1
|
Mocarski ES. Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens. Viruses 2024; 16:1820. [PMID: 39772130 PMCID: PMC11680106 DOI: 10.3390/v16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny. Cell death also naturally terminates replication during the final stages of replication. Over the past two decades, the host defense potential of known programmed cell death pathways (apoptosis, necroptosis, and pyroptosis), as well as a novel mitochondrial serine protease pathway have been defined through studies of cytomegalovirus-encoded cell death suppressors. Such virus-encoded inhibitors prevent virus-induced, cytokine-induced, and stress-induced death of infected cells while also moderating inflammation. By evading cell death and consequent inflammation as well as innate and adaptive immune clearance, cytomegaloviruses represent successful pathogens that become a critical disease threat when the host immune system is compromised. This review will discuss cell death programs acquired for mammalian host defense against cytomegaloviruses and enumerate the range of modulatory strategies this type of virus employs to balance host defense in favor of lifelong persistence.
Collapse
Affiliation(s)
- Edward S. Mocarski
- Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA;
- Department of Microbiology & Immunology, Emory Medical School, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Ourahmane A, Hertel L, McVoy MA. The RL13 Temperance Factor Represses Replication of the Highly Cell Culture-Adapted Towne Strain of Human Cytomegalovirus. Viruses 2023; 15:1023. [PMID: 37113003 PMCID: PMC10142520 DOI: 10.3390/v15041023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Human cytomegalovirus (CMV) has evolved to replicate while causing minimal damage, maintain life-long latency, reactivate sub-clinically, and, in spite of robust host immunity, produce and shed infectious virus in order to transmit to new hosts. The CMV temperance factor RL13 may contribute to this strategy of coexistence with the host by actively restricting viral replication and spread. Viruses with an intact RL13 gene grow slowly in cell culture, release little extracellular virus, and form small foci. By contrast, viruses carrying disruptive mutations in the RL13 gene form larger foci and release higher amounts of cell-free infectious virions. Such mutations invariably arise during cell culture passage of clinical isolates and are consistently found in highly adapted strains. The potential existence in such strains of other mutations with roles in mitigating RL13's restrictive effects, however, has not been explored. To this end, a mutation that frame shifts the RL13 gene in the highly cell culture-adapted laboratory strain Towne was repaired, and a C-terminal FLAG epitope was added. Compared to the frame-shifted parental virus, viruses encoding wild-type or FLAG-tagged wild-type RL13 produced small foci and replicated poorly. Within six to ten cell culture passages, mutations emerged in RL13 that restored replication and focus size to those of the RL13-frame-shifted parental virus, implying that none of the numerous adaptive mutations acquired by strain Towne during more than 125 cell culture passages mitigate the temperance activity of RL13. Whilst RL13-FLAG expressed by passage zero stocks was localized exclusively within the virion assembly compartment, RL13-FLAG with a E208K substitution that emerged in one lineage was mostly dispersed into the cytoplasm, suggesting that localization to the virion assembly compartment is likely required for RL13 to exert its growth-restricting activities. Changes in localization also provided a convenient way to assess the emergence of RL13 mutations during serial passage, highlighting the usefulness of RL13-FLAG Towne variants for elucidating the mechanisms underlying RL13's temperance functions.
Collapse
Affiliation(s)
- Amine Ourahmane
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Laura Hertel
- Department of Pediatrics, University of California San Francisco, Oakland, CA 94609, USA;
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Chaudhry MZ, Messerle M, Čičin-Šain L. Construction of Human Cytomegalovirus Mutants with Markerless BAC Mutagenesis. Methods Mol Biol 2021; 2244:133-158. [PMID: 33555586 DOI: 10.1007/978-1-0716-1111-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
To fully understand the function of cytomegalovirus (CMV) genes, it is imperative that they are studied in the context of infection. Therefore, the targeted deletion of individual viral genes and the comparison of these loss-of-function viral mutants to the wild-type virus allow for the identification of the relevance and role for a particular gene in the viral replication cycle. Targeted CMV mutagenesis has made huge advances over the past 20 years. The cloning of CMV genomes into Escherichia coli as bacterial artificial chromosomes (BAC) allows for not only quick and efficient deletion of viral genomic regions, individual genes, or single-nucleotide exchanges in the viral genome but also the insertion of heterologous genetic sequences for gain-of-function approaches. The conceptual advantage of this strategy is that it overcomes the restrictions of recombinant technologies in cell culture systems. Namely, recombination in infected cells occurs only in a few clones, and their selection is not possible if the targeted genes are relevant for virus replication and are not able to compete for growth against the unrecombined parental viruses. On the other hand, BAC mutagenesis enables the selection for antibiotic resistance in E. coli, providing selective growth advantage to the recombined genomes and thus clonal selection of viruses with even extremely poor fitness. Here we describe the methods used for the generation of a CMV BAC, targeted mutagenesis of BAC clones, and transfection of human cells with CMV BAC DNA in order to reconstitute the viral infection process.
