1
|
Ait Laaradia M, Laadraoui J, Ettitaou A, Agouram F, Oubella K, Moubtakir S, Aboufatima R, Chait A. Variation in venom yield, protein concentration and regeneration toxicity in the scorpion Buthus lienhardi. Toxicon 2025; 255:108254. [PMID: 39862930 DOI: 10.1016/j.toxicon.2025.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Scorpion venom research aims to develop treatments for dangerous species and identify candidates for new drugs. The extraction of high-quality venom, which is essential, requires mastery of the extraction and maintenance of scorpions. It is in this perspective that we have undertaken this present work which aims to contribute to scientifically mastering venom yields and the factors that influence them in scorpions. Two experiments were conducted. In the first, the volume yield and protein concentration of venom from 121 Buthus lienhardi scorpions were examined according to their size, sex, mass and place of origin. In the second experiment, the quality and quantity of venom regenerated over 30 days after extraction were measured on 80 scorpions, with samples collected at different time points (8 H, 16 H, 24 H, 32 H, 48 H, 3 days (D), 7 D, 11 D, 15 D and 30 D). In addition, the toxicity of venom samples collected from mice at different stages was evaluated. The volume of venom extracted by electrical stimulation was linearly related to body length. Body length and protein concentration were not correlated. When considering the multiple influences on production volume in Buthus lienhardi, the most important factor was body length, but volume was also positively associated with mesosome length and relative body mass. Male scorpions produced a greater volume of venom with a higher protein concentration than females. For venom regeneration, the volume of venom extracted after depletion showed a significant increase over the days, reaching a complete recovery by day 11. In contrast, protein regeneration and toxicity were slower than that of volume, with a complete recovery observed by day 15. This study should lead to the design of better venom extraction protocols for several studies such as treatment development, basic research and especially for drug development.
Collapse
Affiliation(s)
- Mehdi Ait Laaradia
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Ministry of Health and Social Protection, Beni Mellal, Morocco.
| | - Jawad Laadraoui
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco; Laboratory of Physiopathology, Genetic Molecular and Biotechnology, Faculty of Sciences, Aïn Chock, Hassan II University, Casablanca, Morocco
| | - Amina Ettitaou
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Fatimzahra Agouram
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Khadija Oubella
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Soad Moubtakir
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| |
Collapse
|
2
|
Ramírez DS, Alzate JF, Simone Y, van der Meijden A, Guevara G, Franco Pérez LM, González-Gómez JC, Prada Quiroga CF. Intersexual Differences in the Gene Expression of Phoneutria depilata (Araneae, Ctenidae) Toxins Revealed by Venom Gland Transcriptome Analyses. Toxins (Basel) 2023; 15:429. [PMID: 37505698 PMCID: PMC10467060 DOI: 10.3390/toxins15070429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The wandering spider, Phoneutria depilata, is one of Colombia's most active nocturnal arthropod predators of vertebrates and invertebrates. Its venom has been a relevant subject of study in the last two decades. However, the scarcity of transcriptomic data for the species limits our knowledge of the distinct components present in its venom for linking the mainly neurotoxic effects of the spider venom to a particular molecular target. The transcriptome of the P. depilata venom gland was analyzed to understand the effect of different diets or sex and the impact of these variables on the composition of the venom. We sequenced venom glands obtained from ten males and ten females from three diet treatments: (i) invertebrate: Tenebrio molitor, (ii) vertebrate: Hemidactylus frenatus, and (iii) mixed (T. molitor + H. frenatus). Of 17,354 assembled transcripts from all samples, 65 transcripts relating to venom production differed between males and females. Among them, 36 were classified as neurotoxins, 14 as serine endopeptidases, 11 as other proteins related to venom production, three as metalloprotease toxins, and one as a venom potentiator. There were no differences in transcripts across the analyzed diets, but when considering the effect of diets on differences between the sexes, 59 transcripts were differentially expressed. Our findings provide essential information on toxins differentially expressed that can be related to sex and the plasticity of the diet of P. depilata and thus can be used as a reference for venomics of other wandering spider species.
Collapse
Affiliation(s)
- Diego Sierra Ramírez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | - Yuri Simone
- CIBIO/InBIO/Biopolis, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal; (Y.S.); (A.v.d.M.)
| | - Arie van der Meijden
- CIBIO/InBIO/Biopolis, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vila do Conde, Portugal; (Y.S.); (A.v.d.M.)
| | - Giovany Guevara
- Grupo de Investigación en Zoología (GIZ), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia;
| | - Lida Marcela Franco Pérez
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia;
| | - Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| | - Carlos F. Prada Quiroga
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (D.S.R.); (J.C.G.-G.)
| |
Collapse
|
3
|
Duran LH, Wilson DT, Salih M, Rymer TL. Interactions between physiology and behaviour provide insights into the ecological role of venom in Australian funnel-web spiders: Interspecies comparison. PLoS One 2023; 18:e0285866. [PMID: 37216354 PMCID: PMC10202279 DOI: 10.1371/journal.pone.0285866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Australian funnel-web spiders are iconic species, characterized as being the most venomous spiders in the world. They are also valued for the therapeutics and natural bioinsecticides potentially hidden in their venom molecules. Although numerous biochemical and molecular structural approaches have tried to determine the factors driving venom complexity, these approaches have not considered behaviour, physiology and environmental conditions collectively, which can play a role in the evolution, complexity, and function of venom components in funnel-webs. This study used a novel interdisciplinary approach to understand the relationships between different behaviours (assessed in different ecological contexts) and morphophysiological variables (body condition, heart rate) that may affect venom composition in four species of Australian funnel-web spiders. We tested defensiveness, huddling behaviour, frequency of climbing, and activity for all species in three ecological contexts: i) predation using both indirect (puff of air) and direct (prodding) stimuli; ii) conspecific tolerance; and iii) exploration of a new territory. We also assessed morphophysiological variables and venom composition of all species. For Hadronyche valida, the expression of some venom components was associated with heart rate and defensiveness during the predation context. However, we did not find any associations between behavioural traits and morphophysiological variables in the other species, suggesting that particular associations may be species-specific. When we assessed differences between species, we found that the species separated out based on the venom profiles, while activity and heart rate are likely more affected by individual responses and microhabitat conditions. This study demonstrates how behavioural and morphophysiological traits are correlated with venom composition and contributes to a broader understanding of the function and evolution of venoms in funnel-web spiders.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - David Thomas Wilson
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - Mohamed Salih
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
| |
Collapse
|
4
|
Krämer J, Pommerening R, Predel R. Equipped for Sexual Stings? Male-Specific Venom Peptides in Euscorpius italicus. Int J Mol Sci 2022; 23:ijms231911020. [PMID: 36232328 PMCID: PMC9570025 DOI: 10.3390/ijms231911020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the animal kingdom, intraspecific variation occurs, for example, between populations, different life stages, and sexes. For venomous animals, this can involve differences in their venom composition. In cases where venom is utilized in the context of mating, the differences in composition might be driven by sexual selection. In this regard, the genus Euscorpius is a promising group for further research, as some of these scorpions exhibit a distinct sexual dimorphism and are known to perform a sexual sting during mating. However, the venom composition of this genus remains largely unexplored. Here, we demonstrate that Euscorpius italicus exhibits a male-specific venom composition, and we identify a large fraction of the substances involved. The sex specificity of venom peptides was first determined by analyzing the presence/absence patterns of ion signals in MALDI-TOF mass spectra of venom samples from both sexes and juveniles. Subsequently, a proteo-transcriptomic analysis provided sequence information on the relevant venom peptides and their corresponding precursors. As a result, we show that several potential toxin precursors are down-regulated in male venom glands, possibly to reduce toxic effects caused to females during the sexual sting. We have identified the precursor of one of the most prominent male-specific venom peptides, which may be an ideal candidate for activity tests in future studies. In addition to the description of male-specific features in the venom of E. italicus, this study also includes a general survey of venom precursors in this species.
