1
|
Myrka AM, Frost R, Di Stefano D, Plotnikov SV, Buck LT. Cultured primary turtle hepatocytes: a cellular model for the study of temperature and anoxia. Am J Physiol Cell Physiol 2025; 328:C179-C198. [PMID: 39555638 DOI: 10.1152/ajpcell.00510.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Turtle hepatocytes are a nonexcitable model for metabolic depression during low-temperature and/or anoxic overwintering conditions. Cytoskeletal structure and mitochondrial distribution are continuously modified in cells, and we hypothesized that metabolic depression would inhibit such processes as cell attachment and spreading and promote withdrawal of cell protrusions and peripheral mitochondria. After developing a methodology for culturing painted turtle hepatocytes, two-dimensional (2-D) area and maintenance of cell attachment after a media change were used as indicators of structural rearrangement and spreading/volume. These were measured after incubating cells at varying temperatures and with or without the inclusion of cyanide (chemical proxy for anoxia). Experiments were performed using cells from 22°C- or 5°C-acclimated turtles. Live-cell imaging was used to monitor the effect of cyanide exposure on the distribution of mitochondria. We also acclimated cultured cells from 22°C-acclimated turtles to 4°C in vitro and scored withdrawal of protrusions. Only cells isolated from 5°C-acclimated turtles and incubated at 4°C had reduced attachment to fibronectin substrate, but cyanide exposure had no effect. These cells also had a 30% smaller 2-D area than those from 22°C-acclimated turtles. There was no change in mitochondrial distribution during cyanide perfusion. Finally, 4°C acclimation in vitro resulted in the withdrawal of protrusions over 14 days. Taken together with the results from cells acclimated to low temperature in vivo, this suggests inhibition of structural rearrangement and protrusion stability by low temperature acclimation, but not cyanide exposure. Our cultured primary hepatocyte system will facilitate further study of the role of structural dynamics in reversible metabolic depression.NEW & NOTEWORTHY We have optimized a methodology for two-dimensional (2-D) culturing of primary western painted turtle hepatocytes and used this model to study the effects of cyanide and temperature on structural rearrangement, and the effect of cyanide on mitochondrial distribution. Our results suggest that low temperature acclimation, either in vivo or in vitro, inhibits cell protrusions and structural rearrangement. Acute cyanide exposure did not inhibit structural rearrangement or alter mitochondrial distribution.
Collapse
Affiliation(s)
- Alexander M Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan Frost
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Domenic Di Stefano
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Sergey V Plotnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Myrka A, Buck L. Cytoskeletal Arrest: An Anoxia Tolerance Mechanism. Metabolites 2021; 11:metabo11080561. [PMID: 34436502 PMCID: PMC8401981 DOI: 10.3390/metabo11080561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Polymerization of actin filaments and microtubules constitutes a ubiquitous demand for cellular adenosine-5′-triphosphate (ATP) and guanosine-5′-triphosphate (GTP). In anoxia-tolerant animals, ATP consumption is minimized during overwintering conditions, but little is known about the role of cell structure in anoxia tolerance. Studies of overwintering mammals have revealed that microtubule stability in neurites is reduced at low temperature, resulting in withdrawal of neurites and reduced abundance of excitatory synapses. Literature for turtles is consistent with a similar downregulation of peripheral cytoskeletal activity in brain and liver during anoxic overwintering. Downregulation of actin dynamics, as well as modification to microtubule organization, may play vital roles in facilitating anoxia tolerance. Mitochondrial calcium release occurs during anoxia in turtle neurons, and subsequent activation of calcium-binding proteins likely regulates cytoskeletal stability. Production of reactive oxygen species (ROS) formation can lead to catastrophic cytoskeletal damage during overwintering and ROS production can be regulated by the dynamics of mitochondrial interconnectivity. Therefore, suppression of ROS formation is likely an important aspect of cytoskeletal arrest. Furthermore, gasotransmitters can regulate ROS levels, as well as cytoskeletal contractility and rearrangement. In this review we will explore the energetic costs of cytoskeletal activity, the cellular mechanisms regulating it, and the potential for cytoskeletal arrest being an important mechanism permitting long-term anoxia survival in anoxia-tolerant species, such as the western painted turtle and goldfish.