Collapse
Affiliation(s)
- M Zeeshan Chaudhry
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Luka Čičin-Šain
- Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Center for Individualized Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Braunschweig, Germany.
| |
Collapse
|
4
|
Repair of an Attenuated Low-Passage Murine Cytomegalovirus Bacterial Artificial Chromosome Identifies a Novel Spliced Gene Essential for Salivary Gland Tropism. J Virol 2020; 94:JVI.01456-20. [PMID: 32847854 DOI: 10.1128/jvi.01456-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/23/2020] [Indexed: 01/22/2023] Open
Abstract
The cloning of herpesviruses as bacterial artificial chromosomes (BACs) has revolutionized the study of herpesvirus biology, allowing rapid and precise manipulation of viral genomes. Several clinical strains of human cytomegalovirus (HCMV) have been cloned as BACs; however, no low-passage strains of murine CMV (MCMV), which provide a model mimicking these isolates, have been cloned. Here, the low-passage G4 strain of was BAC cloned. G4 carries an m157 gene that does not ligate the natural killer (NK) cell-activating receptor, Ly49H, meaning that unlike laboratory strains of MCMV, this virus replicates well in C57BL/6 mice. This BAC clone exhibited normal replication during acute infection in the spleen and liver but was attenuated for salivary gland tropism. Next-generation sequencing revealed a C-to-A mutation at nucleotide position 188422, located in the 3' untranslated region of sgg1, a spliced gene critical for salivary gland tropism. Repair of this mutation restored tropism for the salivary glands. Transcriptional analysis revealed a novel spliced gene within the sgg1 locus. This small open reading frame (ORF), sgg1.1, starts at the 3' end of the first exon of sgg1 and extends exon 2 of sgg1. This shorter spliced gene is prematurely terminated by the nonsense mutation at nt 188422. Sequence analysis of tissue culture-passaged virus demonstrated that sgg1.1 was stable, although other mutational hot spots were identified. The G4 BAC will allow in vivo studies in a broader range of mice, avoiding the strong NK cell responses seen in B6 mice with other MCMV BAC-derived MCMVs.IMPORTANCE Murine cytomegalovirus (MCMV) is widely used as a model of human CMV (HCMV) infection. However, this model relies on strains of MCMV that have been serially passaged in the laboratory for over four decades. These laboratory strains have been cloned as bacterial artificial chromosomes (BACs), which permits rapid and precise manipulation. Low-passage strains of MCMV add to the utility of the mouse model of HCMV infection but do not exist as cloned BACs. This study describes the first such low-passage MCMV BAC. This BAC-derived G4 was initially attenuated in vivo, with subsequent full genomic sequencing revealing a novel spliced transcript required for salivary gland tropism. These data suggest that MCMV, like HCMV, undergoes tissue culture adaptation that can limit in vivo growth and supports the use of BAC clones as a way of standardizing viral strains and minimizing interlaboratory strain variation.
Collapse
|
5
|
Human Cytomegalovirus Congenital (cCMV) Infection Following Primary and Nonprimary Maternal Infection: Perspectives of Prevention through Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020194. [PMID: 32340180 PMCID: PMC7349293 DOI: 10.3390/vaccines8020194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/26/2023] Open
Abstract
Congenital cytomegalovirus (cCMV) might occur as a result of the human cytomegalovirus (HCMV) primary (PI) or nonprimary infection (NPI) in pregnant women. Immune correlates of protection against cCMV have been partly identified only for PI. Following either PI or NPI, HCMV strains undergo latency. From a diagnostic standpoint, while the serological criteria for the diagnosis of PI are well-established, those for the diagnosis of NPI are still incomplete. Thus far, a recombinant gB subunit vaccine has provided the best results in terms of partial protection. This partial efficacy was hypothetically attributed to the post-fusion instead of the pre-fusion conformation of the gB present in the vaccine. Future efforts should be addressed to verify whether a new recombinant gB pre-fusion vaccine would provide better results in terms of prevention of both PI and NPI. It is still a matter of debate whether human hyperimmune globulin are able to protect from HCMV vertical transmission. In conclusion, the development of an HCMV vaccine that would prevent a significant portion of PI would be a major step forward in the development of a vaccine for both PI and NPI.
