inflammatory, sleep promoting, memory stabilizing, neuroprotective, pro-myelinating, and neurogenic effects. Given that these neurosteroids are synthesized de novo on demand, this review details the molecular steps involved in the biochemical conversion of cholesterol to allopregnanolone and pregnanolone within steroidogenic cells. Although much is known about the early steps in neurosteroidogenesis, less is known about transcriptional, translational, and post-translational processes in allopregnanolone- and pregnanolone-specific synthesis. Further research to elucidate these mechanisms as well as to optimize the timing and dose of interventions aimed at altering the synthesis or levels of these neurosteroids is much needed. This should include the development of novel therapeutics for the many neuropsychiatric conditions to which dysregulation of these neurosteroids contributes.
Collapse
Affiliation(s)
| | - Ann M. Rasmusson
- Boston
University School of Medicine, Boston, MA,
USA
- National Center for PTSD, Women’s Health
Science Division, Department of Veterans Affairs, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA,
USA
| |
Collapse
|
8
|
Hulin-Curtis SL, Petit D, Figg WD, Hsing AW, Reichardt JKV. Finasteride metabolism and pharmacogenetics: new approaches to personalized prevention of prostate cancer. Future Oncol 2010; 6:1897-913. [PMID: 21142863 PMCID: PMC6300128 DOI: 10.2217/fon.10.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Incidences of prostate cancer in most countries are increasing owing to better detection methods; however, prevention with the use of finasteride, a very effective steroid 5α-reductase type II inhibitor, has been met with mixed success. A wide interindividual variation in response exists and is thought to be due to heritable factors. This article summarizes the literature that attempts to elucidate the molecular mechanisms of finasteride in terms of its metabolism, excretion and interaction with endogenous steroid molecules. We describe previously reported genetic variations of steroid-metabolizing genes and their potential association with finasteride efficacy. Based on the literature, we outline directions of research that may contribute to understanding the interindividual variation in finasteride prevention and to the future development of personalized medicine.
Collapse
Affiliation(s)
| | - Dominique Petit
- University of Sydney, Bosch Institute, Camperdown, New South Wales, Australia
| | - W Douglas Figg
- Molecular Pharmacology Section, Medical Oncology Branch, National Cancer Institute, MD, USA
| | - Ann W Hsing
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, MD, USA
| | | |
Collapse
|
9
|
Langlois VS, Zhang D, Cooke GM, Trudeau VL. Evolution of steroid-5alpha-reductases and comparison of their function with 5beta-reductase. Gen Comp Endocrinol 2010; 166:489-97. [PMID: 19686747 DOI: 10.1016/j.ygcen.2009.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/01/2009] [Accepted: 08/11/2009] [Indexed: 11/17/2022]
Abstract
Steroid-5alpha-reductases (SRD5alpha) and steroid-5beta-reductase (SRD5beta) represent a convergence in evolution: they share similar biological functions, but do not have a common ancestor. In vertebrates, SRD5alpha and SRD5beta are involved in C-19 and C-21 steroid biosynthesis, bile acid biosynthesis and erythropoiesis. We compare and contrast the history, evolution, tissue distribution, enzyme characteristics and biological functions of SRD5alpha and SRD5beta and suggest possible future directions for research efforts. Both, the unique and overlapping roles that SRD5alpha and SRD5beta play in steroid hormone metabolism, are indicated. We also present the phylogeny of the SRD5alpha. The main SRD5alpha subfamilies obtained include, not only the well-known SRD5alpha type 1, type 2 and type 3, but also the synaptic glycoprotein (GPSN2)/trans-2,3-enoly-CoA reductase group. Phylogenetic analysis indicated that a eukaryotic ancestor likely underwent duplication events to generate these three subfamilies (type 1/2, type 3 and GPSN2 ancestors); both SRD5alpha type 1/2 and GPSN2 subfamilies may have evolved by ancient duplication events at the early stage of vertebrate and chordate evolution.
Collapse
Affiliation(s)
- Valérie S Langlois
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ont., Canada K1N 6N5
| | | | | | | |
Collapse
|
10
|
Uemura M, Tamura K, Chung S, Honma S, Okuyama A, Nakamura Y, Nakagawa H. Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci 2008; 99:81-6. [PMID: 17986282 PMCID: PMC11158902 DOI: 10.1111/j.1349-7006.2007.00656.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer often relapses during androgen-depletion therapy, even under conditions in which a drastic reduction of circulating androgens is observed. There is some evidence that androgens remain present in the tissues of hormone-refractory prostate cancers (HRPC), and enzymes involved in the androgen and steroid metabolic pathway are likely to be active in HRPC cells. We previously carried out a genome-wide gene expression profile analysis of clinical HRPC cells by means of cDNA microarrays in combination with microdissection of cancer cells and found dozens of transactivated genes. Among them, we here report the identification of a novel gene, SRD5A2L, encoding a putative 5 alpha-steroid reductase that produces the most potent androgen, 5 alpha-dihydrotestosterone (DHT), from testosterone. Liquid chromatography-tandem mass spectrometry analysis following an in vitro 5 alpha-steroid reductase reaction validated its ability to produce DHT from testosterone, similar to type 1 5 alpha-steroid reductase. Because two types of 5 alpha-steroid reductase were previously reported, we termed this novel 5 alpha-steroid reductase 'type 3 5 alpha-steroid reductase' (SRD5A3). Reverse transcription-polymerase chain reaction and northern blot analyses confirmed its overexpression in HRPC cells, and indicated no or little expression in normal adult organs. Knockdown of SRD5A3 expression by small interfering RNA in prostate cancer cells resulted in a significant decrease in DHT production and a drastic reduction in cell viability. These findings indicate that a novel type 3 5 alpha-steroid reductase, SRD5A3, is associated with DHT production and maintenance of androgen-androgen receptor-pathway activation in HRPC cells, and that this enzymatic activity should be a promising molecular target for prostate cancer therapy.
