1
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
2
|
Hu Y, Xu L, Gan R, Wu G, Tang X, Wei Y, Cui H, Hui L, Tang Y, Li C, Chen T, Wan C, Wang J, Zhang T. A potential objective marker in first-episode schizophrenia based on abnormal niacin response. Schizophr Res 2022; 243:405-412. [PMID: 34187733 DOI: 10.1016/j.schres.2021.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/16/2021] [Accepted: 06/22/2021] [Indexed: 01/24/2023]
Abstract
The lack of objective diagnostic markers has long been a challenge in the clinical management of schizophrenia (SZ). The current bivariate cut-offs method is an objective quantification of niacin skin flush abnormality (NFA) for identifying the SZ subgroup. However, the sensitivity of approximately 30% limits the application of NFA as a marker for detecting SZ. A laser Doppler flowmeter was employed to test the niacin skin-flushing response in 123 patients with first-episode psychosis including first-episode SZ (FES, n = 82) and psychotic bipolar disorders (PBP, n = 41), and non-psychiatric comparisons (NPC, n = 80). We modified the bivariate cut-offs using a combination of the niacin concentration corresponding to the half-maximal blood flow response (EC50) and a new quantitative indicator called the overall trend area (OTA). The NFA used this study method predicted FES in the NPC group with 57% sensitivity, 89% specificity, and 73% accuracy compared to the 28% sensitivity, 91% specificity, and 59% accuracy of the existing method. This novel method could discern FES from the PBP group with an accuracy of 62%, compared with the 45% of the old method. In addition, we also discuss whether the bivariate cut-offs were occasional by adjusting the cut-offs threshold. The experimental results showed that the sensitivity and specificity were most stable when using the study method. The study indicates that NFA using modified bivariate cut-offs may be a potential objective marker in FES, and the niacin skin test could be feasible for early diagnosis and treatment of SZ.
Collapse
Affiliation(s)
- YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - RanPiao Gan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - GuiSen Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - HuiRu Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - Li Hui
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou 215137, Jiangsu, China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | - Tao Chen
- Department of Economics, University of Waterloo, Ontario, Canada; Big Data Research Lab, University of Waterloo, Ontario, Canada; Senior Research Fellowship, Labor and Worklife Program, Harvard University, MA, United States; Niacin (Shanghai) Technology Co,. Ltd., PR China
| | - ChunLing Wan
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Center, Shanghai Jiao Tong University, Shanghai, China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China.
| | - TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China.
| |
Collapse
|
3
|
Cedro RCA, Menaldo DL, Costa TR, Zoccal KF, Sartim MA, Santos-Filho NA, Faccioli LH, Sampaio SV. Cytotoxic and inflammatory potential of a phospholipase A 2 from Bothrops jararaca snake venom. J Venom Anim Toxins Incl Trop Dis 2018; 24:33. [PMID: 30498509 PMCID: PMC6251196 DOI: 10.1186/s40409-018-0170-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022] Open
Abstract
Background Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. Methods and Results For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~ 4.4 and molecular mass of 14.2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 μg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1β and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5–160 μg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. Conclusions BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s.
Collapse
Affiliation(s)
- Rafhaella C A Cedro
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Danilo L Menaldo
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Tássia R Costa
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Karina F Zoccal
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Marco A Sartim
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Norival A Santos-Filho
- 2Campus Experimental de Registro, Universidade Estadual Paulista (UNESP), Registro, SP Brazil
| | - Lúcia H Faccioli
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Suely V Sampaio
- 1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, B. Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
4
|
Corrêa EA, Kayano AM, Diniz-Sousa R, Setúbal SS, Zanchi FB, Zuliani JP, Matos NB, Almeida JR, Resende LM, Marangoni S, da Silva SL, Soares AM, Calderon LA. Isolation, structural and functional characterization of a new Lys49 phospholipase A2 homologue from Bothrops neuwiedi urutu with bactericidal potential. Toxicon 2016; 115:13-21. [DOI: 10.1016/j.toxicon.2016.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 11/16/2022]
|
5
|
Muller VD, Soares RO, dos Santos-Junior NN, Trabuco AC, Cintra AC, Figueiredo LT, Caliri A, Sampaio SV, Aquino VH. Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope. PLoS One 2014; 9:e112351. [PMID: 25383618 PMCID: PMC4226559 DOI: 10.1371/journal.pone.0112351] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/05/2014] [Indexed: 11/18/2022] Open
Abstract