Collapse
|
5
|
Worldwide Web: High Venom Potency and Ability to Optimize Venom Usage Make the Globally Invasive Noble False Widow Spider Steatoda nobilis (Thorell, 1875) (Theridiidae) Highly Competitive against Native European Spiders Sharing the Same Habitats. Toxins (Basel) 2022; 14:toxins14090587. [PMID: 36136525 PMCID: PMC9500793 DOI: 10.3390/toxins14090587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Venom compositions include complex mixtures of toxic proteins that evolved to immobilize/dissuade organisms by disrupting biological functions. Venom production is metabolically expensive, and parsimonious use is expected, as suggested by the venom optimisation hypothesis. The decision-making capacity to regulate venom usage has never been demonstrated for the globally invasive Noble false widow Steatoda nobilis (Thorell, 1875) (Theridiidae). Here, we investigated variations of venom quantities available in a wild population of S. nobilis and prey choice depending on venom availability. To partially determine their competitiveness, we compared their attack rate success, median effective dose (ED50) and lethal dose (LD50), with four sympatric synanthropic species: the lace webbed spider Amaurobius similis, the giant house spider Eratigena atrica, the missing sector orb-weaver Zygiella x-notata, and the cellar spider Pholcus phalangioides. We show that S. nobilis regulates its venom usage based on availability, and its venom is up to 230-fold (0.56 mg/kg) more potent than native spiders. The high potency of S. nobilis venom and its ability to optimize its usage make this species highly competitive against native European spiders sharing the same habitats.
Collapse
|
6
|
Solano-Godoy JA, González-Gómez JC, Torres-Bonilla KA, Floriano RS, Miguel ATSF, Murillo-Arango W. Comparison of biological activities of Tityus pachyurus venom from two Colombian regions. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210005. [PMID: 34925479 PMCID: PMC8651215 DOI: 10.1590/1678-9199-jvatitd-2021-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Background In the present study, we have tested whether specimens of the medically relevant scorpion Tityus pachyurus, collected from two climatically and ecologically different regions, differ in the biological activities of the venom. Methods Scorpions were collected in Tolima and Huila, Colombia. Chemical profiles of the crude venom were obtained from 80 scorpions for each region, using SDS-PAGE and RP-HPLC. Assays for phospholipase A2, direct and indirect hemolytic, proteolytic, neuromuscular, antibacterial, and insecticidal activities were carried out. Results The electrophoretic profiles of venom from the two regions showed similar bands of 6-14 kDa, 36-45 kDa, 65 kDa and 97 kDa. However, bands between 36 kDa and 65 kDa were observed with more intensity in venoms from Tolima, and a 95 kDa band occurred only in venoms from Huila. The chromatographic profile of the venoms showed differences in the intensity of some peaks, which could be associated with changes in the abundance of some components between both populations. Phospholipase A2 and hemolytic activities were not observable, whereas both venoms showed proteolytic activity towards casein. Insecticidal activity of the venoms from both regions showed significant variation in potency, the bactericidal activity was variable and low for both venoms. Moreover, no differences were observed in the neuromuscular activity assay. Conclusion Our results reveal some variation in the activity of the venom between both populations, which could be explained by the ecological adaptations like differences in feeding, altitude and/or diverse predator exposure. However more in-depth studies are necessary to determine the drivers behind the differences in venom composition and activities.
Collapse
Affiliation(s)
- Jennifer Alexandra Solano-Godoy
- Natural Products Research Group (GIPRONUT), School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Julio César González-Gómez
- Research Group BEA - Biology and Ecology of Arthropods, Corporación Huiltur, Neiva, Huila, Colombia.,School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia.,Research Group on Bio-ecology of Vertebrates (BIVET), Fundación Merenberg, La Plata, Huila, Colombia
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Rafael Stuani Floriano
- Laboratory of Toxinology and Cardiovascular Research (LATEC), Graduate Program in Health Sciences, University of Western São Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | - Ananda T Santa Fé Miguel
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Walter Murillo-Arango
- Natural Products Research Group (GIPRONUT), School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| |
Collapse
|
7
|
Lüddecke T, Herzig V, von Reumont BM, Vilcinskas A. The biology and evolution of spider venoms. Biol Rev Camb Philos Soc 2021; 97:163-178. [PMID: 34453398 DOI: 10.1111/brv.12793] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| | - Andreas Vilcinskas
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| |
Collapse
|
8
|
Claunch NM, Holding M, Frazier JT, Huff EM, Schonour RB, Vernasco B, Moore IT, Rokyta DR, Taylor EN. Experimental Manipulation of Corticosterone Does Not Affect Venom Composition or Functional Activity in Free-Ranging Rattlesnakes. Physiol Biochem Zool 2021; 94:286-301. [PMID: 34166170 DOI: 10.1086/714936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractVenom is an integral feeding trait in many animal species. Although venom often varies ontogenetically, little is known about the proximate physiological mediators of venom variation within individuals. The glucocorticoid hormone corticosterone (CORT) can alter the transcription and activation of proteins, including homologues of snake venom components such as snake venom metalloproteinases (SVMPs) and phospholipase A2 (PLA2). CORT is endogenously produced by snakes, varies seasonally and also in response to stress, and is a candidate endogenous mediator of changes in venom composition and functional activity. Here, we tested the hypothesis that CORT induces changes in snake venom by sampling the venom of wild adult rattlesnakes before and after they were treated with either empty (control) or CORT-filled (treatment) Silastic implants. We measured longitudinal changes in whole-venom composition, whole-venom total protein content, and enzymatic activity of SVMP and PLA2 components of venom. We also assessed the within-individual repeatability of venom components. Despite successfully elevating plasma CORT in the treatment group, we found no effect of CORT treatment or average plasma CORT level on any venom variables measured. Except for total protein content, venom components were highly repeatable within individuals ([Formula: see text]). Our results indicate that the effects of CORT, a hormone commonly associated with stress and metabolic functions, in adult rattlesnake venom are negligible. Our findings bode well for venom researchers and biomedical applications that rely on the consistency of venoms produced from potentially stressed individuals and provide an experimental framework for future studies of proximate mediators of venom variation across an individual's life span.
Collapse
|
9
|
Curran-Sills G, Wilson SM, Bennett R. A Review of Black Widow (Araneae: Theridiidae) Envenomation, Epidemiology, and Antivenom Utilization in Canada. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:99-103. [PMID: 33432350 DOI: 10.1093/jme/tjaa148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 06/12/2023]
Abstract
Two species of black widow spider (BWS-Latrodectus hesperus Chamberlin & Ivie and Latrodectus variolus Walckenaer) naturally occur in Canada and are capable of causing deleterious envenomation to humans. No Canadian literature exists on the frequency of envenomations by these species or the use of antivenom in the treatment of those patients. A review of primary Canadian arachnology data was undertaken to identify BWS populations. A retrospective review of the Health Canada Special Access Program records generated epidemiology and the utilization of antivenom for BWS envenomations in Canada. The geographical distribution of BWS species is limited to along the southern Canadian border. From January 2009 to December 2015, there were five BWS envenomations that required treatment with antivenom and all cases occurred in British Columbia. An average patient age of 41 yr ± 21 SD (range 7-59) was observed, along with three of the five patients being female. The average number of vials used for treatment was 2 ± 1 SD (range 1-3). BWS Antivenin was also obtained by facilities in Alberta, Ontario, and Nova Scotia, but not used in any of these jurisdictions. Further investigation is necessary to determine the annual incidence of BWS envenomations and if treatment with BWS antivenin is required.
