1
|
Gan Q, Zheng H, Li X, Li J, Ma J, Zhang Y, Han J, Zhang L, Zhou W, Lu Y. Solving the Jigsaw puzzle of phytosterol diversity by a novel sterol methyltransferase from Zea mays. J Steroid Biochem Mol Biol 2024; 240:106498. [PMID: 38447903 DOI: 10.1016/j.jsbmb.2024.106498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/05/2023] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Phytosterols are vital structural and regulatory components in plants. Zea mays produces a series of phytosterols that are specific to corn. However, the underline biosynthetic mechanism remains elusive. In this study, we identified a novel sterol methyltransferase from Z. mays (ZmSMT1-2) which showed a unique feature compared with documented plant SMTs. ZmSMT1-2 showed a substrate preference for cycloartenol. Using S-adenosyl-L-methionine (AdoMet) as a donor, ZmSMT1-2 converted cycloartenol into alkylated sterols with unique side-chain architectures, including Δ25(27) (i.e., cyclolaudenol and cycloneolitsol) and Δ24(25) (i.e., cyclobranol) sterols. Cycloneolitsol is identified as a product of SMTs for the first time. Our discovery provides a previously untapped mechanism for phytosterol biosynthesis and adds another layer of diversity of sterol biosynthesis.
Collapse
Affiliation(s)
- Qinhua Gan
- School of Tropical Crops, Hainan University, Haikou 570228, China; Engineering & Research Center of Marine Bioactives and Bioproducts of Hainan Province, Haikou 570228, China; Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Haikou 570228, China
| | - Haifeng Zheng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinyu Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jing Li
- School of Biological Sciences, The University of Western Australia, Perth 6009, Australia
| | - Jingxue Ma
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Engineering & Research Center of Marine Bioactives and Bioproducts of Hainan Province, Haikou 570228, China; Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Haikou 570228, China
| | - Yuji Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jiakun Han
- Jining Academy of Agricultural Sciences, Jining 272031, China
| | - Lin Zhang
- Shandong Rongchen Pharmaceuticals Inc, Qingdao 266061, China
| | - Wenxu Zhou
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; School of Biological Sciences, The University of Western Australia, Perth 6009, Australia.
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Engineering & Research Center of Marine Bioactives and Bioproducts of Hainan Province, Haikou 570228, China; Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Haikou 570228, China; Key Laboratory of Tropical Hydrobiotechnology of Hainan Province, Haikou 570228, China.
| |
Collapse
|
2
|
Kidane ME, Vanderloop BH, Zhou W, Thomas CD, Ramos E, Singha U, Chaudhuri M, Nes WD. Sterol methyltransferase a target for anti-amoeba therapy: towards transition state analog and suicide substrate drug design. J Lipid Res 2017; 58:2310-2323. [PMID: 29042405 PMCID: PMC5711494 DOI: 10.1194/jlr.m079418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/17/2017] [Indexed: 01/18/2023] Open
Abstract
Ergosterol biosynthesis pathways essential to pathogenic protozoa growth and absent from the human host offer new chokepoint targets. Here, we present characterization and cell-based interference of Acanthamoeba spp sterol 24-/28-methylases (SMTs) that catalyze the committed step in C28- and C29-sterol synthesis. Intriguingly, our kinetic analyses suggest that 24-SMT prefers plant cycloartenol whereas 28-SMT prefers 24(28)-methylene lophenol in similar fashion to the substrate preferences of land plant SMT1 and SMT2. Transition state analog-24(R,S),25-epiminolanosterol (EL) and suicide substrate 26,27-dehydrolanosterol (DHL) differentially inhibited trophozoite growth with IC50 values of 7 nM and 6 µM, respectively, and EL yielded 20-fold higher activity than reference drug voriconazole. Against either SMT assayed with native substrate, EL exhibited tight binding ∼Ki 9 nM. Alternatively, DHL is methylated at C26 by 24-SMT that thereby, generates intermediates that complex and inactivate the enzyme, whereas DHL is not productively bound to 28-SMT. Steroidal inhibitors had no effect on human epithelial kidney cell growth or cholesterol biosynthesis at minimum amoebicidal concentrations. We hypothesize the selective inhibition of Acanthamoeba by steroidal inhibitors representing distinct chemotypes may be an efficient strategy for the development of promising compounds to combat amoeba diseases.