The Flaviviridae family includes several virus pathogens associated with human diseases worldwide. Within this family, Dengue virus is the most serious threat to public health, especially in tropical and sub-tropical regions of the world. Currently, there are no vaccines or specific antiviral drugs against Dengue virus or against most of the viruses of this family. Therefore, the development of vaccines and the discovery of therapeutic compounds against the medically most important flaviviruses remain a global public health priority. We previously showed that phospholipase A2 isolated from the venom of Crotalus durissus terrificus was able to inhibit Dengue virus and Yellow fever virus infection in Vero cells. Here, we present evidence that phospholipase A2 has a direct effect on Dengue virus particles, inducing a partial exposure of genomic RNA, which strongly suggests inhibition via the cleavage of glycerophospholipids at the virus lipid bilayer envelope. This cleavage might induce a disruption of the lipid bilayer that causes a destabilization of the E proteins on the virus surface, resulting in inactivation. We show by computational analysis that phospholipase A2 might gain access to the Dengue virus lipid bilayer through the pores found on each of the twenty 3-fold vertices of the E protein shell on the virus surface. In addition, phospholipase A2 is able to inactivate other enveloped viruses, highlighting its potential as a natural product lead for developing broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Vanessa Danielle Muller
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Ricardo Oliveira Soares
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Nilton Nascimento dos Santos-Junior
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Amanda Cristina Trabuco
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Adelia Cristina Cintra
- Laboratório de Toxinologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Luiz Tadeu Figueiredo
- Centro de Pesquisa em Virologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Antonio Caliri
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Suely Vilela Sampaio
- Laboratório de Toxinologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Victor Hugo Aquino
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
6
|
Santos ML, Toyama DO, Oliveira SCB, Cotrim CA, Diz-Filho EBS, Fagundes FHR, Soares VCG, Aparicio R, Toyama MH. Modulation of the pharmacological activities of secretory phospholipase A2 from Crotalus durissus cascavella induced by naringin. Molecules 2011; 16:738-61. [PMID: 21245808 PMCID: PMC6259155 DOI: 10.3390/molecules16010738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/04/2011] [Accepted: 01/13/2011] [Indexed: 11/16/2022] Open
Abstract
In this work we have characterized the action of the naringin, a flavonoid found in grapefruit and known for its various pharmacological effects, which include antioxidant blood lipid lowering and anticancer activity, on the structure and biochemical activities of a secretory phospholipase A (sPLA2) from Crotalus durissus cascavella, an important protein involved in the releasinge of arachidonic acid in phospholipid membranes. sPLA2 was incubated with naringin (mol:mol) at 37 °C and a discrete reduction in the UV scanning signal and a modification of the circular dichroism spectra were observed after treatment with naringin, suggesting modifications of the secondary structure of the protein. This flavonoid was able to decrease enzymatic activity and some pharmacological effects, such as myonecrosis, platelet aggregation, and neurotoxic activity caused by sPLA2, however, the inflammatory effect was not affected by naringin. In addition, small angle X-ray scattering (SAXS) data were collected for sPLA2 and naringin-treated sPLA2 to evaluate possible modifications of the protein structure. These structural investigations have shown that sPLA2 is an elongated dimer in solution and after treatment with naringin a conformational change in the dimeric configuration was observed. Our results suggest that structural modification may be correlated with the loss of enzymatic activity and alterations in pharmacological properties.
Collapse
Affiliation(s)
- Marcelo L. Santos
- Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, UNICAMP, Campinas, São Paulo, Brazil
| | | | - Simone C. B. Oliveira
- Departmento de Bioquímica, Instituto de Biologia, UNICAMP, Campinas, São Paulo, Brazil
| | - Camila A. Cotrim
- Departmento de Bioquímica, Instituto de Biologia, UNICAMP, Campinas, São Paulo, Brazil
| | | | - Fábio H. R. Fagundes
- Departmento de Bioquímica, Instituto de Biologia, UNICAMP, Campinas, São Paulo, Brazil
| | - Veronica C. G. Soares
- Departmento de Bioquímica, Instituto de Biologia, UNICAMP, Campinas, São Paulo, Brazil
| | - Ricardo Aparicio
- Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, UNICAMP, Campinas, São Paulo, Brazil
| | - Marcos H. Toyama
- Laboratório de Macromoléculas Química, UNESP/CLP, São Vicente, São Paulo, Brazil
| |
Collapse
|
7
|
Delatorre P, Rocha BAM, Santi-Gadelha T, Gadelha CAA, Toyama MH, Cavada BS. Crystal structure of Bn IV in complex with myristic acid: a Lys49 myotoxic phospholipase A₂ from Bothrops neuwiedi venom. Biochimie 2010; 93:513-8. [PMID: 21108987 DOI: 10.1016/j.biochi.2010.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/16/2010] [Indexed: 11/18/2022]
Abstract
The LYS49-PLA₂s myotoxins have attracted attention as models for the induction of myonecrosis by a catalytically independent mechanism of action. Structural studies and biological activities have demonstrated that the myotoxic activity of LYS49-PLA₂ is independent of the catalytic activity site. The myotoxic effect is conventionally thought to be to due to the C-terminal region 111-121, which plays an effective role in membrane damage. In the present study, Bn IV LYS49-PLA₂ was isolated from Bothrops neuwiedi snake venom in complex with myristic acid (CH₃(CH₂)₁₂COOH) and its overall structure was refined at 2.2 Å resolution. The Bn IV crystals belong to monoclinic space group P2₁ and contain a dimer in the asymmetric unit. The unit cell parameters are a = 38.8, b = 70.4, c = 44.0 Å. The biological assembly is a "conventional dimer" and the results confirm that dimer formation is not relevant to the myotoxic activity. Electron density map analysis of the Bn IV structure shows clearly the presence of myristic acid in catalytic site. The relevant structural features for myotoxic activity are located in the C-terminal region and the Bn IV C-terminal residues NKKYRY are a probable heparin binding domain. These findings indicate that the mechanism of interaction between Bn IV and muscle cell membranes is through some kind of cell signal transduction mediated by heparin complexes.