Collapse
Affiliation(s)
- Gwynn Curran-Sills
- Department of Family Medicine, University of Calgary, Calgary, Alberta, Canada
- Captain, 15 Field Ambulance, Calgary Detachment, Canadian Armed Forces, Calgary, Alberta, Canada
| | - Steven M Wilson
- EmergeOrtho - Alternative Medicine and Rehabilitation Services, Shipyard Boulevard, Wilmington, NC
| | - Robb Bennett
- Royal British Columbia Museum, Victoria, British Columbia, Canada
| |
Collapse
|
10
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
11
|
Duran LH, Rymer TL, Wilson DT. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon X 2020; 8:100063. [PMID: 33305257 PMCID: PMC7711288 DOI: 10.1016/j.toxcx.2020.100063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
Mygalomorph venom properties and active components, which have importance in medicine, agronomy, venomics, ecology and evolution, have been widely studied, but only a small fraction have been characterised. Several studies have shown inter-individual variation in the composition of venom peptides based on ontogeny, sexual dimorphism, season and diet. However, intra-individual variation in venom composition, which could play a key role in the evolution, diversification and function of toxins, is poorly understood. In this study, we demonstrate significant intra- and inter-individual variation in venom composition in the Australian funnel-web spider Hadronyche valida, highlighting that individuals show different venom profiles over time. Fourteen (four juvenile and ten adult females) funnel-web spiders, maintained under the same environmental conditions and diet, were milked a total of four times, one month apart. We then used reversed-phase high performance liquid chromatography/electrospray ionisation mass spectrometry to generate venom fingerprints containing the retention time and molecular weights of the different toxin components in the venom. Across all individuals, we documented a combined total of 83 individual venom components. Only 20% of these components were shared between individuals. Individuals showed variation in the composition of venom peptides, with some components consistently present over time, while others were only present at specific times. When individuals were grouped using the Jaccard clustering index and Kernel Principal Component Analysis, spiders formed two distinct clusters, most likely due to their origin or time of collection. This study contributes to the understanding of variation in venom composition at different levels (intra-individual, and intra- and inter-specific) and considers some of the mechanisms of selection that may contribute to venom diversification within arachnids. In addition, inter-specific variation in venom composition can be highly useful as a chemotaxonomic marker to identify funnel-web species.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
12
|
Yu C, Yu H, Li P. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy. Int J Biol Macromol 2020; 165:2994-3006. [PMID: 33122066 DOI: 10.1016/j.ijbiomac.2020.10.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023]
Abstract
Geographical variation of animal venom is common among venomous animals. This kind of intraspecific variation based on geographical location mainly concerned from envenomation cases and brought new problems in animal venom studies, including venom components regulatory mechanisms, differentiation of venom activities, and clinical treatment methods. At present, food is considered as the most related factor influencing venom development. Related research defined the variational venomous animal species by the comparison of venom components and activities in snakes, jellyfish, scorpions, cone snails, ants, parasitoid wasps, spiders and toads. In snake venom studies, researchers found that antivenom effectiveness was variated to different located venom samples. As described in some snake venom research, developing region-specific antivenom is the development trend. The difficulties of developing region-specific antivenom and theoretical solutions have been discussed. This review summarized biological studies of animal venom geographical variation by species, compared venom components and major biological activities of the vary venom from the same species, and listed the basic methods in comparing venom protein compositions and major toxicity differences to provide a comprehensive reference.
Collapse
Affiliation(s)
- Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
13
|
Proteotranscriptomic Insights into the Venom Composition of the Wolf Spider Lycosa tarantula. Toxins (Basel) 2020; 12:toxins12080501. [PMID: 32764230 PMCID: PMC7471975 DOI: 10.3390/toxins12080501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 01/31/2023] Open
Abstract
Spider venoms represent an original source of novel compounds with therapeutic and agrochemical potential. Whereas most of the research efforts have focused on large mygalomorph spiders, araneomorph spiders are equally promising but require more sensitive and sophisticated approaches given their limited size and reduced venom yield. Belonging to the latter group, the genus Lycosa ("wolf spiders") contains many species widely distributed throughout the world. These spiders are ambush predators that do not build webs but instead rely strongly on their venom for prey capture. Lycosa tarantula is one of the largest species of wolf spider, but its venom composition is unknown. Using a combination of RNA sequencing of the venom glands and venom proteomics, we provide the first overview of the peptides and proteins produced by this iconic Mediterranean spider. Beside the typical small disulfide rich neurotoxins, several families of proteins were also identified, including cysteine-rich secretory proteins (CRISP) and Hyaluronidases. Proteomic analysis of the electrically stimulated venom validated 30 of these transcriptomic sequences, including nine putative neurotoxins and eight venom proteins. Interestingly, LC-MS venom profiles of manual versus electric stimulation, as well as female versus male, showed some marked differences in mass distribution. Finally, we also present some preliminary data on the biological activity of L. tarantula crude venom.
Collapse
|
14
|
González-Gómez JC, Valenzuela-Rojas JC, García LF, Franco Pérez LM, Guevara G, Buitrago S, Cubillos A, Van Der Meijden A. Sexual dimorphism in the biomechanical and toxicological performance in prey incapacitation of two morphologically distinct scorpion species (Chactas sp. and Centruroides sp.). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Morphological differences between the sexes are a common feature in many groups of animals and can have important ecological implications for courtship, mating, access to prey and, in some cases, intersex niche partitioning. In this study, we evaluated the role of sexual dimorphism in the performance of the two structures that mediate the ability to access prey, the pinchers or chelae and the venomous stinger, in two species of scorpions with contrasting morphologies: Chactas sp., which has marked sexual dimorphism in the chelae, and Centruroides sp., which does not have such marked dimorphism in the chelae. We evaluated aspects such as chela pinch force, toxicity to prey (LD50) and the volume of venom in males and females of each species. We found significant differences between males and females of Chactas sp. in the chela pinch force, volume of venom and LD50. In contrast, for Centruroides sp., no differences between males and females were found in any of these traits. We discuss several potential selective regimes that could account for the pattern observed.
Collapse
Affiliation(s)
- Julio César González-Gómez
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Juan Carlos Valenzuela-Rojas
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Luis Fernando García
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
- Grupo Multidisciplinario en Ecología para la Agricultura, Centro Universitario Regional del Este, Universidad de la República, Simón del Pino, 1132 Treinta y Tres, Uruguay
| | - Lida Marcela Franco Pérez
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué, Colombia
| | - Giovany Guevara
- Grupo de Investigación en Zoología (GIZ), Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Sandra Buitrago
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Allison Cubillos
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Arie Van Der Meijden
- Grupo de investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila y Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
- CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, Portugal
| |
Collapse
|
15
|
Valenzuela-Rojas JC, González-Gómez JC, van der Meijden A, Cortés JN, Guevara G, Franco LM, Pekár S, García LF. Prey and Venom Efficacy of Male and Female Wandering Spider, Phoneutria boliviensis (Araneae: Ctenidae). Toxins (Basel) 2019; 11:E622. [PMID: 31717836 PMCID: PMC6891708 DOI: 10.3390/toxins11110622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
Spiders rely on venom to catch prey and few species are even capable of capturing vertebrates. The majority of spiders are generalist predators, possessing complex venom, in which different toxins seem to target different types of prey. In this study, we focused on the trophic ecology and venom toxicity of Phoneutria boliviensis F. O. Pickard-Cambridge, 1897, a Central American spider of medical importance. We tested the hypothesis that its venom is adapted to catch vertebrate prey by studying its trophic ecology and venom toxicity against selected vertebrate and invertebrate prey. We compared both trophic ecology (based on acceptance experiments) and toxicity (based on bioassays) among sexes of this species. We found that P. boliviensis accepted geckos, spiders, and cockroaches as prey, but rejected frogs. There was no difference in acceptance between males and females. The venom of P. boliviensis was far more efficient against vertebrate (geckos) than invertebrate (spiders) prey in both immobilization time and LD50. Surprisingly, venom of males was more efficient than that of females. Our results suggest that P. boliviensis has adapted its venom to catch vertebrates, which may explain its toxicity to humans.