Collapse
|
6
|
Martí-Carreras J, Maes P. Human cytomegalovirus genomics and transcriptomics through the lens of next-generation sequencing: revision and future challenges. Virus Genes 2019; 55:138-164. [PMID: 30604286 PMCID: PMC6458973 DOI: 10.1007/s11262-018-1627-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
The human cytomegalovirus (HCMV) genome was sequenced by hierarchical shotgun almost 30 years ago. Over these years, low and high passaged strains have been sequenced, improving, albeit still far from complete, the understanding of the coding potential, expression dynamics and diversity of wild-type HCMV strains. Next-generation sequencing (NGS) platforms have enabled a huge advancement, facilitating the comparison of differentially passaged strains, challenging diagnostics and research based on a single or reduced gene set genotyping. In addition, it allowed to link genetic features to different viral phenotypes as for example, correlating large genomic re-arrangements to viral attenuation or different mutations to antiviral resistance and cell tropism. NGS platforms provided the first high-resolution experiments to HCMV dynamics, allowing the study of intra-host viral population structures and the description of rare transcriptional events. Long-read sequencing has recently become available, helping to identify new genomic re-arrangements, partially accounting for the genetic variability displayed in clinical isolates, as well as, in changing the understanding of the HCMV transcriptome. Better knowledge of the transcriptome resulted in a vast number of new splicing events and alternative transcripts, although most of them still need additional validation. This review summarizes the sequencing efforts reached so far, discussing its approaches and providing a revision and new nuances on HCMV sequence variability in the sequencing field.
Collapse
Affiliation(s)
- Joan Martí-Carreras
- Zoonotic Infectious Diseases Unit, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, Box 1040, 3000, Leuven, Belgium
| | - Piet Maes
- Zoonotic Infectious Diseases Unit, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, Box 1040, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Copy-Paste Mutagenesis: A Method for Large-Scale Alteration of Viral Genomes. Int J Mol Sci 2019; 20:ijms20040913. [PMID: 30791544 PMCID: PMC6413233 DOI: 10.3390/ijms20040913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
The cloning of the large DNA genomes of herpesviruses, poxviruses, and baculoviruses as bacterial artificial chromosomes (BAC) in Escherichia coli has opened a new era in viral genetics. Several methods of lambda Red-mediated genome engineering (recombineering) in E. coli have been described, which are now commonly used to generate recombinant viral genomes. These methods are very efficient at introducing deletions, small insertions, and point mutations. Here we present Copy-Paste mutagenesis, an efficient and versatile strategy for scarless large-scale alteration of viral genomes. It combines gap repair and en passant mutagenesis procedures and relies on positive selection in all crucial steps. We demonstrate that this method can be used to generate chimeric strains of human cytomegalovirus (HCMV), the largest human DNA virus. Large (~15 kbp) genome fragments of HCMV strain TB40/E were tagged with an excisable marker and cloned (copied) in a low-copy plasmid vector by gap repair recombination. The cloned fragment was then excised and inserted (pasted) into the HCMV AD169 genome with subsequent scarless removal of the marker by en passant mutagenesis. We have done four consecutive rounds of this procedure, thereby generating an AD169-TB40/E chimera containing 60 kbp of the donor strain TB40/E. This procedure is highly useful for identifying gene variants responsible for phenotypic differences between viral strains. It can also be used for repair of incomplete viral genomes, and for modification of any BAC-cloned sequence. The method should also be applicable for large-scale alterations of bacterial genomes.
Collapse
|
8
|
Cloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination. mSphere 2017; 2:mSphere00331-17. [PMID: 28989973 PMCID: PMC5628293 DOI: 10.1128/mspheredirect.00331-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 01/17/2023] Open
Abstract
The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes. Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae. Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae. Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes.
