1
|
Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Proteomics-Based Identification of Retinal Protein Networks Impacted by Elevated Intraocular Pressure in the Hypertonic Saline Injection Model of Experimental Glaucoma. Int J Mol Sci 2023; 24:12592. [PMID: 37628770 PMCID: PMC10454042 DOI: 10.3390/ijms241612592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated intraocular pressure is considered a major cause of glaucomatous retinal neurodegeneration. To facilitate a better understanding of the underlying molecular processes and mechanisms, we report a study focusing on alterations of the retina proteome by induced ocular hypertension in a rat model of the disease. Glaucomatous processes were modeled through sclerosing the aqueous outflow routes of the eyes by hypertonic saline injections into an episcleral vein. Mass spectrometry-based quantitative retina proteomics using a label-free shotgun methodology identified over 200 proteins significantly affected by ocular hypertension. Various facets of glaucomatous pathophysiology were revealed through the organization of the findings into protein interaction networks and by pathway analyses. Concentrating on retinal neurodegeneration as a characteristic process of the disease, elevated intraocular pressure-induced alterations in the expression of selected proteins were verified by targeted proteomics based on nanoflow liquid chromatography coupled with nano-electrospray ionization tandem mass spectrometry using the parallel reaction monitoring method of data acquisition. Acquired raw data are shared through deposition to the ProteomeXchange Consortium (PXD042729), making a retina proteomics dataset on the selected animal model of glaucoma available for the first time.
Collapse
Affiliation(s)
| | | | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| |
Collapse
|
2
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
3
|
Adeghate J, Rahmatnejad K, Waisbourd M, Katz LJ. Intraocular pressure-independent management of normal tension glaucoma. Surv Ophthalmol 2018; 64:101-110. [PMID: 30300625 DOI: 10.1016/j.survophthal.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Jennifer Adeghate
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Weill Cornell Medical College, Department of Ophthalmology, New York, New York, USA
| | - Kamran Rahmatnejad
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA
| | - Michael Waisbourd
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA; Tel-Aviv University Medical Center, Glaucoma Research Center, Tel-Aviv, Israel
| | - L Jay Katz
- Wills Eye Hospital, Glaucoma Research Department, Philadelphia, Pennsylvania, USA; Thomas Jefferson University, Department of Ophthalmology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Yap TE, Donna P, Almonte MT, Cordeiro MF. Real-Time Imaging of Retinal Ganglion Cell Apoptosis. Cells 2018; 7:E60. [PMID: 29914056 PMCID: PMC6025611 DOI: 10.3390/cells7060060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells) project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.
Collapse
Affiliation(s)
- Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Piero Donna
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Melanie T Almonte
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Maria Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK.
| |
Collapse
|
5
|
Autoimmune aspects in glaucoma. Eur J Pharmacol 2016; 787:105-18. [PMID: 27090926 DOI: 10.1016/j.ejphar.2016.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
The pathogenesis of glaucoma, a common neurodegenerative disease, involves an immunologic component. Studies demonstrate changes of autoantibody concentrations against retinal and optic nerve head antigens in glaucoma patients. Furthermore we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Clinical studies showed up regulated, but also significantly down-regulated autoantibody levels. These antibodies belong to the natural autoimmunity. The upregulation of autoantibodies can be associated with fatal conditions, but several studies demonstrate that natural autoantibodies entail also neuroprotective characteristics and influence the protein expression of neuroretinal cells. A misbalance in the physiological equilibrium may shift from regulatory immunity into a neuroinflammatory degenerative process, what may lead to a predisposition to glaucoma. However, the protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium of natural autoimmunity between autoaggression and neuroprotection offer promising target sites for new therapeutic approaches. Finally, the changes in antibody profiles represent a new opportunity as highly sensitive and specific biomarkers for diagnostics purposes.
Collapse
|
6
|
Levanova ON, Sokolov VA, Nikiforov NA. [CFH gene polymorphism in primary open-angle glaucoma patients]. Vestn Oftalmol 2016; 132:10-14. [PMID: 27030428 DOI: 10.17116/oftalma2016132110-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIM to study the CFH T402H polymorphism in glaucoma patients and controls. MATERIAL AND METHODS Genetic analysis was performed in 68 patients with primary open-angle glaucoma (POAG) of various severity. The control group consisted of 30 participants. Venous whole blood samples were obtained. From them, leukocytes were isolated and human genomic DNA extracted for further PCR. RESULTS None of the patients from either group was homozygous for the 402H allele. With ganglion cells death (i.e. at later stages of the disease), the percentage of homozygotes that carry no CFH polymorphism increases up to 65%, while that of heterozygotes decreases down to 35%. CONCLUSION As shown, most of early and advanced POAG patients are heterozygotes. At these stages of the disease own ganglion cells are very likely to be damaged. Further progression, however, is associated with a gradual decrease in heterozygotes (down to 35%) due to a substantial loss of neuroepithelial cells and suppression of the autoimmune response which has lost its target.