Collapse
Affiliation(s)
- Medhanie E Kidane
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Crista D Thomas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Emilio Ramos
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Ujjal Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
3
|
Haubrich BA, Collins EK, Howard AL, Wang Q, Snell WJ, Miller MB, Thomas CD, Pleasant SK, Nes WD. Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: Implications for understanding sterol evolution in the green lineage. PHYTOCHEMISTRY 2015; 113:64-72. [PMID: 25132279 PMCID: PMC5182512 DOI: 10.1016/j.phytochem.2014.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/11/2014] [Accepted: 06/09/2014] [Indexed: 05/15/2023]
Abstract
Sterol C24-methyltransferases (SMTs) constitute a group of sequence-related proteins that catalyze the pattern of sterol diversity across eukaryotic kingdoms. The only gene for sterol alkylation in green algae was identified and the corresponding catalyst from Chlamydomonas reinhardtii (Cr) was characterized kinetically and for product distributions. The properties of CrSMT were similar to those predicted for an ancient SMT expected to possess broad C3-anchoring requirements for substrate binding and formation of 24β-methyl/ethyl Δ(25(27))-olefin products typical of primitive organisms. Unnatural Δ(24(25))-sterol substrates, missing a C4β-angular methyl group involved with binding orientation, convert to product ratios in favor of Δ(24(28))-products. Remodeling the active site to alter the electronics of Try110 (to Leu) results in delayed timing of the hydride migration from methyl attack of the Δ(24)-bond, that thereby produces metabolic switching of product ratios in favor of Δ(25(27))-olefins or impairs the second C1-transfer activity. Incubation of [27-(13)C]lanosterol or [methyl-(2)H3]SAM as co-substrates established the CrSMT catalyzes a sterol methylation pathway by the "algal" Δ(25(27))-olefin route, where methylation proceeds by a conserved SN2 reaction and de-protonation proceeds from the pro-Z methyl group on lanosterol corresponding to C27. This previously unrecognized catalytic competence for an enzyme of sterol biosynthesis, together with phylogenomic analyses, suggest that mutational divergence of a promiscuous SMT produced substrate- and phyla-specific SMT1 (catalyzes first biomethylation) and SMT2 (catalyzes second biomethylation) isoforms in red and green algae, respectively, and in the case of SMT2 selection afforded modification in reaction channeling necessary for the switch in ergosterol (24β-methyl) biosynthesis to stigmasterol (24α-ethyl) biosynthesis during the course of land plant evolution.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Emily K Collins
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Alicia L Howard
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Qian Wang
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390, United States
| | - William J Snell
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390, United States
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Crista D Thomas
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Stephanie K Pleasant
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
4
|
Patkar P, Haubrich BA, Qi M, Nguyen TTM, Thomas CD, Nes WD. C-24-methylation of 26-fluorocycloartenols by recombinant sterol C-24-methyltransferase from soybean: evidence for channel switching and its phylogenetic implications. Biochem J 2013; 456:253-62. [PMID: 23984880 DOI: 10.1042/bj20121818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tightly coupled nature of the electrophilic alkylation reaction sequence catalysed by 24-SMT (sterol C-24-methyltransferase) of land plants and algae can be distinguished by the formation of cationic intermediates that yield phyla-specific product profiles. C-24-methylation of the cycloartenol substrate by the recombinant Glycine max (soybean) 24-SMT proceeds to a single product 24(28)-methylenecycloartanol, whereas the 24-SMT from green algae converts cycloartenol into two products cyclolaudenol [∆(25(27))-olefin] and 24(28)-methylenecycloartanol [(∆24(28))-olefin]. Substrate analogues that differed in the steric-electronic features at either end of the molecule, 26-homocycloartenol or 3β-fluorolanostadiene, were converted by G. max SMT into a single 24(28)-methylene product. Alternatively, incubation of the allylic 26-fluoro cyclosteroid with G. max SMT afforded a bound intermediate that converted in favour of the ∆(25(27))-olefin product via the cyclolaudenol cation formed initially during the C-24-methylation reaction. A portion of the 26-fluorocycloartenol substrate was also intercepted by the enzyme and the corresponding hydrolysis product identified by GC-MS as 26-fluoro-25-hydroxy-24-methylcycloartanol. Finally, the 26-fluorocycloartenols are competitive inhibitors for the methylation of cycloartenol and 26-monofluorocycloartenol generated timedependent inactivation kinetics exhibiting a kinact value of 0.12 min(-1). The ability of soybean 24-SMT to generate a 25-hydroxy alkylated sterol and fluorinated ∆(25(27))-olefins is consistent with our hypothesis that (i) achieving the cyclolaudenyl cation intermediate by electrophilic alkylation of cycloartenol is significant to the overall reaction rate, and (ii) the evolution of variant sterol C-24-methylation patterns is driven by competing reaction channels that have switched in algae from formation of primarily ∆(25(27)) products that convert into ergosterol to, in land plants, formation of ∆(24(28)) products that convert into sitosterol.