Collapse
Affiliation(s)
- Juan Carlos Valenzuela-Rojas
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
| | - Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
| | - Arie van der Meijden
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, Portugal
| | - Juan Nicolás Cortés
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730001, Colombia; (J.N.C.); (L.M.F.)
| | - Giovany Guevara
- Grupo de Investigación en Zoología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia;
| | - Lida Marcela Franco
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730001, Colombia; (J.N.C.); (L.M.F.)
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Luis Fernando García
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
- Grupo Multidisciplinario en Ecología para la Agricultura, Centro Universitario Regional del Este, Treinta y Tres 33000, Uruguay
| |
Collapse
|
16
|
Mathé-Hubert H, Kremmer L, Colinet D, Gatti JL, Van Baaren J, Delava É, Poirié M. Variation in the Venom of Parasitic Wasps, Drift, or Selection? Insights From a Multivariate QST Analysis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Drukewitz SH, von Reumont BM. The Significance of Comparative Genomics in Modern Evolutionary Venomics. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
18
|
Clinical consequences of toxic envenomation by spiders. Toxicon 2018; 152:65-70. [DOI: 10.1016/j.toxicon.2018.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/17/2018] [Accepted: 07/22/2018] [Indexed: 01/17/2023]
|
19
|
von Reumont BM. Studying Smaller and Neglected Organisms in Modern Evolutionary Venomics Implementing RNASeq (Transcriptomics)-A Critical Guide. Toxins (Basel) 2018; 10:toxins10070292. [PMID: 30012955 PMCID: PMC6070909 DOI: 10.3390/toxins10070292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Venoms are evolutionary key adaptations that species employ for defense, predation or competition. However, the processes and forces that drive the evolution of venoms and their toxin components remain in many aspects understudied. In particular, the venoms of many smaller, neglected (mostly invertebrate) organisms are not characterized in detail, especially with modern methods. For the majority of these taxa, even their biology is only vaguely known. Modern evolutionary venomics addresses the question of how venoms evolve by applying a plethora of -omics methods. These recently became so sensitive and enhanced that smaller, neglected organisms are now more easily accessible to comparatively study their venoms. More knowledge about these taxa is essential to better understand venom evolution in general. The methodological core pillars of integrative evolutionary venomics are genomics, transcriptomics and proteomics, which are complemented by functional morphology and the field of protein synthesis and activity tests. This manuscript focuses on transcriptomics (or RNASeq) as one toolbox to describe venom evolution in smaller, neglected taxa. It provides a hands-on guide that discusses a generalized RNASeq workflow, which can be adapted, accordingly, to respective projects. For neglected and small taxa, generalized recommendations are difficult to give and conclusions need to be made individually from case to case. In the context of evolutionary venomics, this overview highlights critical points, but also promises of RNASeq analyses. Methodologically, these concern the impact of read processing, possible improvements by perfoming multiple and merged assemblies, and adequate quantification of expressed transcripts. Readers are guided to reappraise their hypotheses on venom evolution in smaller organisms and how robustly these are testable with the current transcriptomics toolbox. The complementary approach that combines particular proteomics but also genomics with transcriptomics is discussed as well. As recently shown, comparative proteomics is, for example, most important in preventing false positive identifications of possible toxin transcripts. Finally, future directions in transcriptomics, such as applying 3rd generation sequencing strategies to overcome difficulties by short read assemblies, are briefly addressed.
Collapse
Affiliation(s)
- Björn Marcus von Reumont
- Justus Liebig University of Giessen, Institute for Insect Biotechnology, Heinrich Buff Ring 58, 35392 Giessen, Germany.
- Natural History Museum, Department of Life Sciences, Cromwell Rd, London SW75BD, UK.
| |
Collapse
|
20
|
|
21
|
Gendreau KL, Haney RA, Schwager EE, Wierschin T, Stanke M, Richards S, Garb JE. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity. BMC Genomics 2017; 18:178. [PMID: 28209133 PMCID: PMC5314461 DOI: 10.1186/s12864-017-3551-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/02/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Black widow spiders are infamous for their neurotoxic venom, which can cause extreme and long-lasting pain. This unusual venom is dominated by latrotoxins and latrodectins, two protein families virtually unknown outside of the black widow genus Latrodectus, that are difficult to study given the paucity of spider genomes. Using tissue-, sex- and stage-specific expression data, we analyzed the recently sequenced genome of the house spider (Parasteatoda tepidariorum), a close relative of black widows, to investigate latrotoxin and latrodectin diversity, expression and evolution. RESULTS We discovered at least 47 latrotoxin genes in the house spider genome, many of which are tandem-arrayed. Latrotoxins vary extensively in predicted structural domains and expression, implying their significant functional diversification. Phylogenetic analyses show latrotoxins have substantially duplicated after the Latrodectus/Parasteatoda split and that they are also related to proteins found in endosymbiotic bacteria. Latrodectin genes are less numerous than latrotoxins, but analyses show their recruitment for venom function from neuropeptide hormone genes following duplication, inversion and domain truncation. While latrodectins and other peptides are highly expressed in house spider and black widow venom glands, latrotoxins account for a far smaller percentage of house spider venom gland expression. CONCLUSIONS The house spider genome sequence provides novel insights into the evolution of venom toxins once considered unique to black widows. Our results greatly expand the size of the latrotoxin gene family, reinforce its narrow phylogenetic distribution, and provide additional evidence for the lateral transfer of latrotoxins between spiders and bacterial endosymbionts. Moreover, we strengthen the evidence for the evolution of latrodectin venom genes from the ecdysozoan Ion Transport Peptide (ITP)/Crustacean Hyperglycemic Hormone (CHH) neuropeptide superfamily. The lower expression of latrotoxins in house spiders relative to black widows, along with the absence of a vertebrate-targeting α-latrotoxin gene in the house spider genome, may account for the extreme potency of black widow venom.
Collapse
Affiliation(s)
- Kerry L Gendreau
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.,Department of Biological Sciences, Virginia Tech, Biocomplexity Institute, Blacksburg, VA, 24061, USA
| | - Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Torsten Wierschin
- Institut für Mathematik und Informatik, Ernst-Moritz-Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany
| | - Mario Stanke
- Institut für Mathematik und Informatik, Ernst-Moritz-Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
22
|
Mendonça A, Paula MC, Fernandes WD, Andrade LHC, Lima SM, Antonialli-Junior WF. Variation in Venoms of Polybia Paulista Von Ihering and Polybia Occidentalis Olivier (Hymenoptera: Vespidae), Assessed by the FTIR-PAS Technique. NEOTROPICAL ENTOMOLOGY 2017; 46:8-17. [PMID: 27457373 DOI: 10.1007/s13744-016-0426-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Wasps are able to synthesize toxic compounds known as venoms, which form a part of a mechanism to overcome prey and also to defend their colonies. Study of the compounds that constitute these substances is essential in order to understand how this defense mechanism evolved, since there is evidence that the venoms can vary both intra- and interspecifically. Some studies have used liquid and gas chromatography as a reliable technique to analyze these compounds. However, the use of Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) to analyze the variations in venom's chemical profile has been proposed recently. This study evaluated whether the FTIR-PAS technique is effective for assessing the role of environmental factors on intra- and interspecific differences in the venom of the wasps Polybia paulista Von Ihering and Polybia occidentalis Olivier by FTIR-PAS. The colonies were collected in three municipalities of Mato Grosso do Sul, Brazil, in different types of environments. The results showed that the venoms of P. paulista and P. occidentalis differed significantly in profile. In addition, the intraspecific differences in the venom's chemical profile of P. paulista are related to the type of environment where they nested, regardless of the geographical distance between the nests. The FTIR-PAS technique proved to be reliable and effective to evaluate the variations in the venom's chemical profile in social wasps.