Collapse
Affiliation(s)
- O N Levanova
- Ryazan State Medical University named after acad. I.P. Pavlov, Ministry of Health of Russia, 9 Vysokovol'tnaya St., Ryazan, Russian Federation, 390026
| | - V A Sokolov
- Ryazan State Medical University named after acad. I.P. Pavlov, Ministry of Health of Russia, 9 Vysokovol'tnaya St., Ryazan, Russian Federation, 390026
| | - N A Nikiforov
- Ryazan State Medical University named after acad. I.P. Pavlov, Ministry of Health of Russia, 9 Vysokovol'tnaya St., Ryazan, Russian Federation, 390026
| |
Collapse
|
7
|
Pinazo-Durán MD, Zanón-Moreno V, Gallego-Pinazo R, García-Medina JJ. Oxidative stress and mitochondrial failure in the pathogenesis of glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2015; 220:127-53. [PMID: 26497788 DOI: 10.1016/bs.pbr.2015.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on oxidative stress and mitochondrial failure for understanding mechanisms of optic nerve damage in primary open-angle glaucoma. The chapter shows scientific evidence for the role of mitochondrial disbalance and reactive oxygen species in glaucoma neurodegeneration. Mitochondria regulate important cellular functions including reactive oxygen species generation and apoptosis. Mitochondrial alterations result from a wide variety of damaging sources. Reactive oxygen species formed by the mitochondria can act as signaling molecules, inducing lipid peroxidation and/or excitotoxicity with the result of cell lesion and death. Antioxidants may help to counteract oxidative stress and to promote neuroprotection. We provide information that may lead to a new way for diagnosing and treating glaucoma patients.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Surgery/Ophthalmology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Surgery/Ophthalmology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Roberto Gallego-Pinazo
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Ophthalmology, University and Polytechnic Hospital la Fe, Valencia, Spain
| | - José J García-Medina
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Ophthalmology, University Hospital Reina Sofia, Murcia, Spain; Department of Ophthalmology and Optometry, University of Murcia, Murcia, Spain
| |
Collapse
|
8
|
Faiq M, Sharma R, Dada R, Mohanty K, Saluja D, Dada T. Genetic, Biochemical and Clinical Insights into Primary Congenital Glaucoma. J Curr Glaucoma Pract 2013; 7:66-84. [PMID: 26997785 PMCID: PMC4741182 DOI: 10.5005/jp-journals-10008-1140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/09/2013] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is an irreversible form of optic neuropathy in which the optic nerve suffers damage in a characteristic manner with optic nerve cupping and retinal ganglion cell death. Primary congenital glaucoma (PCG) is an idiopathic irreversible childhood blinding disorder which manifests at birth or within the first year of life. PCG presents with a classical triad of symptoms (viz epiphora, photophobia and blepharospasm) though there are many additional symptoms, including large eye ball and hazy cornea. The only anatomical anomaly found in PCG is trabecular meshwork (TM) dysgenesis. PCG is an inheritable disease with established genetic etiology. It transmits through autosomal recessive mode. A number of cases are sporadic also. Mutations in many genes have been found to be causative in PCG and many are yet to be found. Mutations in cytochrome P4501B1 (CYP1B1) gene have been found to be the predominant cause of PCG. Other genes that have been implicated in PCG etiology are myocilin, Forkhead-related transcription factor C1 (FOXC1) and latent transforming growth factor beta-binding protein 2 (LTBP2). Mutations in these genes have been reported from many parts of the world. In addition to this, mitochondrial genome mutations are also thought to be involved in its pathogenesis. There appears to be some mechanism involving more than one genetic factor. In this review, we will discuss the various clinical, biochemical and genetic aspects of PCG. We emphasize that etiology of PCG does not lie in a single gene or genetic factor. Research needs to be oriented into a direction where gene-gene interactions, ocular embryology, ophthalmic metabolism and systemic oxidative status need to be studied in order to understand this disorder. We also accentuate the need for ophthalmic genetic facilities in all ophthalmology setups. How to cite this article: Faiq M, Sharma R, Dada R, Mohanty K, Saluja D, Dada T. Genetic, Biochemical and Clinical Insights into Primary Congenital Glaucoma. J Current Glau Prac 2013;7(2):66-84.
Collapse
Affiliation(s)
- Muneeb Faiq
- Pursuing Doctorate, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Reetika Sharma
- Resident, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Additional Professor, Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Kuldeep Mohanty
- Pursuing Doctorate, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Daman Saluja
- Professor, Medical Biotechnology Laboratory, Dr BR Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Tanuj Dada
- Additional Professor, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck S, Funke S, Wilding C, Pfeiffer N, Grus FH. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res 2013; 36:199-216. [PMID: 23541978 DOI: 10.1016/j.preteyeres.2013.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/12/2022]
Abstract
Glaucoma is a chronic neurodegenerative disease and one of the leading causes of blindness. Several risk factors have been described, e.g. an elevated intraocular pressure (IOP), oxidative stress or mitochondrial dysfunction. Additionally, alterations in serum antibody profiles of glaucoma patients, upregulation (e.g. anti-HSP60, anti-MBP) and downregulation (e.g. anti-14-3-3), have been described, but it still remains elusive if the autoantibodies seen in glaucoma are an epiphenomenon or causative. However, it is known that elicited autoimmunity causes retinal ganglion cell loss resulting in glaucomatous-like damage and according to the autoaggressive nature of some autoantibodies we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Furthermore, glaucomatous serum has the potential to influence neuroretinal cell regulatory processes. Importantly, we demonstrate that some autoantibodies hold neuroprotective potential for neuroretinal cells. The protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium between autoaggression and protection remain subject of future examinations and offer promising target sites for new therapeutic approaches. Additionally, the changes in antibody profiles could be used as highly sensitive and specific marker for diagnostics purposes. Early diagnosis and intervention in risk patients would offer the chance of early treatment and to slow down the progression of glaucoma and delay the resulting blindness.