Collapse
Affiliation(s)
- Presheet Patkar
- *Center for Chemical Biology and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, U.S.A
| | | | | | | | | | | |
Collapse
|
5
|
Miller MB, Haubrich BA, Wang Q, Snell WJ, Nes WD. Evolutionarily conserved Delta(25(27))-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii. J Lipid Res 2012; 53:1636-45. [PMID: 22591742 PMCID: PMC3540834 DOI: 10.1194/jlr.m027482] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/09/2012] [Indexed: 11/20/2022] Open
Abstract
Ergosterol is the predominant sterol of fungi and green algae. Although the biosynthetic pathway for sterol synthesis in fungi is well established and is known to use C24-methylation-C24 (28)-reduction (Δ(24(28))-olefin pathway) steps, little is known about the sterol pathway in green algae. Previous work has raised the possibility that these algae might use a novel pathway because the green alga Chlamydomonas reinhardtii was shown to possess a mevalonate-independent methylerythritol 4-phosphate not present in fungi. Here, we report that C. reinhardtii synthesizes the protosterol cycloartenol and converts it to ergosterol (C24β-methyl) and 7-dehydroporiferasterol (C24β-ethyl) through a highly conserved sterol C24- methylation-C25-reduction (Δ(25(27))-olefin) pathway that is distinct from the well-described acetate-mevalonate pathway to fungal lanosterol and its conversion to ergosterol by the Δ(24(28))-olefin pathway. We isolated and characterized 23 sterols by a combination of GC-MS and proton nuclear magnetic resonance spectroscopy analysis from a set of mutant, wild-type, and 25-thialanosterol-treated cells. The structure and stereochemistry of the final C24-alkyl sterol side chains possessed different combinations of 24β-methyl/ethyl groups and Δ(22(23))E and Δ(25(27))-double bond constructions. When incubated with [methyl-(2)H(3)]methionine, cells incorporated three (into ergosterol) or five (into 7-dehydroporiferasterol) deuterium atoms into the newly biosynthesized 24β-alkyl sterols, consistent only with a Δ(25(27))-olefin pathway. Thus, our findings demonstrate that two separate isoprenoid-24-alkyl sterol pathways evolved in fungi and green algae, both of which converge to yield a common membrane insert ergosterol.
Collapse
Affiliation(s)
- Matthew B. Miller
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409; and
| | - Brad A. Haubrich
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409; and
| | - Qian Wang
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390
| | - William J. Snell
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390
| | - W. David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409; and
| |
Collapse
|
6
|
Affiliation(s)
- W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
7
|
Mechanism-based enzyme inactivators of phytosterol biosynthesis. Molecules 2004; 9:185-203. [PMID: 18007423 DOI: 10.3390/90400185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 03/08/2004] [Indexed: 11/16/2022] Open
Abstract
Current progress on the mechanism and substrate recognition by sterol methyl transferase (SMT), the role of mechanism-based inactivators, other inhibitors of SMT action to probe catalysis and phytosterol synthesis is reported. SMT is a membrane-bound enzyme which catalyzes the coupled C-methylation-deprotonation reaction of sterol acceptor molecules generating the 24-alkyl sterol side chains of fungal ergosterol and plant sitosterol. This C-methylation step can be rate-limiting in the post-lanosterol (fungal) or post-cycloartenol (plant) pathways. A series of sterol analogs designed to impair SMT activity irreversibly have provided deep insight into the C-methylation reaction and topography of the SMT active site and as reviewed provide leads for the development of antifungal agents.