Collapse
Affiliation(s)
- P Delatorre
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Nonantibiotic properties of tetracyclines: structural basis for inhibition of secretory phospholipase A2. J Mol Biol 2010; 398:83-96. [PMID: 20211188 DOI: 10.1016/j.jmb.2010.02.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 11/21/2022]
Abstract
Secretory phospholipase A(2) is involved in inflammatory processes and was previously shown to be inhibited by lipophilic tetracyclines such as minocycline (minoTc) and doxycycline. Lipophilic tetracyclines might be a new lead compound for the design of specific inhibitors of secretory phospholipase A(2), which play a crucial role in inflammatory processes. Our X-ray crystal structure analysis at 1.65 A resolution of the minoTc complex of phospholipase A(2) (PLA(2)) of the Indian cobra (Naja naja naja) is the first example of nonantibiotic tetracycline interactions with a protein. MinoTc interferes with the conformation of the active-site Ca(2+)-binding loop, preventing Ca(2)(+) binding, and shields the active site from substrate entrance, resulting in inhibition of the enzyme. MinoTc binding to PLA(2) is dominated by hydrophobic interactions quite different from antibiotic recognition of tetracyclines by proteins or the ribosome. The affinity of minoTc for PLA(2) was determined by surface plasmon resonance, resulting in a dissociation constant K(d)=1.8 x 10(-)(4) M.
Collapse
|
9
|
Shared structural determinants for the calcium-independent liposome membrane permeabilization and sarcolemma depolarization in Bothropstoxin-I, a LYS49-PLA2 from the venom of Bothrops jararacussu. Int J Biochem Cell Biol 2009; 41:2588-93. [DOI: 10.1016/j.biocel.2009.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/29/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
|
10
|
Reduced pH induces an inactive non-native conformation of the monomeric bothropstoxin-I (Lys49-PLA2). Toxicon 2009; 54:373-8. [DOI: 10.1016/j.toxicon.2009.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 11/23/2022]
|
11
|
The interaction of bothropstoxin-I (Lys49-PLA2) with liposome membranes. Toxicon 2009; 54:525-30. [DOI: 10.1016/j.toxicon.2009.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/23/2009] [Accepted: 05/26/2009] [Indexed: 11/23/2022]
|
12
|
|
13
|
Aparecida Aragão E, Chioato L, Ward RJ. Permeabilization of E. coli K12 inner and outer membranes by bothropstoxin-I, A LYS49 phospholipase A2 from Bothrops jararacussu. Toxicon 2008; 51:538-46. [DOI: 10.1016/j.toxicon.2007.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/05/2007] [Accepted: 11/08/2007] [Indexed: 01/08/2023]
|
14
|
Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics. BMC STRUCTURAL BIOLOGY 2007; 7:82. [PMID: 18062812 PMCID: PMC2248580 DOI: 10.1186/1472-6807-7-82] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
Abstract
Background The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood. Results Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.
Collapse
|
15
|
Murakami MT, Viçoti MM, Abrego JRB, Lourenzoni MR, Cintra ACO, Arruda EZ, Tomaz MA, Melo PA, Arni RK. Interfacial surface charge and free accessibility to the PLA2-active site-like region are essential requirements for the activity of Lys49 PLA2 homologues. Toxicon 2007; 49:378-87. [PMID: 17157889 DOI: 10.1016/j.toxicon.2006.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/19/2006] [Accepted: 10/23/2006] [Indexed: 11/16/2022]
Abstract
Lys49 phospholipase A2 homologues are highly myotoxic and cause extensive tissue damage but do not display hydrolytic activity towards natural phospholipids. The binding of heparin, heparin derivatives and polyanionic compounds such as suramin result in partial inhibition (up to 60%) of the myotoxic effects due to a change in the overall charge of the interfacial surface. In vivo experiments demonstrate that polyethylene glycol inhibits more than 90% of the myotoxic effects without exhibiting secondary toxic effects. The crystal structure of bothropstoxin-I complexed with polyethylene glycol reveals that this inhibition is due to steric hindrance of the access to the PLA2-active site-like region. These two inhibitory pathways indicate the roles of the overall surface charge and free accessibility to the PLA2-active site-like region in the functioning of Lys49 phospholipases A2 homologues. Molecular dynamics simulations, small angle X-ray scattering and structural analysis indicate that the oligomeric states both in solution and in the crystalline states of Lys49 phospholipases A2 are principally mediated by hydrophobic contacts formed between the interfacial surfaces. These results provide the framework for the potential application of both clinically approved drugs for the treatment of Viperidae snakebites.
Collapse
Affiliation(s)
- Mário T Murakami
- Department of Physics, IBILCE/UNESP, Cristovão Colombo 2265, São José do Rio Preto, SP 15054-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bortoleto-Bugs RK, Bugs MR, Neto AA, Ward RJ. A micelle nucleation model for the interaction of dodecyl sulphate with Lys49–phospholipases A2. Biophys Chem 2007; 125:213-20. [PMID: 16945473 DOI: 10.1016/j.bpc.2006.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 11/28/2022]
Abstract
Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of Bothrops jararacussu that lacks detectable catalytic activity, yet causes rapid Ca(2+)-independent membrane damage. With the aim of understanding the interaction between BthTx-I and amphiphilic molecules, we have studied the interaction of sodium dodecyl sulphate (SDS) with the protein. Circular dichroism and attenuated total reflection Fourier-transform infrared spectra of BthTx-I reveal changes in the alpha-helical organization of the protein at an SDS/BthTx-I molar ratio of 20-25. At SDS/BthTx-I ratios of 40-45 the alpha-helices return to a native-like conformation, although fluorescence emission anisotropy measurements of 2-amino-N-hexadecyl-benzamide (AHBA) demonstrate that the total SDS is below the critical micelle concentration when this transition occurs. These results may be interpreted as the result of SDS accumulation by the BthTx-I homodimer and the formation of a pre-micelle SDS/BthTx-I complex, which may subsequently be released from the protein surface as a free micelle. Similar changes in the alpha-helical organization of BthTx-I were observed in the presence of dipalmitoylphosphatidylcholine liposomes, suggesting that protein structure transitions coupled to organization changes of bound amphiphiles may play a role in the Ca(2+)-independent membrane damage by Lys49-PLA(2)s.