Collapse
Affiliation(s)
- Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutewnberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pascale A, Drago F, Govoni S. Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough. Pharmacol Res 2012; 66:19-32. [PMID: 22433276 DOI: 10.1016/j.phrs.2012.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 01/01/2023]
Abstract
The retina is theater of a number of biochemical reactions allowing, within its layers, the conversion of light impulses into electrical signals. The axons of the last neuronal elements, the ganglion cells, form the optic nerve and transfer the signals to the brain. Therefore, an appropriate cellular communication, not only within the different retinal cells, but also between the retina itself and the other brain structures, is fundamental. One of the most diffuse pathologies affecting retinal function and communication, which thus reverberates in the whole visual system, is glaucoma. This insidious disease is characterized by a progressive optic nerve degeneration and sight loss which may finally lead to irreversible blindness. Nevertheless, the progressive nature of this pathology offers an opportunity for therapeutic intervention. To better understand the cellular processes implicated in the development of glaucoma useful to envision a targeted pharmacological strategy, this manuscript first examines the complex cellular and functional organization of the retina and subsequently identifies the targets sensitive to neurodegeneration. Within this context, high ocular pressure represents a key risk factor. However, recent literature findings highlight the concept that lowering ocular pressure is not enough to prevent/slow down glaucomatous damage, suggesting the importance of combining the hypotensive treatment with other pharmacological approaches, such as the use of neuroprotectants. Therefore, this important and more novel aspect is extensively considered in this review, also emphasizing the idea that the neuroprotective strategy should be extended to the entire visual system and not restricted to the retina.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
11
|
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications.
Collapse
Affiliation(s)
- Sushil K Vasudevan
- Centre for Eye Research Australia, University of Melbourne and Glaucoma Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia.
| | | | | |
Collapse
|
12
|
Lambert WS, Ruiz L, Crish SD, Wheeler LA, Calkins DJ. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol Neurodegener 2011; 6:4. [PMID: 21232114 PMCID: PMC3035592 DOI: 10.1186/1750-1326-6-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brimonidine is a common drug for lowering ocular pressure and may directly protect retinal ganglion cells in glaucoma. The disease involves early loss of retinal ganglion cell transport to brain targets followed by axonal and somatic degeneration. We examined whether brimonidine preserves ganglion cell axonal transport and abates degeneration in rats with elevated ocular pressure induced by laser cauterization of the episcleral veins. RESULTS Ocular pressure was elevated unilaterally by 90% for a period of 8 weeks post- cauterization. During this time, brimonidine (1mg/kg/day) or vehicle (phosphate-buffered saline) was delivered systemically and continuously via subcutaneous pump. Animals received bilateral intravitreal injections of fluorescent cholera toxin subunit β (CTB) two days before sacrifice to assess anterograde transport. In retinas from the vehicle group, elevated pressure induced a 44% decrease in the fraction of ganglion cells with intact uptake of CTB and a 14-42% reduction in the number of immuno-labelled ganglion cell bodies, with the worst loss occurring nasally. Elevated pressure also caused a 33% loss of ganglion cell axons in vehicle optic nerves and a 70% decrease in CTB transport to the superior colliculus. Each of these components of ganglion cell degeneration was either prevented or significantly reduced in the brimonidine treatment group. CONCLUSIONS Continuous and systemic treatment with brimonidine by subcutaneous injection significantly improved retinal ganglion cell survival with exposure to elevated ocular pressure. This effect was most striking in the nasal region of the retina. Brimonidine treatment also preserved ganglion cell axon morphology, sampling density and total number in the optic nerve with elevated pressure. Consistent with improved outcome in the optic projection, brimonidine also significantly reduced the deficits in axonal transport to the superior colliculus associated with elevated ocular pressure. As transport deficits to and from retinal ganglion cell projection targets in the brain are relevant to the progression of glaucoma, the ability of brimonidine to preserve optic nerve axons and active transport suggests its neuroprotective effects are relevant not only at the cell body, but throughout the entire optic projection.
Collapse
Affiliation(s)
- Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37205, USA.
| | | | | | | | | |
Collapse
|
13
|
Jarrett SG, Lewin AS, Boulton ME. The importance of mitochondria in age-related and inherited eye disorders. Ophthalmic Res 2010; 44:179-90. [PMID: 20829642 PMCID: PMC2952187 DOI: 10.1159/000316480] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are critical for ocular function as they represent the major source of a cell's supply of energy and play an important role in cell differentiation and survival. Mitochondrial dysfunction can occur as a result of inherited mitochondrial mutations (e.g. Leber's hereditary optic neuropathy and chronic progressive external ophthalmoplegia) or stochastic oxidative damage which leads to cumulative mitochondrial damage and is an important factor in age-related disorders (e.g. age-related macular degeneration, cataract and diabetic retinopathy). Mitochondrial DNA (mtDNA) instability is an important factor in mitochondrial impairment culminating in age-related changes and pathology, and in all regions of the eye mtDNA damage is increased as a consequence of aging and age-related disease. It is now apparent that the mitochondrial genome is a weak link in the defenses of ocular cells since it is susceptible to oxidative damage and it lacks some of the systems that protect the nuclear genome, such as nucleotide excision repair. Accumulation of mitochondrial mutations leads to cellular dysfunction and increased susceptibility to adverse events which contribute to the pathogenesis of numerous sporadic and chronic disorders in the eye.