Collapse
Affiliation(s)
- Alexander Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
| | - Leslie Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-416-978-3506
| |
Collapse
|
3
|
Gattoni G, Bernocchi G. Calcium-Binding Proteins in the Nervous System during Hibernation: Neuroprotective Strategies in Hypometabolic Conditions? Int J Mol Sci 2019; 20:E2364. [PMID: 31086053 PMCID: PMC6540041 DOI: 10.3390/ijms20092364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium-binding proteins (CBPs) can influence and react to Ca2+ transients and modulate the activity of proteins involved in both maintaining homeostatic conditions and protecting cells in harsh environmental conditions. Hibernation is a strategy that evolved in vertebrate and invertebrate species to survive in cold environments; it relies on molecular, cellular, and behavioral adaptations guided by the neuroendocrine system that together ensure unmatched tolerance to hypothermia, hypometabolism, and hypoxia. Therefore, hibernation is a useful model to study molecular neuroprotective adaptations to extreme conditions, and can reveal useful applications to human pathological conditions. In this review, we describe the known changes in Ca2+-signaling and the detection and activity of CBPs in the nervous system of vertebrate and invertebrate models during hibernation, focusing on cytosolic Ca2+ buffers and calmodulin. Then, we discuss these findings in the context of the neuroprotective and neural plasticity mechanisms in the central nervous system: in particular, those associated with cytoskeletal proteins. Finally, we compare the expression of CBPs in the hibernating nervous system with two different conditions of neurodegeneration, i.e., platinum-induced neurotoxicity and Alzheimer's disease, to highlight the similarities and differences and demonstrate the potential of hibernation to shed light into part of the molecular mechanisms behind neurodegenerative diseases.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Graziella Bernocchi
- Former Full Professor of Zoology, Neurogenesis and Comparative Neuromorphology, (Residence address) Viale Matteotti 73, I-27100 Pavia, Italy.
| |
Collapse
|
4
|
Hibernation induces changes in the metacerebral neurons of Cornu aspersum: distribution and co-localization of cytoskeletal and calcium-binding proteins. INVERTEBRATE NEUROSCIENCE 2018; 18:13. [DOI: 10.1007/s10158-018-0217-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 01/05/2023]
|
5
|
Nikolic L, Bataveljic D, Andjus PR, Moldovan I, Nedeljkovic M, Petkovic B. Modification of glial response in hibernation: a patch-clamp study on glial cells acutely isolated from hibernating land snail. J Biol Rhythms 2014; 29:442-55. [PMID: 25416596 DOI: 10.1177/0748730414559126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hibernation is a dormant state of some animal species that enables them to survive harsh environmental conditions during the winter seasons. In the hibernating state, preservation of neuronal rhythmic activity at a low level is necessary for maintenance of suspended forms of behavior. As glial cells support rhythmic activity of neurons, preservation of brain function in the hibernating state implies accompanying modification of glial activity. A supportive role of glia in regulating neuronal activity is reflected through the activity of inwardly rectifying K+ channels (Kir). Therefore, we examined electrophysiological response, particularly Kir current response, of glial cells in mixture with neurons acutely isolated from active and hibernating land snail Helix pomatia. Our data show that hibernated glia have significantly lower inward current density, specific membrane conductance, and conductance density compared with active glia. The observed reduction could be attributed to the Kir currents, since the Ba2+-sensitive Kir current density was significantly lower in hibernated glia. Accordingly, a significant positive shift of the current reversal potential indicated a more depolarized state of hibernated glia. Data obtained show that modification of glial current response could be regulated by serotonin (5-HT) through an increase of cGMP as a secondary messenger, since extracellular addition of 5-HT or intracellular administration of cGMP to active glia induced a significant reduction of inward current density and thus mimicked the reduced response of hibernated glia. Lower Kir current density of hibernated glia accompanied the lower electrical activity of hibernated neurons, as revealed by a decrease in neuronal fast inward Na+ current density. Our findings reveal that glial response is reduced in the hibernating state and suggest seasonal modulation of glial activity. Maintenance of low glial activity in hibernation could be important for preservation of brain rhythmic activity and survival of the animal.
Collapse
|
6
|
Emirbekov EZ, Pashaeva ME. Expression of cytoskeleton proteins in hypothalamic cells in winter sleeping ground squirrels Citellus pygmaeus Pallas during hibernation. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Pirger Z, Lubics A, Reglodi D, Laszlo Z, Mark L, Kiss T. Mass spectrometric analysis of activity-dependent changes of neuropeptide profile in the snail, Helix pomatia. Neuropeptides 2010; 44:475-83. [PMID: 20716464 DOI: 10.1016/j.npep.2010.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/21/2010] [Accepted: 07/20/2010] [Indexed: 01/25/2023]
Abstract
Terrestrial snails are able to transform themselves into inactivity ceasing their behavioral activity under unfavorable environmental conditions. In the present study, we report on the activity-dependent changes of the peptide and/or polypeptide profile in the brain and hemolymph of the snail, Helix pomatia, using MALDI TOF and quadrupole mass spectrometry. The present data indicate that the snails respond to low temperature by increasing or decreasing the output of selected peptides. Average mass spectra of the brain and hemolymph revealed numerous peaks predominantly present during the active state (19 and 10 peptides/polypeptides, respectively), while others were observed only during hibernation (11 and 13). However, there were peptides and/or polypeptides or their fragments present irrespective of the activity states (49 and 18). The intensity of fourteen peaks that correspond to previously identified neuropeptides varied in the brain of active snails compared to those of hibernating animals. Among those the intensity of eight peptides increased significantly in active animals while in hibernated animals the intensity of another six peptides increased significantly. A new peptide or peptide fragment at m/z 1110.7 was identified in a brain of the snail with the following suggested amino acid sequence: GSGASGSMPATTS. This peptide was found to be more abundant in active animals because the intensity of the peptide was significantly higher compared to hibernating animals. In summary, our results revealed substantial differences in the peptide/polypeptide profile of the brain and hemolymph of active and hibernating snails suggesting a possible contribution of peptides in the process of hibernation.