Collapse
|
8
|
Abstract
Expression of the Arabidopsis sterol methyltransferase2 (SMT2) cDNA in Escherichia coli yields a native protein, when purified to homogeneity, has the predicted molecular mass ca. 40 kDa on SDS-PAGE and recognizes native sterols synthesized by Arabidopsis with a Delta(24(25))-bond (cycloartenol; K(m) 35 microM and k(cat) 0.001s(-1)) and Delta(24(28))-bond (24(28)-methylenelophenol; K(m) 28 microM and k(cat) 0.01 s(-1)). Cycloartenol was converted to a single olefinic product-24(28)-methylenecycloartanol whereas 24(28)-methylenelophenol was converted to a mixture of three stereochemically related products with the Delta(24(28))Z-ethylidene, Delta(24(28))E-ethylidene, and Delta(25(27))-24 beta-ethyl side chains. Structural determinants essential to activity were the nucleophilic features at C-3 and C-24. The double bond position in the sterol substrate influenced catalytic efficiency according to the order: side chain, Delta(24(24))<Delta(24(28)) and nucleus, Delta(7)<Delta(8)<Delta(5)=9,19-cyclopropane. The 14 alpha-methyl group was harmful to catalysis, reducing the suitability of cycloartenol as a substrate. On the basis of substrate activity and product distribution, SMT action was probed further using substrate (26,27-dehydrozymosterol: 26,27-DHZ) and intermediate (25-azacycloartenol: 25-AC) analogs of the SMT-catalyzed reactions. 26,27-DHZ was C-methylated to 26-homocholesta-8(9), 23(24)E, 26(26('))-trienol as well as 26-homocholesta-8(9),26(26')-3 beta,24 beta-dienol by SMT2, K(m) of 15 microM, k(cat) of 0.001 s(-1). In addition, 26,27-DHZ acted as a mechanism-based irreversible inhibitor that results in the specific covalent modification of SMT2, exhibiting K(i) of 49 microM, k(inact) of 0.009 s(-1) and partition ratio of 0.11. Substrate protection with zymosterol, 24(28)-methylenelophenol against 26,27-DHZ and similar inhibition of the first and second C(1)-transfer activities by the reversible inhibitor 25-AC of K(i) 20 nM suggested the analogs interacted at the same active site. [28E-2H]- and [28Z-2H]24(28)-methylenelanosterols were paired with AdoMet and differences of 2H-incorporation in the enzyme-generated 24-ethyl olefins supported an antimechanism. The results suggest plant SMT2 has a position-specific substrate specificity for Delta(24(25))-sterols and contains a single active center to catalyze the consecutive C(1)-transfer activities by substrate reaction channels similar to the fungal SMT1.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | |
Collapse
|
9
|
Nes WD, Song Z, Dennis AL, Zhou W, Nam J, Miller MB. Biosynthesis of phytosterols. Kinetic mechanism for the enzymatic C-methylation of sterols. J Biol Chem 2003; 278:34505-16. [PMID: 12807886 DOI: 10.1074/jbc.m303359200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cloned soybean sterol methyltransferase was purified from Escherichia coli to gel electrophoretic homogeneity. From initial velocity experiments, catalytic constants for substrates best suited for the first and second C1 transfer activities, cycloartenol and 24(28)-methylenelophenol, were 0.01 and 0.001 s-1, respectively. Two-substrate kinetic analysis using cycloartenol and S-adenosyl-l-methionine (AdoMet) generated an intersecting line pattern characteristic of a ternary complex kinetic mechanism. The high energy intermediate analog 25-azacycloartanol was a noncompetitive inhibitor versus cycloartenol and an uncompetitive inhibitor versus AdoMet. The dead end inhibitor analog cyclolaudenol was competitive versus cycloartenol and uncompetitive versus AdoMet. 24(28)-Methylenecycloartanol and AdoHcy generated competitive and noncompetitive kinetic patterns, respectively, with respect to AdoMet. Therefore, 24(28)-methylenecycloartanol combines with the same enzyme form as does cycloartenol and must be released from the enzyme before AdoHcy. 25-Azacycloartanol inhibited the first and second C1 transfer activities with about equal efficacy (Ki = 45 nm), suggesting that the successive C-methylation of the Delta 24 bond occurs at the same active center. Comparison of the initial velocity data using AdoMet versus [2H3-methyl]AdoMet as substrates tested against saturating amounts of cycloartenol indicated an isotope effect on VCH3/VCD3 close to unity. [25-2H]24(28)-Methylenecycloartanol, [28E-2H]24 (28)-methylenelanosterol, and [28Z-2H]24(28)-methylene lanosterol were prepared and paired with AdoMet or [methyl-3H3]AdoMet to examine the kinetic isotope effects attending the C-28 deprotonation in the enzymatic synthesis of 24-ethyl(idene) sterols. The stereochemical features as well as the observation of isotopically sensitive branching during the second C-methylation suggests that the two methylation steps can proceed by a change in chemical mechanism resulting from differences in sterol structure, concerted versus carbocation; the kinetic mechanism remains the same during the consecutive methylation of the Delta 24 bond.