Collapse
|
17
|
Murakami MT, Melo CC, Angulo Y, Lomonte B, Arni RK. Structure of myotoxin II, a catalytically inactive Lys49 phospholipase A2 homologue from Atropoides nummifer venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:423-6. [PMID: 16682766 PMCID: PMC2219968 DOI: 10.1107/s1744309106010700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/23/2006] [Indexed: 11/10/2022]
Abstract
Lys49 snake-venom phospholipase A2 (PLA2) homologues are highly myotoxic proteins which, although lacking catalytic activity, possess the ability to disrupt biological membranes, inducing significant muscle-tissue loss and permanent disability in severely envenomed patients. Since the structural basis for their toxic activity is still only partially understood, the structure of myotoxin II, a monomeric Lys49 PLA2 homologue from Atropoides nummifer, has been determined at 2.08 angstroms resolution and the anion-binding site has been characterized.
Collapse
Affiliation(s)
- Mário T. Murakami
- Department of Physics, IBILCE/UNESP, São José do Rio Preto-SP, Brazil
| | - Cristiane C. Melo
- Department of Physics, IBILCE/UNESP, São José do Rio Preto-SP, Brazil
| | - Yamileth Angulo
- Instituto Clodomiro Picado, Facultad de Microbiologia, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, San José, Costa Rica
- Correspondence e-mail: ,
| | - Raghuvir K. Arni
- Department of Physics, IBILCE/UNESP, São José do Rio Preto-SP, Brazil
- Center for Applied Toxinology, Butantan Institute, São Paulo-SP, Brazil
- Correspondence e-mail: ,
| |
Collapse
|
18
|
Stábeli RG, Amui SF, Sant'Ana CD, Pires MG, Nomizo A, Monteiro MC, Romão PRT, Guerra-Sá R, Vieira CA, Giglio JR, Fontes MRM, Soares AM. Bothrops moojeni myotoxin-II, a Lys49-phospholipase A2 homologue: an example of function versatility of snake venom proteins. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:371-381. [PMID: 16442348 DOI: 10.1016/j.cbpc.2005.11.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
MjTX-II, a myotoxic phospholipase A(2) (PLA(2)) homologue from Bothrops moojeni venom, was functionally and structurally characterized. The MjTX-II characterization included: (i) functional characterization (antitumoral, antimicrobial and antiparasitic effects); (ii) effects of structural modifications by 4-bromophenacyl bromide (BPB), cyanogen bromide (CNBr), acetic anhydride and 2-nitrobenzenesulphonyl fluoride (NBSF); (iii) enzymatic characterization: inhibition by low molecular weight heparin and EDTA; and (iv) molecular characterization: cDNA sequence and molecular structure prediction. The results demonstrated that MjTX-II displayed antimicrobial activity by growth inhibition against Escherichia coli and Candida albicans, antitumoral activity against Erlich ascitic tumor (EAT), human breast adenocarcinoma (SK-BR-3) and human T leukemia cells (JURKAT) and antiparasitic effects against Schistosoma mansoni and Leishmania spp., which makes MjTX-II a promising molecular model for future therapeutic applications, as well as other multifunctional homologous Lys49-PLA(2)s or even derived peptides. This work provides useful insights into the structural determinants of the action of Lys49-PLA(2) homologues and, together with additional strategies, supports the concept of the presence of others "bioactive sites" distinct from the catalytic site in snake venom myotoxic PLA(2)s.
Collapse
Affiliation(s)
- Rodrigo G Stábeli
- Instituto de Pesquisas em Patologias Tropicais, IPEPATRO, Universidade Federal de Rondonia, UNIR-RO, Brazil
| | - Saulo F Amui
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto-SP, Brazil
| | - Carolina D Sant'Ana
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto-SP, Brazil
| | - Matheus G Pires
- Instituto de Pesquisas em Patologias Tropicais, IPEPATRO, Universidade Federal de Rondonia, UNIR-RO, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto-SP, Brazil
| | - Marta C Monteiro
- Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava-PR, Brazil
| | - Pedro R T Romão
- Laboratório de Imunoparasitologia, UNISUL, Tubarão-SC, Brazil
| | - Renata Guerra-Sá
- Laboratório de Bioquímica e Biologia Molecular-Departamento de Ciências Biológicas, UFOP, Ouro Preto-MG, Brazil
| | - Carlos A Vieira
- Departamento de Bioquímica e Imunologia, FMRP, USP, Ribeirão Preto-SP, Brazil
| | - José R Giglio
- Departamento de Bioquímica e Imunologia, FMRP, USP, Ribeirão Preto-SP, Brazil
| | | | - Andreimar M Soares
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
19
|
Ruller R, Aragão EA, Chioato L, Ferreira TL, de Oliveira AHC, Sà JM, Ward RJ. A predominant role for hydrogen bonding in the stability of the homodimer of bothropstoxin-I, A lysine 49-phospholipase A2. Biochimie 2005; 87:993-1003. [PMID: 15967564 DOI: 10.1016/j.biochi.2005.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/01/2005] [Accepted: 04/15/2005] [Indexed: 11/17/2022]
Abstract
Bothropstoxin-I (BthTx-I) is a homodimeric Lys49-phospholipase A(2) isolated from Bothrops jararacussu venom which damages liposome membranes via a Ca(2+)-independent mechanism. The Glu12/Trp77/Lys80 triad at the dimer interface forms extensive intermolecular hydrogen bonds and hydrophobic contacts, and equilibrium chemical denaturation was used to evaluate the effect on homodimer stability of site-directed mutagenesis of these residues. Changes in the intrinsic fluorescence anisotropy and farUV circular dichroism signals were analyzed using a two-step unfolding model of the BthTx-I dimer to estimate the Gibbs free energy changes of transitions between the dimer and native monomer and between the native and denatured monomers. Whereas the Trp77His, Trp77Gln and Glu12Gln mutants showed native-like dimer stabilities, the Trp77Phe, Lys80Met and Lys80Gly mutants showed significantly reduced K(d) values. A reduced dimer stability is correlated with a decrease in the Ca(2+)-independent membrane damaging activity as monitored by the release of a liposome entrapped fluorescent marker. Although the membrane damaging activity of the monomer is fivefold less than the dimer, the myotoxic activity was unaffected, indicating that these two effects are not correlated. These data suggest that the BthTx-I dimer is predominantly stabilized by hydrogen bonding interactions, and highlight the importance of the homodimeric form for efficient Ca(2+)-independent membrane damage.