Collapse
Affiliation(s)
- Z Pirger
- Department of Experimental Zoology, Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Tihany, Hungary.
| | | | | | | | | | | |
Collapse
|
8
|
Rószer T, Kiss-Tóth E, Rózsa D, Józsa T, Szentmiklósi AJ, Bánfalvi G. Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons. Cell Tissue Res 2010; 342:191-203. [PMID: 20953631 DOI: 10.1007/s00441-010-1063-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/15/2010] [Indexed: 01/28/2023]
Abstract
Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.
Collapse
Affiliation(s)
- Tamás Rószer
- Department of Microbial Biotechnology and Cell Biology (formerly Animal Anatomy and Physiology), Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
9
|
Borges E, Cognato GDP, Vuaden FC, Bogo MR, Fauth MDG, Bonan CD, Dias RD. Nucleotidase activities in membrane preparations of nervous ganglia and digestive gland of the snail Helix aspersa. Comp Biochem Physiol B Biochem Mol Biol 2005; 137:297-307. [PMID: 15050517 DOI: 10.1016/j.cbpc.2003.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 11/20/2003] [Accepted: 11/21/2003] [Indexed: 11/24/2022]
Abstract
Nucleotide-metabolizing enzymes play an important role in the regulation of nucleotide levels. In the present report, we demonstrated an enzyme activity with different kinetic properties in membrane preparations of the nervous ganglia and digestive gland from Helix aspersa. ATPase and ADPase activities were dependent on Ca2+ and Mg2+ with pH optima approximately 7.2 and between 6.0 and 8.0 in digestive gland and nervous ganglia, respectively. The enzyme activities present in membrane preparations of these tissues preferentially hydrolyzed triphosphate nucleotides. In nervous ganglia, the enzyme was insensitive to the classical ATPases inhibitors. In contrast, in digestive gland, N-ethylmaleimide (NEM) produced 45% inhibition of Ca(2+)-ATP hydrolysis. Sodium azide, at 100 microM and 20 mM, inhibited Mg(2+)-ATP hydrolysis by 36% and 55% in digestive gland, respectively. The presence of nucleotide-metabolizing enzymes in these tissues may be important for the modulation of nucleotide and nucleoside levels, controlling their actions on specific purinoceptors in these species.
Collapse
Affiliation(s)
- Eliane Borges
- Departamento de Ciências Fisiológicas, Faculdade de Biociências, Laboratório de Pesquisa Bioquímica, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Caixa postal 1429, 90619-900, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Pisu MB, Conforti E, Fenoglio C, Necchi D, Scherini E, Bernocchi G. Nitric oxide-containing neurons in the nervous ganglia of Helix aspersa during rest and activity: immunocytochemical and enzyme histochemical detection. J Comp Neurol 1999; 409:274-84. [PMID: 10379920 DOI: 10.1002/(sici)1096-9861(19990628)409:2<274::aid-cne8>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nitric oxide synthase (NOS) immunoreactivity and staining for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) activity are two cytochemical markers for nitric oxide (NO)-containing neurons. The authors examined the changes in the distribution of NOS immunolabeling and NADPH-diaphorase reactivity in the cerebral and buccal ganglia of the terrestrial snail Helix aspersa during resting and active phases. During inactivity and after 1 day of activity, in the mesocerebrum and metacerebrum of the snails, there were several reactive neurons for both markers; after 7 days of activity, the number of reactive neurons was lower. Opposite results were obtained in the buccal ganglia, in which increased staining and numbers of reactive neurons were present in the active snails (after 1 day and 7 days of activity). Although the staining patterns for the two reactions were similar, colocalization was not always observed. The comparison between inactive and active animals provided a more precise survey of NOS-containing neurons in the snail cerebral ganglia than previously described. Moreover, it suggested that not only is NO involved in distinct nervous circuits, but, as a ubiquitous molecule, it also plays a role in neuroprotection and neuropeptide release.
Collapse
Affiliation(s)
- M B Pisu
- Dipartimento di Biologia Animale Centro di Studio per l'Istochimica del C.N.R., Università di Pavia, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Bernocchi G, Vignola C, Scherini E, Necchi D, Pisu MB. Bioactive peptides and serotonin immunocytochemistry in the cerebral ganglia of hibernatingHelix aspersa. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(19980401)280:5<354::aid-jez4>3.0.co;2-n] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Fenoglio C, Scherini E, Necchi D, Soldani C, Bernocchi G. Perineuronal glial system in the cerebral ganglion of active and hibernating Helix aspersa. Tissue Cell 1997; 29:561-72. [DOI: 10.1016/s0040-8166(97)80056-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1997] [Accepted: 05/12/1997] [Indexed: 10/25/2022]
|