Collapse
Affiliation(s)
- Stuart G. Jarrett
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, Ky., USA
| | - Alfred S. Lewin
- Department of Molecular Genetics, University of Florida, Gainesville, Fla., USA
| | - Michael E. Boulton
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Fla., USA
| |
Collapse
|
14
|
Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF. Neuroprotection in glaucoma - Is there a future role? Exp Eye Res 2010; 91:554-66. [PMID: 20800593 DOI: 10.1016/j.exer.2010.08.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/26/2010] [Accepted: 08/06/2010] [Indexed: 02/06/2023]
Abstract
In glaucoma, the major cause of global irreversible blindness, there is an urgent need for treatment modalities that directly target the RGCs. The discovery of an alternative therapeutic approach, independent of IOP reduction, is highly sought after, due to the indirect nature and limited effectiveness of IOP lowering therapy in preventing RGC loss. Several mechanisms have been implicated in initiating the apoptotic cascade in glaucomatous retinopathy and numerous drugs have been shown to be neuroprotective in animal models of glaucoma. These mechanisms and their potential treatment include excitotoxicity, protein misfolding, mitochondrial dysfunction, oxidative stress, inflammation and neurotrophin deprivation. All of these mechanisms ultimately lead to programmed cell death with loss of RGCs. In this article we summarize the mechanisms involved in glaucomatous disease, highlight the rationale for neuroprotection in glaucoma management and review current potential neuroprotective strategies targeting RGCs from the laboratory to the clinic.
Collapse
Affiliation(s)
- Abeir Baltmr
- Glaucoma and Retinal Neurodegeneration Research Group, Visual Neurosciences Department, University College London Institute of Ophthalmology, Bath Street, London EC1V 9EL, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res 2010; 1308:158-66. [DOI: 10.1016/j.brainres.2009.10.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/09/2009] [Accepted: 10/09/2009] [Indexed: 12/31/2022]
|
16
|
Abstract
In recent years the focus of glaucoma research has shifted toward neuroprotection, as the traditional strategies of lowering intraocular pressure have been shown to be unable to prevent progressive vision loss in some glaucoma patients. As a result various neuroprotective drug-based approaches have been shown capable of reducing the death of retinal ganglion cells, which is the hallmark of glaucomatous optic neuropathy. There has been increasing evidence that glaucomatous neurodegeneration is analogous to other neurodegenerative diseases in the central nervous system, with recent work from our group elucidating a strong link between basic cellular processes in glaucoma and Alzheimer's disease. Additionally, there is a growing trend for using existing neuroprotective strategies in central nervous system diseases for the treatment of glaucoma. In fact, a trial treating patients with primary open-angle glaucoma with memantine, a drug approved for the treatment of Alzheimer's disease, has recently been completed. Results of this trial are not yet available. In this review, we will examine currently advocated neuroprotective drug-based strategies in the potential management of glaucoma.
Collapse
|
17
|
Kim HS, Chang YI, Kim JH, Park CK. Alteration of retinal intrinsic survival signal and effect of
α2–adrenergic receptor agonist in the retina of the chronic
ocular hypertension rat. Vis Neurosci 2007; 24:127-39. [PMID: 17640403 DOI: 10.1017/s0952523807070150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 02/12/2007] [Indexed: 11/07/2022]
Abstract
The purpose of this study is to examine the retinal expression of
intrinsic cell survival molecules and to elucidate the effect of an
α2-adrenergic receptor agonist in the chronic ocular hypertensive rat
model. Chronic ocular hypertension was induced in both eyes of each rat by
episcleral vein cauterization. Two five-microliter drops of the selective
α2-adrenoceptor agonist brimonidine 0.2% (Alphagan; Allergan Inc.,
Irvine, CA, USA) were topically administered twice daily for up to eight
weeks in one eye. The fellow eye received balanced salt solution as a
control. Protein and mRNA expression were evaluated at 1, 4, and 8 weeks
after injury. Retinal expression of BDNF, Akt, and GFAP was assessed using
immunohistochemistry. Retinal levels of mRNA for BDNF, bcl-2, and bcl-xL
were determined using semi-quantitative RT-PCR. Retinal ganglion cell
(RGC) density was evaluated after retrograde labeling with 4-Di-10-ASP
(DiA). A significant decrease in RGC density was observed in ocular
hypertensive eyes. Cauterized eyes showed an increase in GFAP expression
from one week after injury, and the expression of bcl-2, bcl-xL, and BDNF
mRNA was also increased. Treatment of ocular hypertensive eyes with
brimonidine resulted in a reduction in RGC loss, a decrease in the level
of GFAP immunoreactivity, and an increment in BDNF mRNA and p-Akt
expression. Brimonidine appears to protect RGCs from neurodegeneration
through mechanisms involving α2-adrenergic receptor mediated survival
signal activation and up-regulation of endogenous neurotrophic factor
expression in the chronic ocular hypertensive rat retina.
Collapse
Affiliation(s)
- Hwa Sun Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | |
Collapse
|
18
|
Danylkova NO, Alcala SR, Pomeranz HD, McLoon LK. Neuroprotective effects of brimonidine treatment in a rodent model of ischemic optic neuropathy. Exp Eye Res 2006; 84:293-301. [PMID: 17113077 DOI: 10.1016/j.exer.2006.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/05/2006] [Accepted: 10/02/2006] [Indexed: 01/26/2023]
Abstract
Ischemic optic neuropathy (ION) is a common disorder caused by disruption of the arterial blood supply to the optic nerve. It can result in significant loss of visual acuity and/or visual field. An ischemic optic nerve injury was produced in rats by intravenous injection of Rose Bengal dye followed by argon green laser application to the retinal arteries overlying the optic nerve, causing a coagulopathy within the blood vessels and disruption of optic nerve and retinal perfusion. The effect of brimonidine tartrate eye drops on survival of retinal ganglion cell axons in this experimental paradigm was studied. One eye was treated and the contralateral eye served as a control. Four groups of animals were used for this study. Group 1 received 7 days of treatment with 0.15% brimonidine tartrate eye drops twice a day prior to the ischemic injury. Group 2 animals received 0.15% brimonidine tartrate eye drops twice a day for 14 days after photocoagulation injury. Animal groups 3 and 4 received eye drops of 0.9% NaCl twice a day either daily for 7 days before injury or daily for 14 days, respectively. All rats were sacrificed 5 months after the injury to ascertain long-term optic axon survival. Coagulopathy-induced optic nerve ischemia resulted in a 71% loss of optic axons. Treatment with brimonidine daily for the 7 days prior to the injury resulted in a greater survival of optic axons, with only a 56.1% loss compared to control. Brimonidine treatment every day for 14 days after the ischemic injury did not result in a significant rescue of optic axons compared to injury alone. In summary, the application of brimonidine eye drops for one week prior to an ischemic injury resulted in a statistically significant increase in survival of optic axons within the injured optic nerves. Brimonidine treatment of the eye after the ischemic injury did not result in axon rescue, and axon loss was similar to the injured optic nerves treated with saline only. These results suggest that brimonidine may have potential use for prevention of ION in at-risk patients.