Collapse
|
9
|
Human cytomegalovirus glycoprotein polymorphisms and increasing viral load in AIDS patients. PLoS One 2017; 12:e0176160. [PMID: 28467444 PMCID: PMC5415198 DOI: 10.1371/journal.pone.0176160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/06/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Multiple strains infection of human cytomegalovirus (HCMV) was found to be correlated with increased viral load in immunodeficient patients. However, the pathogenic mechanism underlying this correlation remains unclear. To evaluate genetic polymorphisms of HCMV glycoprotein and their potential role in its viral load, HCMV glycoprotein B, N, and O (gB, gN and gO) genotypes was studied in the population of HCMV infected acquired immune deficiency syndrome (AIDS) patients. The association between glycoprotein polymorphisms and HCMV viral load was analyzed. METHODS The genetic polymorphisms of glycoprotein from sera of 60 HCMV infected AIDS patients was investigated by multiplex nested PCR and sequencing. HCMV viral load was evaluated by quantitative PCR. RESULTS gB1, gO1a, and gN4a were the predominant glycoprotein genotypes in HCMV infected AIDS patients and composed 86.96%, 78.8%, and 49.2%, respectively. Only gN4a genotype infection significantly increased viral load (P = 0.048). 71% (43/60) of HCMV infected AIDS patients were found to carry multiple HCMV strains infection. A novel potential linkage of gO1a/gN4a was identified from multiple HCMV infected patients. It was the most frequent occurrence, accounted for 51.5% in 33 patients with gO and gN genotypes infection. Furthermore, the gO1a/gN4a linkage was correlated to an increased viral load (P = 0.020). CONCLUSION The gN4a correlates to higher level HCMV load in AIDS patients. Interestingly, a novel gO1a/gN4a linkage is identified from the patients with multiple HCMV strains infection and is also associated with an increased viral load. Therefore, the pathogenic mechanism underlying glycoprotein polymorphisms and interaction of variants should be analyzed further.
Collapse
|
10
|
Repair of a Mutation Disrupting the Guinea Pig Cytomegalovirus Pentameric Complex Acquired during Fibroblast Passage Restores Pathogenesis in Immune-Suppressed Guinea Pigs and in the Context of Congenital Infection. J Virol 2016; 90:7715-27. [PMID: 27307567 DOI: 10.1128/jvi.00320-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Guinea pig cytomegalovirus (GPCMV) provides a valuable model for congenital cytomegalovirus transmission. Salivary gland (SG)-passaged stocks of GPCMV are pathogenic, while tissue culture (TC) passage in fibroblasts results in attenuation. Nonpathogenic TC-derived virus N13R10 (cloned as a bacterial artificial chromosome [BAC]) has a 4-bp deletion that disrupts GP129, which encodes a subunit of the GPCMV pentameric complex (PC) believed to govern viral entry into select cell types, and GP130, an overlapping open reading frame (ORF) of unknown function. To determine if this deletion contributes to attenuation of N13R10, markerless gene transfer in Escherichia coli was used to construct virus r129, a variant of N13R10 in which the 4-bp deletion is repaired. Virions from r129 were found to contain GP129 as well as two other PC subunit proteins, GP131 and GP133, whereas these three PC subunits were absent from N13R10 virions. Replication of r129 in fibroblasts appeared unaltered compared to that of N13R10. However, following experimental challenge of immunocompromised guinea pigs, r129 induced significant weight loss, longer duration of viremia, and dramatically higher (up to 1.5 × 10(6)-fold) viral loads in blood and end organs compared to N13R10. In pregnant guinea pigs, challenge with doses of r129 virus of ≥5 × 10(6) PFU resulted in levels of maternal viremia, congenital transmission, pup viral loads, intrauterine growth restriction, and pup mortality comparable to that induced by pathogenic SG virus, although higher doses of r129 were required. These results suggest that the GP129-GP130 mutation is a significant contributor to attenuation of N13R10, likely by abrogating expression of a functional PC. IMPORTANCE Tissue culture adaptation of cytomegaloviruses rapidly selects for mutations, deletions, and rearrangements in the genome, particularly for viruses passaged in fibroblast cells. Some of these mutations are focused in the region of the genome encoding components of the pentameric complex (PC), in particular homologs of human cytomegalovirus (HCMV) proteins UL128, UL130, and UL131A. These mutations can attenuate the course of infection when the virus is reintroduced into animals for vaccine and pathogenesis studies. This study demonstrates that a deletion that arose during the process of tissue culture passage can be repaired, with subsequent restoration of pathogenicity, using BAC-based mutagenesis. Restoration of pathogenicity by repair of a frameshift mutation in GPCMV gene GP129 using this approach provides a valuable genetic platform for future studies using the guinea pig model of congenital CMV infection.