Collapse
Affiliation(s)
- W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The mechanisms by which sterol methyl transferases (SMT) transform olefins into structurally different C-methylated products are complex, prompting over 50 years of intense research. Recent enzymological studies, together with the latest discoveries in the fossil record, functional analyses and gene cloning, establish new insights into the enzymatic mechanisms of sterol C-methylation and form a basis for understanding regulation and evolution of the sterol pathway. These studies suggest that SMTs, originated shortly after life appeared on planet earth. SMTs, including those which ultimately give rise to 24 alpha- and 24 beta-alkyl sterols, align the si(beta)-face pi-electrons of the Delta(24)-double bond with the S-methyl group of AdoMet relative to a set of deprotonation bases in the active site. From the orientation of the conformationally flexible side chain in the SMT Michaelis complex, it has been found that either a single product is formed or cationic intermediates are partitioned into multiple olefins. The product structure and stereochemistry of SMT action is phylogenetically distinct and physiologically significant. SMTs control phytosterol homeostasis and their activity is subject to feedback regulation by specific sterol inserts in the membrane. A unified conceptual framework has been formulated in the steric-electric plug model that posits SMT substrate acceptability on the generation of single or double 24-alkylated side chains, which is the basis for binding order, stereospecificity and product diversity in this class of AdoMet-dependent methyl transferase enzymes. The focus of this review is the mechanism of the C-methylation process which, as discussed, can be altered by point mutations in the enzyme to direct the shape of sterol structure to optimize function.
Collapse
Affiliation(s)
- W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
11
|
Zhou W, Nguyen TTM, Collins MS, Cushion MT, Nes WD. Evidence for multiple sterol methyl transferase pathways in Pneumocystis carinii. Lipids 2002; 37:1177-86. [PMID: 12617472 DOI: 10.1007/s11745-002-1018-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sterol composition of Pneumocystis carinii, an opportunistic pathogen responsible for life-threatening pneumonia in immunocompromised patients, was determined. Our purpose was to identify pathway-specific enzymes to impair using sterol biosynthesis inhibitors. Prior to this study, cholesterol 15 (ca. 80% of total sterols), lanosterol 1, and several phytosterols common to plants (sitosterol 31, 24alpha-ethyl and campesterol, 24alpha-methyl 30) were demonstrated in the fungus. In this investigation, we isolated all the previous sterols and many new compounds from P. carinii by culturing the microorganism in steroid-immunosuppressed rats. Thirty-one sterols were identified from the fungus (total sterol = 100 fg/cell), and seven sterols were identified from rat chow. Unusual sterols in the fungus not present in the diet included, 24(28)-methylenelanosterol 2; 24(28)E-ethylidene lanosterol 3; 24(28)Z-ethylidene lanosterol 4; 24beta-ethyllanosta-25(27)-dienol 5; 24beta-ethylcholest-7-enol 6; 24beta-ethylcholesterol 7; 24beta,-ethylcholesta-5,25(27)-dienol 8; 24-methyllanosta-7-enol 9; 24-methyldesmosterol 10; 24(28)-methylenecholest-7-enol 11; 24beta-methylcholest-7-enol 12; and 24beta-methylcholesterol 13. The structural relationships of the 24-alkyl groups in the sterol side chain were demonstrated chromatographically relative to authentic specimens, by MS and high-resolution 1H NMR. The hypothetical order of these compounds poses multiple phytosterol pathways that diverge from a common intermediate to generate 24beta-methyl sterols: route 1, 1 --> 2 --> 11 --> 12 --> 13; route 2, 1 --> 2 --> 9 --> 10 --> 13; or 24beta-ethyl sterols: route 3, 1 --> 2 --> 4 --> 6 --> 7; route 4, 1 --> 2 --> 5 --> 8 --> 7. Formation of 3 is considered to form an interrupted sterol pathway. Taken together, operation of distinct sterol methyl transferase (SMT) pathways that generate 24beta-alkyl sterols in P. carinii with no counterpart in human biochemistry suggests a close taxonomic affinity with fungi and provides a basis for mechanism-based inactivation of SMT enzyme to treat Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | | | | | |
Collapse
|