Collapse
Affiliation(s)
- A Mendonça
- Univ Federal da Grande Dourados, Dourados, MS, Brasil.
- Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil.
| | - M C Paula
- Univ Federal da Grande Dourados, Dourados, MS, Brasil
- Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - W D Fernandes
- Univ Federal da Grande Dourados, Dourados, MS, Brasil
| | - L H C Andrade
- Grupo de Espectroscopia Óptica e Fototérmica, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - S M Lima
- Grupo de Espectroscopia Óptica e Fototérmica, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - W F Antonialli-Junior
- Univ Federal da Grande Dourados, Dourados, MS, Brasil
- Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| |
Collapse
|
23
|
Matsubara FH, Meissner GO, Herzig V, Justa HC, Dias BCL, Trevisan-Silva D, Gremski LH, Gremski W, Senff-Ribeiro A, Chaim OM, King GF, Veiga SS. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus. INSECT MOLECULAR BIOLOGY 2017; 26:25-34. [PMID: 27743460 DOI: 10.1111/imb.12268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Loxosceles intermedia venom comprises a complex mixture of proteins, glycoproteins and low molecular mass peptides that act synergistically to immobilize envenomed prey. Analysis of a venom-gland transcriptome from L. intermedia revealed that knottins, also known as inhibitor cystine knot peptides, are the most abundant class of toxins expressed in this species. Knottin peptides contain a particular arrangement of intramolecular disulphide bonds, and these peptides typically act upon ion channels or receptors in the insect nervous system, triggering paralysis or other lethal effects. Herein, we focused on a knottin peptide with 53 amino acid residues from L. intermedia venom. The recombinant peptide, named U2 -sicaritoxin-Li1b (Li1b), was obtained by expression in the periplasm of Escherichia coli. The recombinant peptide induced irreversible flaccid paralysis in sheep blowflies. We screened for knottin-encoding sequences in total RNA extracts from two other Loxosceles species, Loxosceles gaucho and Loxosceles laeta, which revealed that knottin peptides constitute a conserved family of toxins in the Loxosceles genus. The insecticidal activity of U2 -SCTX-Li1b, together with the large number of knottin peptides encoded in Loxosceles venom glands, suggests that studies of these venoms might facilitate future biotechnological applications of these toxins.
Collapse
Affiliation(s)
- F H Matsubara
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
| | - G O Meissner
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - V Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - H C Justa
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
| | - B C L Dias
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
| | - D Trevisan-Silva
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
| | - L H Gremski
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
| | - W Gremski
- Health and Biological Science Institute, Catholic University of Parana, Prado Velho, Curitiba, Paraná, Brazil
| | - A Senff-Ribeiro
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
| | - O M Chaim
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
| | - G F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - S S Veiga
- Department of Cell Biology, Federal University of Parana, Jardim das Américas, Curitiba, Paraná, Brazil
| |
Collapse
|
24
|
Miller DW, Jones AD, Goldston JS, Rowe MP, Rowe AH. Sex Differences in Defensive Behavior and Venom of The Striped Bark Scorpion Centruroides vittatus (Scorpiones: Buthidae). Integr Comp Biol 2016; 56:1022-1031. [PMID: 27471227 DOI: 10.1093/icb/icw098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies of venom variability have advanced from describing the mechanisms of action and relative potency of medically important toxins to understanding the ecological and evolutionary causes of the variability itself. While most studies have focused on differences in venoms among taxa, populations, or age-classes, there may be intersexual effects as well. Striped bark scorpions (Centruroides vittatus) provide a good model for examining sex differences in venom composition and efficacy, as this species exhibits dramatic sexual dimorphism in both size and defensive behavior; when threatened by an enemy, larger, slower females stand and fight while smaller, fleeter males prefer to run. We here add evidence suggesting that male and female C. vittatus indeed have different defensive propensities; when threatened via an electrical stimulus, females were more likely to sting than were males. We reasoned that intersexual differences in defensive phenotypes would select for venoms with different functions in the two sexes; female venoms should be effective at predator deterrence, whereas male venoms, less utilized defensively, might be better suited to capturing prey or courting females. This rationale led to our predictions that females would inject more venom and/or possess more painful venom than males. We were wrong. While females do inject more venom than males in a defensive sting, females are also larger; when adjusted for body size, male and female C. vittatus commit equal masses of venom in a sting to a potential enemy. Additionally, house mice (Mus musculus) find an injection of male venom more irritating than an equal amount of female venom, likely because male venom contains more of the toxins that induce pain. Taken together, our results suggest that identifying the ultimate causes of venom variability will, as we move beyond adaptive storytelling, be hard-won.
Collapse
Affiliation(s)
- D W Miller
- *Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - A D Jones
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - J S Goldston
- *Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - M P Rowe
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A H Rowe
- Neuroscience Program and Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Lopes-Ferreira M, Sosa-Rosales I, Bruni FM, Ramos AD, Vieira Portaro FC, Conceição K, Lima C. Analysis of the intersexual variation in Thalassophryne maculosa fish venoms. Toxicon 2016; 115:70-80. [DOI: 10.1016/j.toxicon.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 01/20/2023]
|
26
|
Sexual dimorphism in venom chemistry in Tetragnatha spiders is not easily explained by adult niche differences. Toxicon 2016; 114:45-52. [DOI: 10.1016/j.toxicon.2016.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
|
27
|
Vetter RS, Swanson DL, Weinstein SA, White J. Do spiders vector bacteria during bites? The evidence indicates otherwise. Toxicon 2015; 93:171-4. [DOI: 10.1016/j.toxicon.2014.11.229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 01/13/2023]
|
28
|
Garb JE. Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses. J Vis Exp 2014:e51618. [PMID: 25407635 PMCID: PMC4353418 DOI: 10.3791/51618] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Venoms are chemically complex secretions typically comprising numerous proteins and peptides with varied physiological activities. Functional characterization of venom proteins has important biomedical applications, including the identification of drug leads or probes for cellular receptors. Spiders are the most species rich clade of venomous organisms, but the venoms of only a few species are well-understood, in part due to the difficulty associated with collecting minute quantities of venom from small animals. This paper presents a protocol for the collection of venom from spiders using electrical stimulation, demonstrating the procedure on the Western black widow (Latrodectus hesperus). The collected venom is useful for varied downstream analyses including direct protein identification via mass spectrometry, functional assays, and stimulation of venom gene expression for transcriptomic studies. This technique has the advantage over protocols that isolate venom from whole gland homogenates, which do not separate genuine venom components from cellular proteins that are not secreted as part of the venom. Representative results demonstrate the detection of known venom peptides from the collected sample using mass spectrometry. The venom collection procedure is followed by a protocol for dissecting spider venom glands, with results demonstrating that this leads to the characterization of venom-expressed proteins and peptides at the sequence level.