Collapse
Affiliation(s)
- Motohide Uemura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Shirokanedai 4-6-1 Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Nomura T, Jager CE, Kitasaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takatsuto S, Fujioka S, Smith JJ, Kerckhoffs LHJ, Reid JB, Yokota T. Brassinosteroid deficiency due to truncated steroid 5alpha-reductase causes dwarfism in the lk mutant of pea. PLANT PHYSIOLOGY 2004; 135:2220-9. [PMID: 15286289 PMCID: PMC520792 DOI: 10.1104/pp.104.043786] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/25/2004] [Accepted: 06/01/2004] [Indexed: 05/20/2023]
Abstract
The endogenous brassinosteroids in the dwarf mutant lk of pea (Pisum sativum) were quantified by gas chromatography-selected ion monitoring. The levels of castasterone, 6-deoxocastasterone, and 6-deoxotyphasterol in lk shoots were reduced 4-, 70-, and 6-fold, respectively, compared with those of the wild type. The fact that the application of brassinolide restored the growth of the mutant indicated that the dwarf mutant lk is brassinosteroid deficient. Gas chromatography-selected ion monitoring analysis of the endogenous sterols in lk shoots revealed that the levels of campestanol and sitostanol were reduced 160- and 10-fold, respectively, compared with those of wild-type plants. These data, along with metabolic studies, showed that the lk mutant has a defect in the conversion of campest-4-en-3-one to 5alpha-campestan-3-one, which is a key hydrogenation step in the synthesis of campestanol from campesterol. This defect is the same as that found in the Arabidopsis det2 mutant and the Ipomoea nil kbt mutant. The pea gene homologous to the DET2 gene, PsDET2, was cloned, and it was found that the lk mutation would result in a putative truncated PsDET2 protein. Thus it was concluded that the short stature of the lk mutant is due to a defect in the steroidal 5alpha-reductase gene. This defect was also observed in the callus induced from the lk mutant. Biosynthetic pathways involved in the conversion of campesterol to campestanol are discussed in detail.
Collapse
Affiliation(s)
- Takahito Nomura
- Department of Biosciences, Teikyo University, Utsunomiya 320-8551, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suzuki Y, Saso K, Fujioka S, Yoshida S, Nitasaka E, Nagata S, Nagasawa H, Takatsuto S, Yamaguchi I. A dwarf mutant strain of Pharbitis nil, Uzukobito (kobito), has defective brassinosteroid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:401-10. [PMID: 14617096 DOI: 10.1046/j.1365-313x.2003.01887.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Japanese morning glory (Pharbitis nil) is a model plant characterized by a large stock of spontaneous mutants. The recessive mutant Uzukobito shows strong dwarfism with dark-green rugose leaves. The phenotype was rescued by the application of brassinolide, a bioactive brassinosteroid (BR), indicating that Uzukobito was a BR-deficient mutant. A detailed analysis of the endogenous BR levels in Uzukobito and its parental wild-type plant showed that Uzukobito had a lower level of BRs downstream of (24R)-24-methyl-5alpha-cholestan-3-one and (22S, 24R)-22-hydroxy-24-methyl-5alpha-cholestan-3-one than those in wild-type plants, while their immediate precursors (24R)-24-methylcholest-4-en-3-one and (22S, 24R)-22-hydroxy-24-methylcholest-4-en-3-one accumulated relatively more in Uzukobito. These results indicate that Uzukobito had a defect in the conversion of (24R)-24-methylcholest-4-en-3-one and (22S, 24R)-22-hydroxy-24-methylcholest-4-en-3-one to their 5alpha-reduced forms, which is catalyzed by de-etiolated2 (DET2) in Arabidopsis. The P. nil ortholog of the DET2 gene (PnDET2) was cloned and shown to have the greatest similarity to DET2 among all the putative genes in Arabidopsis. Uzukobito had one amino acid substitution from Glu62 to Val62 in the deduced amino acid sequence of PnDET2. Recombinant PnDET2 expressed in COS-7 cells was found to be a functional steroid 5alpha-reductase (S5alphaR) converting (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5alpha-cholestan-3-one, while PnDET2 with the mutation did not show any catalytic activity. This shows that a plant S5alphaR can convert an intrinsic substrate. All these results clearly demonstrate that the Uzukobito phenotype resulted from a mutation on PnDET2, and a morphological mutant has been characterized at the molecular level among a large stock of P. nil mutants.