Collapse
|
11
|
Infection of a Single Cell Line with Distinct Strains of Human Cytomegalovirus Can Result in Large Variations in Virion Production and Facilitate Efficient Screening of Virus Protein Function. J Virol 2015; 90:2523-35. [PMID: 26676783 DOI: 10.1128/jvi.01762-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Previously, we reported that the absence of the ataxia telangiectasia mutated (ATM) kinase, a critical DNA damage response (DDR) signaling component for double-strand breaks, caused no change in HCMV Towne virion production. Later, others reported decreased AD169 viral titers in the absence of ATM. To address this discrepancy, human foreskin fibroblasts (HFF) and three ATM(-) lines (GM02530, GM05823, and GM03395) were infected with both Towne and AD169. Two additional ATM(-) lines (GM02052 and GM03487) were infected with Towne. Remarkably, both previous studies' results were confirmed. However, the increased number of cell lines and infections with both lab-adapted strains confirmed that ATM was not necessary to produce wild-type-level titers in fibroblasts. Instead, interactions between individual virus strains and the cellular microenvironment of the individual ATM(-) line determined efficiency of virion production. Surprisingly, these two commonly used lab-adapted strains produced drastically different titers in one ATM(-) cell line, GM05823. The differences in titer suggested a rapid method for identifying genes involved in differential virion production. In silico comparison of the Towne and AD169 genomes determined a list of 28 probable candidates responsible for the difference. Using serial iterations of an experiment involving virion entry and input genome nuclear trafficking with a panel of related strains, we reduced this list to four (UL129, UL145, UL147, and UL148). As a proof of principle, reintroduction of UL148 largely rescued genome trafficking. Therefore, use of a battery of related strains offers an efficient method to narrow lists of candidate genes affecting various virus life cycle checkpoints. IMPORTANCE Human cytomegalovirus (HCMV) infection of multiple cell lines lacking ataxia telangiectasia mutated (ATM) protein produced wild-type levels of infectious virus. Interactions between virus strains and the microenvironment of individual ATM(-) lines determined the efficiency of virion production. Infection of one ATM(-) cell line, GM05823, produced large titer differentials dependent on the strain used, Towne or AD169. This discrepancy resolved a disagreement in the literature of a requirement for ATM expression and HCMV reproduction. The titer differentials in GM08523 cells were due, in part, to a decreased capacity of AD169 virions to enter the cell and traffic genomes to the nucleus. In silico comparison of the Towne, AD169, and related variant strains' genomes was coupled with serial iterations of a virus entry experiment, narrowing 28 candidate proteins responsible for the phenotype down to 4. Reintroduction of UL148 significantly rescued genome trafficking. Differential behavior of virus strains can be exploited to elucidate gene function.
Collapse
|
12
|
Abstract
In celebrating the 60th anniversary of the first isolation of human cytomegalovirus (HCMV), we reflect on the merits and limitations of the viral strains currently being used to develop urgently needed treatments. HCMV research has been dependent for decades on the high-passage strains AD169 and Towne, heavily exploiting their capacity to replicate efficiently in fibroblasts. However, the genetic integrity of these strains is so severely compromised that great caution needs to be exercised when considering their past and future use. It is now evident that wild-type HCMV strains are not readily propagated in vitro. HCMV mutants are rapidly selected during isolation in fibroblasts, reproducibly affecting gene RL13, the UL128 locus (which includes genes UL128, UL130 and UL131A) and often the UL/b′ region. As a result, the virus becomes less cell associated, altered in tropism and less pathogenic. This problem is not restricted to high-passage strains, as even low-passage strains can harbour biologically significant mutations. Cloning and manipulation of the HCMV genome as a bacterial artificial chromosome (BAC) offers a means of working with stable, genetically defined strains. To this end, the low-passage strain Merlin genome was cloned as a BAC and sequentially repaired to match the viral sequence in the original clinical sample from which Merlin was derived. Restoration of UL128L to wild type was detrimental to growth in fibroblasts, whereas restoration of RL13 impaired growth in all cell types tested. Stable propagation of phenotypically wild-type virus could be achieved only by placing both regions under conditional expression. In addition to the development of these tools, the Merlin transcriptome and proteome have been characterized in unparalleled detail. Although Merlin may be representative of the clinical agent, high-throughput whole-genome deep sequencing studies have highlighted the remarkable high level of interstrain variation present in circulating virus. There is a need to develop systems capable of addressing the significance of this diversity, free from the confounding effects of genetic changes associated with in vitro adaptation. The generation of a set of BAC clones, each containing the genome of a different HCMV strain repaired to match the sequence in the clinical sample, would provide a pathway to address the biological and clinical effects of natural variation in wild-type HCMV.