Collapse
Affiliation(s)
- Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell;
| |
Collapse
|
29
|
Estrada-Gómez S, Cupitra NI, Arango WM, Muñoz LJV. Intraspecific variation of centruroides edwardsii venom from two regions of Colombia. Toxins (Basel) 2014; 6:2082-96. [PMID: 25025710 PMCID: PMC4113743 DOI: 10.3390/toxins6072082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/20/2014] [Accepted: 06/06/2014] [Indexed: 01/01/2023] Open
Abstract
We report the first description studies, partial characterization, and intraspecific difference of Centruroides edwardsii, Gervais 1843, venom. C. edwardsii from two Colombian regions (Antioquia and Tolima) were evaluated. Both venoms showed hemolytic activity, possibly dependent of enzymatic active phospholipases, and neither coagulant nor proteolytic activities were observed. Venom electrophoretic profile showed significant differences between C. edwardsii venom from both regions. A high concentration of proteins with molecular masses between 31 kDa and 97.4 kDa, and an important concentration close or below 14.4 kDa were detected. RP-HPLC retention times between 38.2 min and 42.1 min, showed bands close to 14.4 kDa, which may correspond to phospholipases. RP-HPLC venom profile showed a well conserved region in both venoms between 7 and 17 min, after this, significant differences were detected. From Tolima region venom, 50 well-defined peaks were detected, while in the Antioquia region venom, 55 well-defined peaks were detected. Larvicidal activity was only detected in the C. edwardsii venom from Antioquia. No antimicrobial activity was observed using complete venom or RP-HPLC collected fractions of both venoms. Lethally activity (carried out on female albino swiss mice) was detected at doses over 19.2 mg/kg of crude venom. Toxic effects included distress, excitability, eye irritation and secretions, hyperventilation, ataxia, paralysis, and salivation.
Collapse
Affiliation(s)
- Sebastián Estrada-Gómez
- Facultad de Quimica Farmaceutica, Universidad de Antioquia UdeA, Carrera 53 No. 61-30, Medellín 050010, Colombia.
| | - Nelson Ivan Cupitra
- Grupo de Investigación de Productos Naturales, Facultad de Ciencias, Universidad del Tolima, Barrio Santa Helena Parte Alta, Ibagué 731020, Colombia.
| | - Walter Murillo Arango
- Grupo de Investigación de Productos Naturales, Facultad de Ciencias, Universidad del Tolima, Barrio Santa Helena Parte Alta, Ibagué 731020, Colombia.
| | - Leidy Johana Vargas Muñoz
- Facultad de Medicina, Universidad Cooperativa de Colombia, Calle 50 A No. 41-20, Medellín 050010, Colombia.
| |
Collapse
|
30
|
Verified spider bites in Oregon (USA) with the intent to assess hobo spider venom toxicity. Toxicon 2014; 84:51-5. [DOI: 10.1016/j.toxicon.2014.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 11/18/2022]
|
31
|
Cooper AM, Fox GA, Nelsen DR, Hayes WK. Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes. Toxicon 2014; 82:30-51. [PMID: 24548696 DOI: 10.1016/j.toxicon.2014.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/14/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Venom generally comprises a complex mixture of compounds representing a non-trivial metabolic expense. Accordingly, natural selection should fine-tune the amount of venom carried within an animal's venom gland(s). The venom supply of scolopendromorph centipedes likely influences their venom use and has implications for the severity of human envenomations, yet we understand very little about their venom yields and the factors influencing them. We investigated how size, specifically body length, influenced volume yield and protein concentration of electrically extracted venom in Scolopendra polymorpha and Scolopendra subspinipes. We also examined additional potential influences on yield in S. polymorpha, including relative forcipule size, relative mass, geographic origin (Arizona vs. California), sex, time in captivity, and milking history. Volume yield was linearly related to body length, and S. subspinipes yielded a larger length-specific volume than S. polymorpha. Body length and protein concentration were uncorrelated. When considering multiple influences on volume yield in S. polymorpha, the most important factor was body length, but yield was also positively associated with relative forcipule length and relative body mass. S. polymorpha from California yielded a greater volume of venom with a higher protein concentration than conspecifics from Arizona, all else being equal. Previously milked animals yielded less venom with a lower protein concentration. For both species, approximately two-thirds of extractable venom was expressed in the first two pulses, with remaining pulses yielding declining amounts, but venom protein concentration did not vary across pulses. Further study is necessary to ascertain the ecological significance of the factors influencing venom yield and how availability may influence venom use.
Collapse
Affiliation(s)
- Allen M Cooper
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA.
| | - Gerad A Fox
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| | - David R Nelsen
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| | - William K Hayes
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| |
Collapse
|
32
|
Gao L, Zhang J, Liu X, Zhao M, Li L, Liu X, Zhao B. Effect of spider venom on inhibition proliferation of TE13 cells in vivo and in vitro. Thorac Cancer 2013; 4:306-311. [PMID: 28920240 DOI: 10.1111/1759-7714.12020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/10/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the cytotoxic and antitumor activity of spider venom (SV). METHODS Cell proliferation and cytotoxicity were determined by 3 H-methyl thymidine incorporation ([3 H]-TDR) assay. DNA fragmentation and cell cycle kinetics were analyzed by FACS. In vivo inhibition of tumor size of nude mice by SV (5.0, 10.0, 20.0 mg/kg mice) was constructed. RESULTS SV exhibited significant anti-cancer effects on human squamous esophageal carcinoma cells TE13, mainly as a result of cell apoptosis induced by SV. The anti-cancer effects were likely achieved through decreasing [3 H]-TdR. TE13 cells treated with SV (25, 50, 100 μg/mL), which were arrested in the G0 /G1 phase. SV treatment leads to anti-proliferation effects, and significant apoptosis in TE13 cells with reactive oxygen species (ROS) levels can increase dramatically and decrease cellular mitochondrial membrane potential (MMP). In addition, Western blotting analysis showed that one of the pharmacological mechanisms of SV was to activate the expression of P21. In vivo testing revealed that tumor size was significantly decreased after 21 days of treatment with the venom (P < 0.01). CONCLUSIONS Our data showed that SVs could inhibit TE13 cell proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Li Gao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jing Zhang
- Department of Rehabilitation, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinyan Liu
- The Department of Oncology, Hebei Province Chest Hospital, Shijiazhuang, China
| | - Min Zhao
- The Department of Oncology, Hebei Province Chest Hospital, Shijiazhuang, China
| | - Lijun Li
- College of Information and Technical, Hebei Normal University, Shijiazhuang, China
| | - Xin Liu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
33
|
Bolzern A, Burckhardt D, Hänggi A. Phylogeny and taxonomy of European funnel-web spiders of theTegenaria−Malthonicacomplex (Araneae: Agelenidae) based upon morphological and molecular data. Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Daniel Burckhardt
- Naturhistorisches Museum Basel; Augustinergasse 2; CH-4001; Basel; Switzerland
| | - Ambros Hänggi
- Naturhistorisches Museum Basel; Augustinergasse 2; CH-4001; Basel; Switzerland
| |
Collapse
|
34
|
Abstract
In North America, spider envenomation is perceived to be a greater threat than in actuality; however, it still is a valid source of morbidity and, very rarely, mortality. Only 2 groups (widows, recluses) are medically important on this continent. Widow bites affect the neuromuscular junction, have minor dermatologic expression, and are treated with analgesics and antivenom. Recluse bites vary from mild, self-limiting rashes to extensive dermonecrosis. Recent awareness of methicillin-resistant Staphylococcus aureus as a ubiquitous cause of skin injury that is often mistaken as attributable to recluse bites has questioned the credence of spiders being the cause of idiopathic wounds.