Collapse
Affiliation(s)
- R Ruller
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, FMRP-USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang YM, Peng HF, Tsai IH. Unusual venom phospholipases A2 of two primitive tree vipers Trimeresurus puniceus and Trimeresurus borneensis. FEBS J 2005; 272:3015-25. [PMID: 15955061 DOI: 10.1111/j.1742-4658.2005.04715.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To explore the venom diversity of Asian pit vipers, we investigated the structure and function of venom phospholipase A2 (PLA2) derived from two primitive tree vipers Trimeresurus puniceus and Trimeresurus borneensis. We purified six novel PLA2s from T. puniceus venom and another three from T. borneensis venom. All cDNAs encoding these PLA2s except one were cloned, and the molecular masses and N-terminal sequences of the purified enzymes closely matched those predicted from the cDNA. Three contain K49 and lack a disulfide bond at C61-C91, in contrast with the D49-containing PLA2s in both venom species. They are less thermally stable than other K49-PLA2s which contain seven disulfide bonds, as indicated by a decrease of 8.8 degrees C in the melting temperature measured by CD spectroscopy. The M110D mutation in one of the K49-PLA2s apparently reduced its edematous potency. A phylogenetic tree based on the amino-acid sequences of 17 K49-PLA2s from Asian pit viper venoms illustrates close relationships among the Trimeresurus species and intergeneric segregations. Basic D49-PLA2s with a unique Gly6 substitution were also purified from both venoms. They showed edema-inducing and anticoagulating activities. It is notable that acidic PLA2s from both venoms inhibited blood coagulation rather than platelet aggregation, and this inhibition was only partially dependent on enzyme activity. These results contribute to our understanding of the evolution of Trimeresurus pit vipers and the structure-function relationships between various subtypes of crotalid venom PLA2.
Collapse
Affiliation(s)
- Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica and Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
21
|
Sá J, Chioato L, Ferreira T, de Oliveira A, Ruller R, Rosa J, Greene L, Ward R. Topology of the substrate-binding site of a Lys49-phospholipase A2 influences Ca2+-independent membrane-damaging activity. Biochem J 2005; 382:191-8. [PMID: 15147240 PMCID: PMC1133930 DOI: 10.1042/bj20031946] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 05/11/2004] [Accepted: 05/17/2004] [Indexed: 11/17/2022]
Abstract
BthTx-I (bothropstoxin-I) is a myotoxic Lys49-PLA2 (phospholipase A2 with Lys49) isolated from Bothrops jararacussu venom, which damages liposome membranes by a Ca2+-independent mechanism. The highly conserved Phe5/Ala102/Phe106 motif in the hydrophobic substrate-binding site of the Asp49-PLA2s is substituted by Leu5/Val102/Leu106 in the Lys49-PLA2s. The Leu5/Val102/Leu106 triad in BthTx-I was sequentially mutated via all single- and double-mutant combinations to the Phe5/Ala102/Phe106 mutant. All mutants were expressed as inclusion bodies in Escherichia coli, and the thermal stability (Tm), together with the myotoxic and Ca2+-independent membrane-damaging activities of the recombinant proteins, were evaluated. The far-UV CD profiles of the native, wild-type recombinant and the L106F (Leu106-->Phe) and L5F/F102A/L106F mutant proteins were identical. The L5F, V102A, L5F/V102A and V102A/L106F mutants showed distorted far-UV CD profiles; however, only the L5F and L5F/V102A mutants showed significant decreases in Tm. Alterations in the far-UV CD spectra correlated with decreased myotoxicity and protein-induced release of a liposome-entrapped marker. However, the V102A/L106F and L5F/V102A/L106F mutants, which presented high myotoxic activities, showed significantly reduced membrane-damaging activity. This demonstrates that the topology of the substrate-binding region of BthTx-I has a direct effect on the Ca2+-independent membrane damage, and implies that substrate binding retains an important role in this process.