Collapse
Affiliation(s)
- Nataliya O Danylkova
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. Although ROS are essential participants in cell signaling and regulation, when their cellular production overwhelms the intrinsic antioxidant capacity, damage to cellular macromolecules such as DNA, proteins, and lipids ensues. Such a state of "oxidative stress" is thought to contribute to the pathogenesis of a number of neurodegenerative diseases. Growing evidence supports the involvement of oxidative stress as a common component of glaucomatous neurodegeneration in different subcellular compartments of retinal ganglion cells (RGCs). Besides the evidence of direct cytotoxic consequences leading to RGC death, it also seems highly possible that ROS are involved in signaling RGC death by acting as a second messenger and/or modulating protein function by redox modifications of downstream effectors through enzymatic oxidation of specific amino acid residues. Different studies provide cumulating evidence, which supports the association of ROS with different aspects of the neurodegenerative process. Oxidative protein modifications during glaucomatous neurodegeneration increase neuronal susceptibility to damage and also lead to glial dysfunction. Oxidative stress-induced dysfunction of glial cells may contribute to spreading neuronal damage by secondary degeneration. Oxidative stress also promotes the accumulation of advanced glycation end products in glaucomatous tissues. In addition, oxidative stress takes part in the activation of immune response during glaucomatous neurodegeneration, as ROS stimulate the antigen presenting ability of glial cells and also function as co-stimulatory molecules during antigen presentation. By discussing current evidence, this review provides a broad perspective on cellular mechanisms and potential consequences of oxidative stress in glaucoma.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Kentucky Lions Eye Center, 301 E. Muhammad Ali Boulevard, Louisville, KY 40202, USA.
| |
Collapse
|
20
|
Kim HS, Park CK. Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program. Brain Res 2006; 1057:17-28. [PMID: 16139821 DOI: 10.1016/j.brainres.2005.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 07/01/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Neuronal cells undergo apoptosis when deprived of neurotrophic factors due to injury, trauma, or neurodegenerative disease. This study examined cell death in the retina after chronic elevation of intraocular pressure (IOP) in an experimental rat model of human glaucomatous disease. Three episcleral veins on the ocular surface of rats were cauterized. Activation of several cell death programs represented by Fas ligand, FADD (Fas Associated Death Domain/Mort1) and the caspase cascade (caspase-8 and -3) and survival programs represented by phosphorylated protein kinase B (PKB/Akt), Bcl-2 associated death domain (BAD), and cAMP responsive element binding protein (CREB) were examined using immunohistochemistry and Western blotting. Following injury, two major events occurred simultaneously in the retina: activation of programmed cell death pathways and activation of survival mechanisms to maintain the cellular homeostasis of the retina. At the later stage of injury, markers of an activated cell death program appeared to be concentrated in the retinal ganglion cells. In conclusion, we suggest that endogenous cell survival factors triggered at the early stage of injury play a critical role in control of the death or survival of retinal ganglion cells and that the manipulation of this decision phase is one of the therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Hwa Sun Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-ku, Seoul 137-701, South Korea
| | | |
Collapse
|
21
|
Newman NJ, Biousse V, David R, Bhatti MT, Hamilton SR, Farris BK, Lesser RL, Newman SA, Turbin RE, Chen K, Keaney RP. Prophylaxis for second eye involvement in leber hereditary optic neuropathy: an open-labeled, nonrandomized multicenter trial of topical brimonidine purite. Am J Ophthalmol 2005; 140:407-15. [PMID: 16083844 DOI: 10.1016/j.ajo.2005.03.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/14/2005] [Accepted: 03/17/2005] [Indexed: 11/17/2022]
Abstract
PURPOSE To test a topical agent with purported antiapoptotic properties as prophylactic treatment after first eye involvement in Leber hereditary optic neuropathy (LHON), a maternally-inherited disorder characterized by bilateral, often sequential, visual loss. DESIGN Open labeled, nonrandomized prospective pilot study. METHODS Nine primary mutation molecularly confirmed LHON patients with one eye vision loss for less than 6 months and normal visual function in the fellow eye were treated with brimonidine purite 0.15% (Alphagan P) 4 times daily in the unaffected eye for up to 2 years. Visual acuity was the primary efficacy outcome. Secondary measures included changes on automated perimetry and quantification of the relative afferent pupillary defect. RESULTS There were 8 men and 1 woman enrolled, aged 13 to 54 years (mean 32 years), eight with the 11778 mitochondrial DNA (mtDNA) mutation, and one with the 3460 mutation. Despite normal visual acuity at baseline in all patients, 7 patients had some minimal changes in the central visual field of the study eye. All patients had deterioration of vision in their second eye. In 1 of the 2 patients who had treatment initiated within 16 days after first eye involvement, good visual acuity was maintained in the study eye at 15 month followup, despite a mildly abnormal study eye baseline visual field. CONCLUSIONS LHON may be a bilateral condition at onset more frequently than appreciated, with asymmetric severity at presentation. Topical brimonidine purite in this dosage was unsuccessful in preventing second eye involvement in recently monocularly-symptomatic LHON.