Collapse
Affiliation(s)
- Richard S Vetter
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
35
|
Orts DJB, Peigneur S, Madio B, Cassoli JS, Montandon GG, Pimenta AMC, Bicudo JEPW, Freitas JC, Zaharenko AJ, Tytgat J. Biochemical and electrophysiological characterization of two sea anemone type 1 potassium toxins from a geographically distant population of Bunodosoma caissarum. Mar Drugs 2013; 11:655-79. [PMID: 23466933 PMCID: PMC3705364 DOI: 10.3390/md11030655] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/23/2013] [Accepted: 02/15/2013] [Indexed: 12/12/2022] Open
Abstract
Sea anemone (Cnidaria, Anthozoa) venom is an important source of bioactive compounds used as tools to study the pharmacology and structure-function of voltage-gated K+ channels (KV). These neurotoxins can be divided into four different types, according to their structure and mode of action. In this work, for the first time, two toxins were purified from the venom of Bunodosoma caissarum population from Saint Peter and Saint Paul Archipelago, Brazil. Sequence alignment and phylogenetic analysis reveals that BcsTx1 and BcsTx2 are the newest members of the sea anemone type 1 potassium channel toxins. Their functional characterization was performed by means of a wide electrophysiological screening on 12 different subtypes of KV channels (KV1.1-KV1.6; KV2.1; KV3.1; KV4.2; KV4.3; hERG and Shaker IR). BcsTx1 shows a high affinity for rKv1.2 over rKv1.6, hKv1.3, Shaker IR and rKv1.1, while Bcstx2 potently blocked rKv1.6 over hKv1.3, rKv1.1, Shaker IR and rKv1.2. Furthermore, we also report for the first time a venom composition and biological activity comparison between two geographically distant populations of sea anemones.
Collapse
Affiliation(s)
- Diego J. B. Orts
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil; E-Mails: (D.J.B.O.); (B.M.); (J.E.P.W.B.); (J.C.F.)
- Center of Marine Biology, University of São Paulo, São Sebastião, SP, 11600-000, Brazil
| | - Steve Peigneur
- Laboratory of Toxicology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; E-Mail:
| | - Bruno Madio
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil; E-Mails: (D.J.B.O.); (B.M.); (J.E.P.W.B.); (J.C.F.)
| | - Juliana S. Cassoli
- Laboratory of Venoms and Animals Toxins, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; E-Mails: (J.S.C.); (G.G.M.); (A.M.C.P.)
| | - Gabriela G. Montandon
- Laboratory of Venoms and Animals Toxins, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; E-Mails: (J.S.C.); (G.G.M.); (A.M.C.P.)
| | - Adriano M. C. Pimenta
- Laboratory of Venoms and Animals Toxins, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; E-Mails: (J.S.C.); (G.G.M.); (A.M.C.P.)
| | - José E. P. W. Bicudo
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil; E-Mails: (D.J.B.O.); (B.M.); (J.E.P.W.B.); (J.C.F.)
| | - José C. Freitas
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil; E-Mails: (D.J.B.O.); (B.M.); (J.E.P.W.B.); (J.C.F.)
| | - André J. Zaharenko
- Laboratorio de Genetica, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Jan Tytgat
- Laboratory of Toxicology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; E-Mail:
| |
Collapse
|
36
|
Palagi A, Koh JM, Leblanc M, Wilson D, Dutertre S, King GF, Nicholson GM, Escoubas P. Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry. J Proteomics 2013; 80:292-310. [DOI: 10.1016/j.jprot.2013.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
37
|
Venom and cnidome ontogeny of the cubomedusae Chironex fleckeri. Toxicon 2012; 60:1335-41. [DOI: 10.1016/j.toxicon.2012.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/25/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
|
38
|
Vetter RS. Envenomation by spiders of the genus Hololena (Araneae: Agelenidae). Toxicon 2012; 60:312-4. [DOI: 10.1016/j.toxicon.2012.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/05/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
39
|
Abdel-Rahman MA, Abdel-Nabi IM, El-Naggar MS, Abbas OA, Strong PN. Intraspecific variation in the venom of the vermivorous cone snail Conus vexillum. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:318-25. [PMID: 21771667 DOI: 10.1016/j.cbpc.2011.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 01/12/2023]
Abstract
A combination of proteomic and biochemical assays was used to examine variations in the venom of Conus vexillum taken from two locations (Hurgada and Sharm El-Shaikh) in the Red Sea, Egypt. Using MALDI/TOF-MS, a remarkable degree of intra-species variation between venom samples from both locations was identified. To evaluate variability in the cytotoxic effects of Conus venom, mice were injected with the same dose from each location. The oxidative stress biomarkers [malondialdehyde (MDA), protein carbonyl content (PCC)], antioxidants [glutathione (GSH), superoxide dismutase (SOD), catalase (CAT)], total antioxidant capacity (TAC) and nitric oxide (NO), were measured 3, 6, 9 and 12h post venom injection. The venoms induced a significant increase in the levels of PCC, MDA, NO, GSH and CAT. The venoms significantly inhibited the activity of SOD and reduced the TAC. Toxicological data showed that the venom obtained from Hurgada was more potent than that obtained from Sharm El-Shaikh. It can be concluded that: (1) the venom of the same Conus species from different regions is highly diversified (2) the venoms from different locations reflect clear differences in venom potency and (3) the cytotoxic effects of C. vexillum venom can be attributed to its ability to induce oxidative stress.
Collapse
|
40
|
Catalán A, Cortes W, Sagua H, González J, Araya JE. Two new phospholipase D isoforms of Loxosceles laeta: cloning, heterologous expression, functional characterization, and potential biotechnological application. J Biochem Mol Toxicol 2011; 25:393-403. [PMID: 21692149 DOI: 10.1002/jbt.20399] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/30/2011] [Accepted: 05/19/2011] [Indexed: 11/08/2022]
Abstract
Toxin phospholipases-D present in the venom of Loxosceles spiders is the principal responsible for local and systemic effects observed in the loxoscelism. In this study, we describe the cloning, expression, functional evaluation, and potential biotechnological application of cDNAs, which code for two new phospholipase D isoforms, LIPLD1 and LIPLD2, of the spider Loxosceles laeta. The recombinant protein rLIPLD1 had hydrolytic activity on sphingomyelin and in vitro hemolytic activity on human red blood cells, whereas rLIPLD2 was inactive. The purified recombinant proteins and the venom are recognized by polyclonal anti-rLIPLD1 and rLIPLD2 sera produced in animals and conferred immunoprotection against the venom. These new isoforms reinforce the importance of the multigene family of phospholipases-D present in Loxosceles spiders. A highly immunogenic inactive isoform such as rLIPLD2 raises important expectation for its use as a potential immunogenic inducer of the immunoprotective response to the toxic action of the venom of Loxosceles laeta.