Collapse
Affiliation(s)
- Juliana Martha Sá
- *Departamento de Bioquímica e Immunologia, FMRP-USP, Ribeirão Preto-SP, Brazil
| | - Lucimara Chioato
- *Departamento de Bioquímica e Immunologia, FMRP-USP, Ribeirão Preto-SP, Brazil
| | - Tatiana Lopes Ferreira
- †Departamento de Química, FFCLRP-USP, Avenida Bandeirantes 3900, CEP 14049-901, Ribeirão Preto-SP, Brazil
| | - Arthur H. C. de Oliveira
- ‡Departamento de Biologia Molecular e Celular e Bioagentes Patogênicos, FMRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Roberto Ruller
- ‡Departamento de Biologia Molecular e Celular e Bioagentes Patogênicos, FMRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - José César Rosa
- ‡Departamento de Biologia Molecular e Celular e Bioagentes Patogênicos, FMRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
- §Centro de Química de Proteínas, FMRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Lewis J. Greene
- ‡Departamento de Biologia Molecular e Celular e Bioagentes Patogênicos, FMRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
- §Centro de Química de Proteínas, FMRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Richard J. Ward
- †Departamento de Química, FFCLRP-USP, Avenida Bandeirantes 3900, CEP 14049-901, Ribeirão Preto-SP, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
22
|
Ambrosio ALB, Nonato MC, de Araújo HSS, Arni R, Ward RJ, Ownby CL, de Souza DHF, Garratt RC. A Molecular Mechanism for Lys49-Phospholipase A2 Activity Based on Ligand-induced Conformational Change. J Biol Chem 2005; 280:7326-35. [PMID: 15596433 DOI: 10.1074/jbc.m410588200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agkistrodon contortrix laticinctus myotoxin is a Lys(49)-phospholipase A(2) (EC 3.1.1.4) isolated from the venom of the serpent A. contortrix laticinctus (broad-banded copperhead). We present here three monomeric crystal structures of the myotoxin, obtained under different crystallization conditions. The three forms present notable structural differences and reveal that the presence of a ligand in the active site (naturally presumed to be a fatty acid) induces the exposure of a hydrophobic surface (the hydrophobic knuckle) toward the C terminus. The knuckle in A. contortrix laticinctus myotoxin involves the side chains of Phe(121) and Phe(124) and is a consequence of the formation of a canonical structure for the main chain within the region of residues 118-125. Comparison with other Lys(49)-phospholipase A(2) myotoxins shows that although the knuckle is a generic structural motif common to all members of the family, it is not readily recognizable by simple sequence analyses. An activation mechanism is proposed that relates fatty acid retention at the active site to conformational changes within the C-terminal region, a part of the molecule that has long been associated with Ca(2+)-independent membrane damaging activity and myotoxicity. This provides, for the first time, a direct structural connection between the phospholipase "active site" and the C-terminal "myotoxic site," justifying the otherwise enigmatic conservation of the residues of the former in supposedly catalytically inactive molecules.
Collapse
Affiliation(s)
- Andre L B Ambrosio
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, USP, São Carlos-SP CEP 13560-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gao W, Starkov VG, Tsetlin VI, Utkin YN, Lin ZJ, Bi RC. Isolation and preliminary crystallographic studies of two new phospholipases A2 from Vipera nikolskii venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:189-92. [PMID: 16510990 PMCID: PMC1952264 DOI: 10.1107/s1744309104033688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 12/20/2004] [Indexed: 11/10/2022]
Abstract
Snake-venom phospholipases A2 (PLA2s) represent a good model for studies of structure-function relationships, mainly because of their small size and diverse pharmacological and toxicological activities. To obtain new members of the abundant PLA2 family, the venom of the viper Vipera nikolskii was fractionated for the first time and two new proteins, VN5-3 and VN4-3, were isolated. Both proteins show phospholipase A2 activity and may possess neurotoxic activity. Based on the determined partial amino-acid sequences, the new proteins can be classified as basic Asp49 phospholipases A2. They were crystallized using the hanging-drop vapour-diffusion method and crystals of both proteins belong to space group R32, with similar unit-cell parameters: a = b = 76.29, c = 303.35 A for protein VN5-3 and a = b = 76.28, c = 304.39 A for protein VN4-3. Diffraction data sets to 3.0 and 2.2 A resolution were collected and processed for the VN5-3 and VN4-3 crystals, respectively. Preliminary analysis indicates that there are two molecules in the asymmetric unit for both crystals. Further crystallographic studies will help in understanding the structural basis for the multiple functions of snake-venom PLA2s.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People’s Republic of China
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Zheng-jiong Lin
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People’s Republic of China
| | - Ru-chang Bi
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People’s Republic of China
| |
Collapse
|
24
|
Murakami MT, Gava LM, Zela SP, Arruda EZ, Melo PA, Gutierrez JM, Arni RK. Crystallization and preliminary X-ray diffraction analysis of suramin, a highly charged polysulfonated napthylurea, complexed with a myotoxic PLA2 from Bothrops asper venom. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1703:83-5. [PMID: 15588706 DOI: 10.1016/j.bbapap.2004.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/13/2004] [Accepted: 08/18/2004] [Indexed: 10/26/2022]
Abstract
Suramin is a highly charged polysulfonated napthylurea that interferes in a number of physiologically relevant processes such as myotoxicity, blood coagulation and several kinds of cancers. This synthetic compound was complexed with a myotoxic Lys49 PLA(2) from Bothrops asper venom and crystallized by the hanging-drop vapor diffusion method at 18 degrees C. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit cell parameters a=49.05, b=63.84 and c=85.67 angstroms. Diffraction data was collected to 1.78 angstroms.