Collapse
Affiliation(s)
- Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Emory Eye Center, 1365-B Clifton Road NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Waldmeier PC, Tatton WG. Interrupting apoptosis in neurodegenerative disease: potential for effective therapy? Drug Discov Today 2004; 9:210-8. [PMID: 14980539 DOI: 10.1016/s1359-6446(03)03000-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Current treatment options for neurodegenerative diseases are limited and mainly affect only the symptoms of disease. Because of the unknown and probably multiple causes of these diseases, they cannot be readily targeted. However, it has been established that apoptosis contributes to neuronal loss in most neurodegenerative diseases. A possible treatment option is to interrupt the signaling networks that link neuronal damage to apoptotic degradation in neurodegeneration. The viability of this option depends upon the extent to which apoptosis accounts for neuron loss, whether or not interruption of apoptosis signaling results in recovery of neurological function and whether or not there are significant downsides to targeting apoptosis. Several compounds acting at different sites in known apoptotic signaling networks are currently in development and a few are in clinical trial. If an apoptosis-targeted compound succeeds in slowing or halting neurological dysfunction in one or more neurodegenerative diseases, a new era in the treatment of neurodegenerative diseases will begin.
Collapse
Affiliation(s)
- Peter C Waldmeier
- WKL-125.607, Neuroscience Research, Novartis Institutes for Biomedical Research (NIBR), CH-4002 Basel, Switzerland.
| | | |
Collapse
|
23
|
Abstract
Mitochondria are increasingly recognized as central players in the life and death of cells and especially of neurons. The energy-dependence of retinal ganglion cells (RGC) and their axons, which form the optic nerve, is singularly skewed. In fact, while mitochondria are very abundant in the initial, unmyelinated part of the axons anterior to the lamina cribrosa, their number suddenly decreases as the myelin sheath begins more posteriorly. The vascular system also presents different blood-brain barrier properties anterior and posterior to the lamina, possibly reflecting the different metabolic needs of the optic nerve head (unmyelinated) and of the retrobulbar optic nerve (myelinated). Mitochondrial biogenesis occurs within the cellular somata of RGC in the retina. It needs the coordinated interaction of nuclear and mitochondrial genomes. Mitochondria are then transported down the axons and distributed where they are needed. These locations are along the unmyelinated portion of the nerve, under the nodes of Ranvier in the retrobulbar nerve, and at the synaptic terminals. Efficient transportation of mitochondria depends on multiple factors, including their own energy production, the integrity of the cytoskeleton and its protein components (tubulin, etc.), and adequate myelination of the axons. Any dysfunction of these systems may be of pathological relevance for optic neuropathies with primary or secondary involvement of mitochondria. Leber's hereditary optic neuropathy (LHON) is the paradigm of mitochondrial optic neuropathies where a primary role for mitochondrial dysfunction is certified by maternal inheritance and association with specific mutations in the mitochondrial DNA (mtDNA). Clinical phenocopies of this pathology are represented by the wide array of optic neuropathies associated with vitamin depletion, toxic exposures, alcohol and tobacco abuse, and use of certain drugs. Moreover, the recent identification of mutations in the nuclear gene OPA1 as the causative factor in dominant optic atrophy (DOA, Kjer's type) brought the unexpected finding that this gene encodes for a mitochondrial protein, suggesting that DOA and LHON may be linked by similar pathogenesis. Polymorphisms in this very same gene may be associated with normal tension glaucoma (NTG), which might be considered a genetically determined optic neuropathy that again shows similarities with both LHON and DOA. Exciting new developments come from first examples of mitochondrial optic neuropathies in animal models that are genetically determined or are the result of ingenious engineering of mitochondrial gene expression, or from biochemical manipulations of the respiratory complexes. Even more exciting is the first successful attempt to correct the LHON-related complex I dysfunction by the allotopic nuclear expression of the recoded mitochondrial gene. There is hope that the genetic complexities, biochemical dysfunctions, and integrated anatomical-physiological cellular relationships will soon be precisely delineated and that promising therapeutic and prophylactic strategies will be proposed.
Collapse
Affiliation(s)
- Valerio Carelli
- Doheny Eye Institute and Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
24
|
Avilés-Trigueros M, Mayor-Torroglosa S, García-Avilés A, Lafuente MP, Rodríguez ME, Miralles de Imperial J, Villegas-Pérez MP, Vidal-Sanz M. Transient ischemia of the retina results in massive degeneration of the retinotectal projection: long-term neuroprotection with brimonidine. Exp Neurol 2003; 184:767-77. [PMID: 14769369 DOI: 10.1016/s0014-4886(03)00298-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Revised: 05/21/2003] [Accepted: 06/02/2003] [Indexed: 11/28/2022]
Abstract
In adult rats, we have induced retinal ischemia and investigated anterogradely labeled surviving retinal ganglion cell (RGC) afferents to the contralateral superior colliculus (SC). The animals received topically in their left eyes two 5-microl drops of saline or saline-containing 0.5% brimonidine (BMD), 1 h before 90 min of retinal ischemia induced by ligature of the left ophthalmic vessels. Two months after ischemia, the anterogradely transported neuronal tracer cholera toxin B subunit (CTB) was injected in the ischemic eyes and animals were processed 4 days later. As controls and for comparison, the retinotectal innervation of unlesioned age-matched control rats was also examined with CTB. In control and experimental animals, serial coronal sections of the mesencephalon and brainstem were immunoreacted for CTB and the area and thickness of the two most superficial layers of the SC containing densely CTB-labeled profiles were estimated with an image analysis system. Ninety minutes of ischemia resulted 2 months later in reduced density of CTB-labeled profiles in the contralateral SC of the vehicle-treated rats, representing less than one half the area occupied by CTB-labeled profiles in control rats. This resulted in shrinkage of these layers and in the presence of areas virtually devoid of CTB immunoreactivity, suggesting orthograde degeneration of retinal terminals and/or decrease of anterograde axonal transport. Topical pretreatment with BMD resulted 2 months later in CTB immunoreactivity that occupied the superficial layers of the contralateral SC in an area of approximately 86% of that observed in the unlesioned control group of animals, indicating that BMD protects against ischemia-induced degeneration of the retinotectal projection, and preserves anterograde axonal transport.