Collapse
Affiliation(s)
- A Catalán
- Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, P.O. Box 160, Antofagasta, Chile
| | | | | | | | | |
Collapse
|
41
|
Gaver-Wainwright MM, Zack RS, Foradori MJ, Lavine LC. Misdiagnosis of spider bites: bacterial associates, mechanical pathogen transfer, and hemolytic potential of venom from the hobo spider, Tegenaria agrestis (Araneae: Agelenidae). JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:382-388. [PMID: 21485377 DOI: 10.1603/me09224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The European spider Tegenaria agrestis (Walckenaer) (hobo spider) has been implicated as a spider of medical importance in the Pacific Northwest since its introduction in the late 1980s. Studies have indicated that the hobo spider causes necrotic tissue lesions through hemolytic venom or through the transfer of pathogenic bacteria introduced by its bite. Bacterial infections are often diagnosed as spider bites, in particular the pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA). This study examines three aspects of the potential medical importance of hobo spiders in part of its introduced range, Washington State. First, the bacterial diversity of the spider was surveyed using a polymerase chain reaction-based assay to determine whether the spider carries any pathogenic bacteria. Second, an experiment was conducted to determine the ability of the spiders to transfer MRSA. Third, the venom was evaluated to assess the hemolytic activity. We found 10 genera of ubiquitous bacteria on the exterior surface of the spiders. In addition, none of the spiders exposed to MRSA transferred this pathogen. Finally, the hemolytic venom assay corroborates previous studies that found hobo spider venom was not deleterious to vertebrate red blood cells.
Collapse
|
42
|
Zobel-Thropp PA, Bodner MR, Binford GJ. Comparative analyses of venoms from American and African Sicarius spiders that differ in sphingomyelinase D activity. Toxicon 2010; 55:1274-82. [DOI: 10.1016/j.toxicon.2010.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/14/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
|
43
|
Uzenbaev SD, Lyabzina SN. An experimental study of the effects of spider venom on animals. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s0013873809040125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Herzig V, Hodgson WC. Intersexual variations in the pharmacological properties of Coremiocnemis tropix (Araneae, Theraphosidae) spider venom. Toxicon 2009; 53:196-205. [DOI: 10.1016/j.toxicon.2008.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 11/03/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
|
45
|
Rocha-e-Silva TAA, Collares-Buzato CB, da Cruz-Höfling MA, Hyslop S. Venom apparatus of the Brazilian tarantula Vitalius dubius Mello-Leitão 1923 (Theraphosidae). Cell Tissue Res 2009; 335:617-29. [PMID: 19132396 DOI: 10.1007/s00441-008-0738-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 11/26/2008] [Indexed: 11/30/2022]
Abstract
Tarantula venoms are a cocktail of proteins and peptides that have been increasingly studied in recent years. In contrast, less attention has been given to analyzing the structure of the paired cephalic glands that produce the venom. We have used light, electron, and confocal microscopy to study the organization and structure of the venom gland of the Brazilian tarantula Vitalius dubius. The chelicerae are hairy chitinous structures, each with a single curved hollow fang that opens via an orifice on the anterior surface. Internally, each chelicera contains striated muscle fiber bundles that control fang extension and retraction, and a cylindrical conical venom gland surrounded by a thick well-developed layer of obliquely arranged muscle fibers. Light microscopy of longitudinal and transverse sections showed that the gland secretory epithelium consists of a sponge-like network of slender epithelial cell processes with numerous bridges and interconnections that form lacunae containing secretion. This secretory epithelium is supported by a basement membrane containing elastic fibers. The entire epithelial structure of the venom-secreting cells is reinforced by a dense network of F-actin intermediate filaments, as shown by staining with phalloidin. Neural elements (axons and acetylcholinesterase activity) are also associated with the venom gland. Transmission electron microscopy of the epithelium revealed an ultrastructure typical of secretory cells, including abundant rough and smooth endoplasmic reticulum, an extensive Golgi apparatus, and numerous mitochondria.
Collapse
Affiliation(s)
- Thomaz A A Rocha-e-Silva
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas , CP 6111, CEP 13083-970 Campinas, SP, Brazil
| | | | | | | |
Collapse
|
46
|
Rocha-e-Silva TA, Sutti R, Hyslop S. Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae). Toxicon 2009; 53:153-61. [DOI: 10.1016/j.toxicon.2008.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 11/15/2022]
|
47
|
Abdel-Rahman MA, Omran MAA, Abdel-Nabi IM, Ueda H, McVean A. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. Toxicon 2008; 53:349-59. [PMID: 19103215 DOI: 10.1016/j.toxicon.2008.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/26/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
The present study was conducted to explore the following hypotheses: (i) do scorpions (Scorpio maurus palmatus) from different biotopes exhibit intraspecific diversity in their venom? (ii) if so, is this variation associated with ecological or genetic factors, geographical distance, and/or multiple interrelated parameters? To address these questions, scorpions were collected from four geographically isolated localities in Egypt. Three of these locations are from mutually isolated pockets in the arid biotope of Southern Sinai (Wadi Sahab, El-Agramia and Rahaba plains). The fourth population was sampled from the semiarid biotope of Western Mediterranean Costal Desert (WMCD). Using reducing gel electrophoresis (SDS-PAGE), we have shown biotope-specific variation in the expression of peptides from scorpions collected from these distinct areas. WMCD sourced venom samples contain higher molecular weight protein components (219, 200, 170, 139, 116 kDa) than Southern Sinai scorpion venom samples. The Southern Sinai venom is characterized by the presence of 11 protein bands (93-0.58 kDa) that are not mirrored in the individual venom samples of WMCD. Bands of 33 and 3.4 kDa were characteristics of all individual venom samples of the scorpion populations. Even within Southern Sinai area, Sahab venom contains five fractions that are not detected in both El-Agramia and Rahaba venom samples. Moreover, male and female venom analysis revealed some sex-related proteomic similarities and differences between scorpion populations. Female venom appears to be more complicated than the male venom. Female venom samples showed bands of 219, 200, 77.5, 55.5, 45, 39, 37, 24 and 16 kDa which were absent in the male venom. The random amplified polymorphic DNA (RAPD) technique was used to estimate the genetic distance between the four scorpion populations. The RAPD data confirmed the genetic diversity at molecular level among the sampled populations. More than 77 RAPD bands (ranging in size from 125 to 15,000 bp) were defined from the four scorpion populations. Of the 77 bands, 57 (76.2%) were polymorphic and 20 were monomorphic among the populations. The similarity coefficient data of venom and DNA were used to construct separate dendrograms, which grouped together the Southern Sinai populations and these were some distance away from the WMCD population. Taken together, we suspect that a combination of local environmental conditions, geographical separation and genetic separation may play a major role in the intraspecific variation of venom of S. m. palmatus.
Collapse
|
48
|
Herzig V, Khalife AA, Chong Y, Isbister GK, Currie BJ, Churchill TB, Horner S, Escoubas P, Nicholson GM, Hodgson WC. Intersexual variations in Northern (Missulena pruinosa) and Eastern (M. bradleyi) mouse spider venom. Toxicon 2008; 51:1167-77. [DOI: 10.1016/j.toxicon.2008.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
|
49
|
BINFORD GRETAJ. Differences in venom composition between orb-weaving and wandering Hawaiian Tetragnatha (Araneae). Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2001.tb01415.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Abstract
Spiders have been incriminated as causes of human suffering for centuries, but few species worldwide cause medically significant envenomation. Widow spiders (Latrodectus spp.) occur worldwide and cause latrodectism, which is characterized by pain (local and generalized) associated with nonspecific systemic effects, diaphoresis, and less commonly other autonomic and neurological effects. Recluse spiders (Loxosceles spp.) are distributed mostly through the tropical and subtropical Western Hemisphere and can cause severe skin lesions and rarely systemic effects; most bites are unremarkable. Highly dangerous spiders in South America (armed spiders) and Australia (funnel-web spiders) cause rare but severe envenomation requiring medical intervention and sometimes antivenom. Most other spiders involved in verified bites cause minor, transient effects. Many spiders blamed for causing medical mischief have been elevated to medical significance via circumstantial evidence, poor reporting, and repetitive citation in the literature; several species have been shown to be harmless with more stringent scientific evidence involving verified bites in humans.
Collapse
Affiliation(s)
- Richard S Vetter
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|