Collapse
|
13
|
Paradowska E, Jabłońska A, Płóciennikowska A, Studzińska M, Suski P, Wiśniewska-Ligier M, Dzierżanowska-Fangrat K, Kasztelewicz B, Woźniakowska-Gęsicka T, Leśnikowski ZJ. Cytomegalovirus alpha-chemokine genotypes are associated with clinical manifestations in children with congenital or postnatal infections. Virology 2014; 462-463:207-17. [PMID: 24999045 DOI: 10.1016/j.virol.2014.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/29/2023]
Abstract
Human cytomegalovirus (HCMV) is the leading cause of congenital infections. The aim of our study was to determine the prevalence of genotypes based on the highly polymorphic UL146 and UL147 HCMV genes and the relationship between the genotype and symptoms or viral load. We analyzed samples from 121 infants with symptomatic HCMV infection, including 32 congenitally infected newborns. The G7 and G5 genotypes were predominant in postnatal infection, whereas the G1 genotype was prevalent in congenital infection. Central nervous system (CNS) damage and hepatomegaly were detected more frequently among children infected with the G1 genotype than in those infected by other genotypes. An association between the viral genotype and viruria level was found. There was a strong correlation between HCMV genotypes determined through the UL146 and UL147 sequences (ĸ=0.794). In conclusion, we found that certain vCXCL genotypes are associated with clinical sequelae following HCMV infection.
Collapse
Affiliation(s)
- Edyta Paradowska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Agnieszka Jabłońska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Agnieszka Płóciennikowska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Mirosława Studzińska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Patrycja Suski
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | | | - Beata Kasztelewicz
- Department of Clinical Microbiology and Immunology, The Children׳s Memorial Health Institute, Warsaw, Poland
| | | | - Zbigniew J Leśnikowski
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
14
|
Duan YL, Ye HQ, Zavala AG, Yang CQ, Miao LF, Fu BS, Seo KS, Davrinche C, Luo MH, Fortunato EA. Maintenance of large numbers of virus genomes in human cytomegalovirus-infected T98G glioblastoma cells. J Virol 2014; 88:3861-73. [PMID: 24453365 PMCID: PMC3993548 DOI: 10.1128/jvi.01166-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/14/2014] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED After infection, human cytomegalovirus (HCMV) persists for life. Primary infections and reactivation of latent virus can both result in congenital infection, a leading cause of central nervous system birth defects. We previously reported long-term HCMV infection in the T98G glioblastoma cell line (1). HCMV infection has been further characterized in T98Gs, emphasizing the presence of HCMV DNA over an extended time frame. T98Gs were infected with either HCMV Towne or AD169-IE2-enhanced green fluorescent protein (eGFP) strains. Towne infections yielded mixed IE1 antigen-positive and -negative (Ag(+)/Ag(-)) populations. AD169-IE2-eGFP infections also yielded mixed populations, which were sorted to obtain an IE2(-) (Ag(-)) population. Viral gene expression over the course of infection was determined by immunofluorescent analysis (IFA) and reverse transcription-PCR (RT-PCR). The presence of HCMV genomes was determined by PCR, nested PCR (n-PCR), and fluorescence in situ hybridization (FISH). Compared to the HCMV latency model, THP-1, Towne-infected T98Gs expressed IE1 and latency-associated transcripts for longer periods, contained many more HCMV genomes during early passages, and carried genomes for a greatly extended period of passaging. Large numbers of HCMV genomes were also found in purified Ag(-) AD169-infected cells for the first several passages. Interestingly, latency transcripts were observed from very early times in the Towne-infected cells, even when IE1 was expressed at low levels. Although AD169-infected Ag(-) cells expressed no detectable levels of either IE1 or latency transcripts, they also maintained large numbers of genomes within the cell nuclei for several passages. These results identify HCMV-infected T98Gs as an attractive new model in the study of the long-term maintenance of virus genomes in the context of neural cell types. IMPORTANCE Our previous work showed that T98G glioblastoma cells were semipermissive to HCMV infection; virus trafficked to the nucleus, and yet only a proportion of cells stained positive for viral antigens, thus allowing continual subculturing and passaging. The cells eventually transitioned to a state where viral genomes were maintained without viral antigen expression or virion production. Here we report that during long-term T98G infection, large numbers of genomes were maintained within all of the cells' nuclei for the first several passages (through passage 4 [P4]), even in the presence of continual cellular division. Surprisingly, genomes were maintained, albeit at a lower level, through day 41. This is decidedly longer than in any other latency model system that has been described to date. We believe that this system offers a useful model to aid in unraveling the cellular components involved in viral genome maintenance (and presumably replication) in cells carrying long-term latent genomes in a neural context.