Collapse
Affiliation(s)
- Marcelino Avilés-Trigueros
- Departamento de Histología, Instituto de Bioingeniería, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The evidence for a role of apoptosis in the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and in the more acute conditions of cerebral ischemia, traumatic brain injury (TBI), and spinal cord injury (SCI) is reviewed with regard to potential intervention by means of small antiapoptotic molecules. In addition, the available animal models for these diseases are discussed with respect to their relevance for testing small antiapoptotic molecules in the context of what is known about the apoptotic pathways involved in the diseases and the models. The principal issues related to pharmacotherapy by apoptosis inhibition, i.e., functionality of rescued neurons and potential interference with physiologically occurring apoptosis, are pointed out. Finally, the properties of a number of small antiapoptotic molecules currently under clinical investigation are summarized. It is concluded that the evidence for a role of apoptosis at present is more convincing for PD and ALS than for AD. In PD, damage to dopaminergic neurons may occur through oxidative stress and/or mitochondrial impairment and culminate in activation of an apoptotic, presumably p53-dependent cascade; some neurons experiencing energy failure may not be able to complete apoptosis, end up in necrosis and give rise to inflammatory processes. These events are reasonably well reflected in some of the PD animal models, notably those involving 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone. In sporadic ALS, an involvement of pathways involving p53 and Bcl-2 family members appears possible if not likely, but is not established. The issue is important for the development of antiapoptotic compounds for the treatment of this disease because of differential involvement of p53 in different mutant superoxide dismutase (SOD) mice. Most debated is the role of apoptosis in AD; this implies that little is known about potentially involved pathways. Moreover, there is a lack of suitable animal models for compound evaluation. Apoptosis or related phenomena are likely involved in secondary cell death in cerebral ischemia, TBI, and SCI. Most of the pertinent information comes from animal experiments, which have provided some evidence for prevention of cell death by antiapoptotic treatments, but little for functional benefit. Much remains to be done in this area to explore the potential of antiapoptotic drugs. There is a small number of antiapoptotic compounds in clinical development. With some of them, evidence for maintenance of functionality of the rescued neurons has been obtained in some animal models, and the fact that they made it to phase II studies in patients suggests that interference with physiological apoptosis is not an obligatory problem. The prospect that small antiapoptotic molecules will have an impact on the therapy of neurodegenerative diseases, and perhaps also of ischemia and trauma, is therefore judged cautiously positively.
Collapse
Affiliation(s)
- Peter C Waldmeier
- Nervous System Research, Novartis Pharma Limited, WKL-125.607, CH-4002, Basel, Switzerland.
| |
Collapse
|
26
|
Abstract
Four criteria are used to evaluate the potential usefulness of an agent for neuroprotection in glaucoma: 1) the agent must have a target in the retina; 2) it must be neuroprotective in animal models; 3) it must reach neuroprotective concentrations in the posterior segment after clinical dosing; and finally, 4) it must be shown to be neuroprotective in clinical trials. The alpha-2 adrenergic agonist brimonidine has met the first three criteria and clinical trials to establish the fulfillment of the fourth criterion are ongoing. The effects of brimonidine are mediated by its interaction with alpha-2 adrenergic receptors that are present in the retina. Activation of alpha-2 receptors by brimonidine has been shown to effectively promote the survival and function of retinal ganglion cells in a variety of animal models of optic injury relevant to glaucoma such as the chronic ocular hypertensive rat and rat optic nerve crush. Brimonidine has also been shown to be neuroprotective in the rat ischemia reperfusion model that evaluates general hypoxic damage to the whole retina. Clinical dosing of the topical formulation of brimonidine results in brimonidine concentrations in the posterior segment that are sufficient for both pharmacological activity at alpha-2 adrenergic receptors and neuroprotection. Finally, clinical trials are in progress to investigate the ability of brimonidine to protect human retinal ganglion cells and the visual field in glaucoma-related disease.