Collapse
Affiliation(s)
- Mário T Murakami
- Departamento de Física, IBILCE, Universidade Estadual Paulista, Cristóvão Colombo, 2265, Nazareth, 15054-000, São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Chioato L, Ward RJ. Mapping structural determinants of biological activities in snake venom phospholipases A2 by sequence analysis and site directed mutagenesis. Toxicon 2004; 42:869-83. [PMID: 15019488 DOI: 10.1016/j.toxicon.2003.11.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to their catalytic activity, snake venom phospholipases A2 (vPLA2) present remarkable diversity in their biological effects. Sequence alignment analyses of functionally related PLA2 are frequently used to predict the structural determinants of these effects, and the predictions are subsequently evaluated by site directed mutagenesis experiments and functional assays. In order to improve the predictive potential of computer-based analysis, a simple method for scanning amino acid variation analysis (SAVANA) has been developed and included in the analysis of the lysine 49 PLA2 myotoxins (Lys49-PLA2). The SAVANA analysis identified positions in the C-terminal loop region of the protein, which were not identified using previously available sequence analysis tools. Site directed mutagenesis experiments of bothropstoxin-I, a Lys49-PLA2 isolated from the venom of Bothrops jararacussu, reveals that these residues are exactly those involved in the determination of myotoxic and membrane damaging activities. The SAVANA method has been used to analyse presynaptic neurotoxic and anti-coagulant vPLA2s, and the predicted structural determinants of these activities are in excellent agreement with the available results of site directed mutagenesis experiments. The positions of residues involved in the myotoxic and neurotoxic determinants demonstrate significant overlap, suggesting that the multiple biological effects observed in many snake vPLA2s are a consequence of superposed structural determinants on the protein surface.
Collapse
Affiliation(s)
- Lucimara Chioato
- Department of Biochemistry and Immunology, FMRP-USP, Universidade de São Paulo, Brazil
| | | |
Collapse
|
26
|
Soares AM, Giglio JR. Chemical modifications of phospholipases A2 from snake venoms: effects on catalytic and pharmacological properties. Toxicon 2004; 42:855-68. [PMID: 15019487 DOI: 10.1016/j.toxicon.2003.11.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipases A2 (PLA2s) constitute major components of snake venoms and have been extensively investigated not only because they are very abundant in these venoms but mainly because they display a wide range of biological effects, including neurotoxic, myotoxic, cytotoxic, edema-inducing, artificial membrane disrupting, anti-coagulant, platelet aggregation inhibiting, hypotensive, bactericidal, anti-HIV, anti-tumoral, anti-malarial and anti-parasitic. Due to this functional diversity, these structurally similar proteins aroused the interest of many researchers as molecular models for study of structure-function relationships. One of the main experimental strategies used for the study of myotoxic PLA2s is the traditional chemical modification of specific amino acid residues (His, Met, Lys, Tyr, Trp and others) and examination of the consequent effects upon the enzymatic, toxic and pharmacological activities. This line of research has provided useful insights into the structural determinants of the action of these enzymes and, together with additional strategies, supports the concept of the presence of 'pharmacological sites' distinct from the catalytic site in snake venom myotoxic PLA2s.
Collapse
Affiliation(s)
- Andreimar M Soares
- Departamento de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirão Presto, SP, Brazil.
| | | |
Collapse
|
27
|
Magro AJ, Soares AM, Giglio JR, Fontes MRM. Crystal structures of BnSP-7 and BnSP-6, two Lys49-phospholipases A2: quaternary structure and inhibition mechanism insights. Biochem Biophys Res Commun 2003; 311:713-20. [PMID: 14623331 DOI: 10.1016/j.bbrc.2003.10.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phospholipases A(2) are components of Bothrops venoms responsible for disruption of cell membrane integrity via hydrolysis of its phospholipids. A class of PLA(2)-like proteins has been described which despite PLA(2) activity on artificial substrate, due to a D49K mutation, is still highly myonecrotic. This work reports the X-ray structure determination of two Lys49-PLA(2)s from Bothrops neuwiedi pauloensis (BnSP-7 and BnSP-6) and, for the first time, the comparison of eight dimeric Lys49-PLA(2)s. This comparison reveals that there are not just two ("open" and "closed") but at least six different conformations. The binding of fatty acid observed in three recent Lys49-PLA(2) structures seems to be independent of their quaternary conformation. Cys29 polarization by Lys122 is not significant for BnSP-7 and BnSP-6 or other structures not bound by fatty acids. These structures may be in an "active" state when nothing is bound to them and the Lys122/Cys29 interactions are weak or absent.
Collapse
Affiliation(s)
- Angelo J Magro
- Departamento de Física e Biofísica, IB, UNESP, Botucatu-SP, Brazil
| | | | | | | |
Collapse
|
28
|
Liu Q, Huang Q, Teng M, Weeks CM, Jelsch C, Zhang R, Niu L. The crystal structure of a novel, inactive, lysine 49 PLA2 from Agkistrodon acutus venom: an ultrahigh resolution, AB initio structure determination. J Biol Chem 2003; 278:41400-8. [PMID: 12871974 DOI: 10.1074/jbc.m305210200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of acutohaemolysin, a lysine 49 phospholipase A2 protein with 1010 non-hydrogen protein atoms and 232 water molecules, has been determined ab initio using the program SnB at an ultrahigh resolution of 0.8 A. The lack of catalytic activity appears to be related to the presence of Phe102, which prevents the access of substrate to the active site. The substitution of tryptophan for leucine at residue 10 interferes with dimer formation and may be responsible for the additional loss of hemolytic activity. The ultrahigh resolution of the experimental diffraction data permits alternative conformations to be modeled for disordered residues, many hydrogen atoms to be located, the protonation of the Nepsilon2 atom in the catalytic residue His48 to be observed experimentally, and the density of the bonding electrons to be analyzed in detail.