Collapse
Affiliation(s)
- Yoshihito Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bhattacharyya AK, Collins DC. Site-directed mutagenesis studies of rat steroid 5alpha-reductase (isozyme-1): mutation of residues in the cofactor binding and C-terminal regions. J Steroid Biochem Mol Biol 2001; 77:177-82. [PMID: 11377984 DOI: 10.1016/s0960-0760(01)00023-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have investigated the roles of highly conserved glycine (G175, G185), negatively charged (E188, D165) and histidine residues (H233, H237) in rat steroid 5alpha-reductase (isozyme-1), on NADPH, testosterone (T) binding and enzyme activity. The mutations G175R and G175S result in a two- to threefold increase in K(m)(NADPH) and an approximately fourfold decrease in the V(max) with no change in K(m)(T). The mutation G185W resulted in a fivefold decrease in K(m)(NADPH) and an eightfold decrease in V(max), with no change in K(m)(T), whereas the mutations E188Q and D165N both resulted in inactive enzyme. Steady-state kinetic measurements showed that the mutation H233R resulted in an approximately 40-fold decrease in V(max), an approximately 20-fold increase in K(m)(T) and no alteration in K(m)(NADPH), whereas the mutation H237R resulted in virtually inactive enzyme. The results suggest that the conserved glycines are not essential for cofactor binding and activity, and that the negatively charged residues may contribute to enzyme stability, whereas the C-terminal histidines appear to be involved in substrate binding and catalytic activity.
Collapse
Affiliation(s)
- A K Bhattacharyya
- C-410 Research Service, Veterans Affairs Medical Center, 1101 VA Drive, Lexington, KY 40506, USA.
| | | |
Collapse
|
14
|
Jin Y, Penning TM. Steroid 5alpha-reductases and 3alpha-hydroxysteroid dehydrogenases: key enzymes in androgen metabolism. Best Pract Res Clin Endocrinol Metab 2001; 15:79-94. [PMID: 11469812 DOI: 10.1053/beem.2001.0120] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Androgen action in mammals can be regulated at the pre-receptor level by the intracellular formation and degradation of potent androgens, such as 5alpha-dihydrotestosterone (5alpha-DHT). In androgen target tissues (e.g. prostate), 5alpha-DHT is formed from circulating testosterone by the action of the type 2 steroid 5alpha-reductase (5alpha-R) and its action is terminated by the action of a reductive 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) which forms the weak androgen 3alpha-androstanediol. Oxidative 3alpha-HSD isoforms, however, can provide an alternative source of potent androgens by converting 3alpha-androstanediol to 5alpha-DHT. Working in concert, 5alpha-Rs and 3alpha-HSDs determine the amount and the type of androgen available for the androgen receptor and hence affect transcription of genes under androgen control. In peripheral tissues (e.g. liver), type 1 5alpha-R and reductive 3alpha-HSD isoforms work consecutively to eliminate androgens and protect against hormone excess. Thus, different 5alpha-R and 3alpha-HSD isoforms participate in distinct anabolic and catabolic processes and their important roles in androgen action render them drug targets for the treatment of androgen-dependent diseases.
Collapse
Affiliation(s)
- Y Jin
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA, 19104-6084, USA
| | | |
Collapse
|
15
|
Makridakis NM, di Salle E, Reichardt JK. Biochemical and pharmacogenetic dissection of human steroid 5 alpha-reductase type II. PHARMACOGENETICS 2000; 10:407-13. [PMID: 10898110 DOI: 10.1097/00008571-200007000-00004] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human prostatic steroid 5alpha-reductase, encoded by the SRD5A2 gene on chromosome band 2p23, catalyses the irreversible conversion of testosterone to dihydrotestosterone (DHT), the most active androgen in the prostate, with NADPH as its cofactor. This enzyme has never been purified but a number of competitive inhibitors have been developed for this enzyme since increased steroid 5alpha-reductase activity may cause benign prostatic hypertrophy and prostate cancer. We report here the detailed biochemical and pharmacogenetic dissection of the human enzyme by analysing 10 missense substitutions and three double mutants which are all naturally found in humans. Nine of these 13 mutants reduce activity (measured as Vmax) by 20% or more, three increase steroid 5alpha-reductase by more than 15% and one results in essentially unaltered kinetic properties suggesting that it is a truly neutral ('polymorphic') amino acid substitution. Substantial pharmacogenetic variation among the mutants was also observed when three competitive inhibitors, finasteride, GG745 (dutasteride) and PNU157706, were investigated. Our studies not only define the substrate and cofactor binding sites of human steroid 5alpha-reductase, but also have significant consequences for the pharmacological usage of steroid 5alpha-reductase inhibitors in human patients treated for prostatic conditions.
Collapse
Affiliation(s)
- N M Makridakis
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles 90089-9075, USA
| | | | | |
Collapse
|