Collapse
Affiliation(s)
- Larry Wheeler
- Allergan, Inc., Biological Sciences, Irvine, California 92612, USA
| | | | | |
Collapse
|
27
|
Kunikowska G, Gallagher I, Glover V, Clow A, Jenner P. Effects of short- and long-term (--)-deprenyl administration on mRNA for copper, zinc- and manganese-superoxide dismutase and glutathione peroxidase in rat brain. Brain Res 2002; 953:1-11. [PMID: 12384232 DOI: 10.1016/s0006-8993(02)03187-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of short-term (3 weeks, 2 mg/kg day) and long-term (12 and 20 months, 0.5 mg/kg day) administration of (-)-deprenyl on the mRNA expression of three neuroprotective enzymes in subdivisions of rat basal ganglia was investigated. In situ hybridisation histochemistry with oligodeoxynucleotide probes was used to measure levels of copper, zinc superoxide dismutase (Cu,Zn-SOD), manganese superoxide dismutase (Mn-SOD), and glutathione peroxidase (GPX) mRNA. The 3-week administration of (-)-deprenyl caused a significant increase in Cu,Zn-SOD mRNA in the nucleus accumbens (NA) (P<0.05), striatum (CP) (P<0.01), and globus pallidus (GP) (P<0.05), but had no effect on Mn-SOD or GPX mRNA levels throughout basal ganglia. In rats which received (-)-deprenyl for 12 months, there was a significant increase in Mn-SOD mRNA in the NA, CP, GP, and substantia nigra (SN) (all P<0.05); there were no changes in either Cu,Zn-SOD or GPX mRNA. Except for the significant increase in Cu,Zn-SOD mRNA in SN pars compacta (SC) (P<0.05), by 20 months there were almost no differences between (-)-deprenyl-treated and age-matched control animals that had received equivalent injections of saline. We conclude that (-)-deprenyl administration can induce mRNA expression for both forms of SOD, but the effects are variable and not sustained over 20 months.
Collapse
Affiliation(s)
- Grazyna Kunikowska
- Neurodegenerative Diseases Research Centre, Division of Pharmacology & Therapeutics, Guy's, King's and St. Thomas School of Biomedical Sciences, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
28
|
Abstract
Advances in our understanding of the pathophysiology of retinal ganglion cell death in glaucoma are providing important insights into the functional changes occurring in retinal ganglion cells in the early stages of the disease. These exciting new findings may help us develop psychophysical tests to monitor early retinal ganglion cell damage, possibly before neurons are committed to the process of cell death.
Collapse
Affiliation(s)
- E A Ansari
- Department of Ophthalmology, University Hospital of Wales, Cardiff, UK
| | | | | |
Collapse
|
29
|
Abstract
Citicoline (exogenous CDP-choline) is a nontoxic and well-tolerated drug used in pharmacotherapy of brain insufficiency and some other neurological disorders, such as stroke, brain trauma, and Parkinson's disease. A few reports indicate that citicoline treatment may also be beneficial in glaucoma. Currently glaucoma is considered a neurodegenerative disease in which retinal ganglion cells (RGC) slowly die, likely in the apoptotic mechanism. Endogenous CDP-choline is a natural precursor of cellular synthesis of phospholipids, mainly phosphatydylcholine (PtdCho). Enhancement of PtdCho synthesis may counteract neuronal apoptosis and provide neuroprotection. Citicoline, when administered, undergoes a quick transformation to cytidine and choline, which are believed to enter brain cells separately and provide neuroprotection by enhancing PtdCho synthesis; similar effect may be expected to occur in glaucomatous RGC. Furthermore, citicoline stimulates some brain neurotransmitter systems, including the dopaminergic system, and dopamine is known as a major neurotransmitter in retina and postretinal visual pathways. In a double-blind, placebo-controlled study, treatment of glaucoma resulted in functional improvement in the visual system noted with electrophysiological methods. Development of citicoline as a treatment for glaucoma is indicated.
Collapse
Affiliation(s)
- Pawel Grieb
- Laboratory of Experimental Pharmacology, Medical Research Center, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
30
|
Vidal-Sanz M, Lafuente MP, Mayor S, de Imperial JM, Villegas-Pérez MP. Retinal Ganglion Cell Death Induced by Retinal Ischemia. Surv Ophthalmol 2001; 45 Suppl 3:S261-7; discussion S273-6. [PMID: 11377446 DOI: 10.1016/s0039-6257(01)00205-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated in adult Sprague-Dawley rats the neuroprotective effects of two alpha-2-selective agonists [AGN 191,103 (AGN) and brimonidine tartrate (BMD)] on retinal ganglion cell (RGC) survival after transient retinal ischemia. RGCs were labelled with Fluorogold (FG) applied to both superior colliculi. Seven days later, 90 min of retinal ischemia were induced in the left eyes by ligature of the ophthalmic vessels (LOV). In one group of animals, vehicle or AGN (0.01 mg/kg) were administered systemically 1 hr before ischemia. In another group of animals, two 5 microl drops of vehicle, AGN (0.05%) or BMD (0.1%) were administered topically in the left eye 1 hr before ischemia. The animals were processed 7 or 21 days later. RGC survival was estimated by counting FG-labelled cells in 12 standard areas of each retina. In control retinas of systemically pretreated animals, mean densities of labelled RGCs were 2372 +/- 49 cells/mm(2) (mean +/- SEM; n = 6). In experimental retinas of systemically pretreated animals, mean RGC densities had decreased 7 days after ischemia to 53% (n = 6) or 81% (n = 6) of control in the groups treated with vehicle or AGN, respectively. Twenty-one days after ischemia, mean RGC densities had decreased to 38% (n = 6) or 79% (n = 6) of control in the groups treated with vehicle or AGN, respectively. In control retinas of topically pretreated animals, mean densities of labelled RGCs were 2208 +/- 29 cells/mm(2) (n = 6). In experimental retinas of topically pretreated animals, mean RGC densities had decreased 7 days after ischemia to 54% (n = 6), 95% (n = 6) or 96% (n = 6) of control in the groups treated with vehicle, AGN or BMD, respectively. These results indicate that pretreatment with a single systemic or topical dose of AGN or BMD can prevent completely the early rapid phase of RGC loss and abolish the delayed RGC loss observed after 90 min of retinal ischemia induced by ligature of the ophthalmic vessels.
Collapse
Affiliation(s)
- M Vidal-Sanz
- Laboratorio de Oftalmología Experimental, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|