Collapse
Affiliation(s)
- Qun Liu
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Ruller R, Ferreira TL, de Oliveira AHC, Ward RJ. Chemical denaturation of a homodimeric lysine-49 phospholipase A2: a stable dimer interface and a native monomeric intermediate. Arch Biochem Biophys 2003; 411:112-20. [PMID: 12590929 DOI: 10.1016/s0003-9861(02)00712-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bothropstoxin I (4BthTx-I) is a homodimeric lysine-49 (Lys49) phospholipase A(2) isolated from Bothrops jararacussu venom, which damages liposome membranes via a Ca(2+)-independent mechanism. The stability of the BthTx-I homodimer was evaluated by equilibrium chemical denaturation with guanidinium hydrochloride monitored by changes in the intrinsic tryptophan fluorescence anisotropy, far-UV circular dichroism, dynamic light scattering, and 1-anilinonaphthalene-8-sulfonate binding. Unfolding of the BthTx-I dimer proceeds via a monomeric intermediate with native-like structure, with Gibbs free energy (DeltaG(0)) values of 10.0 and 7.2 kcal mol(-1) for the native dimer-to-native monomer and native-to-denatured monomer transitions, respectively. The experimentally determined DeltaG(0) value for the dimer-to-native monomer transition is higher than the value expected for an interaction dominated by hydrophobic forces, and suggests that an unusually high propensity of hydrogen-bonded side chains found at the BthTx-I homodimer interface make a significant contribution to dimer stability.
Collapse
Affiliation(s)
- Roberto Ruller
- Departamento de Bioqui;mica e Immunologia, FMRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | | | | | | |
Collapse
|
30
|
Delatorre P, Olivieri JR, Ruggiero Neto J, Lorenzi CC, Canduri F, Fadel V, Konno K, Palma MS, Yamane T, de Azevedo WF. Preliminary cryocrystallography analysis of an eumenine mastoparan toxin isolated from the venom of the wasp Anterhynchium flavomarginatum micado. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:372-6. [PMID: 11342062 DOI: 10.1016/s0167-4838(00)00192-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. These peptides present a wide spectrum of biological activities, such as mast cell degranulation, hemolytic activity and also reveals antimicrobial activity. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized. At room temperature these crystals diffracted to 2.8 A resolution. However, upon cooling to cryogenic temperature around 85 K, the original resolution limit could be improved to 2.0 A. Crystals were determined to belong to the space group P3(1) (P3(2)). This is the first mastoparan to be crystallized and it will provide further insights in the conformational significance of mastoparan toxins, with respect to their potency and activity in G protein regulation.
Collapse
Affiliation(s)
- P Delatorre
- Departamento de Física--IBILCE, UNESP, São José Rio Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Souza DH, Selistre-de-Araujo HS, Garratt RC. Determination of the three-dimensional structure of toxins by protein crystallography. Toxicon 2000; 38:1307-53. [PMID: 10758270 DOI: 10.1016/s0041-0101(99)00200-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein crystallography has significantly contributed to the development of many areas of biochemical research, particularly in the understanding of phenomena related to molecular recognition. Examples include the formation of enzyme-substrate complexes (and their subsequent catalysis), host cell invasion by viruses, antigen neutralization and peptide display by proteins of the immune system and many others. More recently, protein crystallography has also proved to be of great value in unraveling the molecular basis of many diseases as well as in the development of new drugs for their treatment. The X-ray diffraction technique in the elucidation of macromolecular structures is situated at the interface between the traditional research fields of biology, biochemistry, chemistry and physics where researchers are united by a common interest in the detailed understanding of macromolecule function and its relationship to three-dimensional structure. The purpose of this review is to describe, without resort to mathematical detail, all of the necessary steps for the complete determination of a three-dimensional structure by X-ray diffraction techniques. The basic procedures used for protein isolation and crystallization, crystallographic data collection and analysis and, finally, structure determination and refinement are all briefly reviewed. As such our efforts are not directed towards the specialist. Rather, it is our hope that the information presented will aid interested readers from other fields in the understanding of more specialized literature and who may wish to employ the information contained therein in the planning of their biological research. We hope that in so doing we will make clear both the power and limitations of the technique.
Collapse
Affiliation(s)
- D H Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Brazil.
| | | | | |
Collapse
|
32
|
Abstract
As genome sequences and protein structures are deciphered, we wish to predict their corresponding functions. Many functions cannot be told from from the sequence, however, although there has been progress in this quest for an impossible Grail. Furthermore, a structure and its corresponding sequence become most interesting when one knows the function. Inductive reasoning, based on the integration of biological and sequence knowledge, should enable sequence and functional data to be combined in a productive way.
Collapse
Affiliation(s)
- A Danchin
- Régulation de l'Expression Génétique, Institut Pasteur, Paris, France.
| |
Collapse
|