Collapse
Affiliation(s)
- Ying-Liang Duan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han-Qing Ye
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Anamaria G. Zavala
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Cui-Qing Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ling-Feng Miao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bi-Shi Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Keun Seok Seo
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | |
Collapse
|
15
|
Sijmons S, Van Ranst M, Maes P. Genomic and functional characteristics of human cytomegalovirus revealed by next-generation sequencing. Viruses 2014; 6:1049-72. [PMID: 24603756 PMCID: PMC3970138 DOI: 10.3390/v6031049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 01/08/2023] Open
Abstract
The complete genome of human cytomegalovirus (HCMV) was elucidated almost 25 years ago using a traditional cloning and Sanger sequencing approach. Analysis of the genetic content of additional laboratory and clinical isolates has lead to a better, albeit still incomplete, definition of the coding potential and diversity of wild-type HCMV strains. The introduction of a new generation of massively parallel sequencing technologies, collectively called next-generation sequencing, has profoundly increased the throughput and resolution of the genomics field. These increased possibilities are already leading to a better understanding of the circulating diversity of HCMV clinical isolates. The higher resolution of next-generation sequencing provides new opportunities in the study of intrahost viral population structures. Furthermore, deep sequencing enables novel diagnostic applications for sensitive drug resistance mutation detection. RNA-seq applications have changed the picture of the HCMV transcriptome, which resulted in proof of a vast amount of splicing events and alternative transcripts. This review discusses the application of next-generation sequencing technologies, which has provided a clearer picture of the intricate nature of the HCMV genome. The continuing development and application of novel sequencing technologies will further augment our understanding of this ubiquitous, but elusive, herpesvirus.
Collapse
Affiliation(s)
- Steven Sijmons
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| | - Piet Maes
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| |
Collapse
|
16
|
Abstract
To fully understand the function of cytomegalovirus (CMV) genes, it is imperative that they be studied in the context of infection. Therefore, the targeted deletion of individual viral genes and the comparison of loss of function viral mutants to the wild-type virus allow the identification of the relevance and role for a particular gene in the viral replication cycle. Targeted CMV mutagenesis has made huge advances over the past 15 years. The cloning of CMV genomes into (E. coli) as bacterial artificial chromosomes (BAC) allows not only quick and efficient deletion of viral genomic regions, individual genes, or single nucleotide exchanges in the viral genome but also the insertion of heterologous genetic sequences for gain of function approaches. The conceptual advantage of this strategy is that it overcomes the restrictions of recombinant technologies in cell culture systems. Namely, recombination in infected cells occurs only in a few clones, and their selection is not possible if the targeted genes are relevant for virus replication and are not able to compete for growth against the unrecombined viruses. On the other hand, BAC mutagenesis enables the selection for antibiotic resistance in E. coli, allowing a selective growth advantage to the recombined genomes. Here we describe the methods used for the generation of a CMV BAC, targeted mutagenesis of BAC clones, and transfection of human cells with CMV BAC DNA in order to reconstitute the viral infection process.
Collapse
|
17
|
Comparative analysis of gO isoforms reveals that strains of human cytomegalovirus differ in the ratio of gH/gL/gO and gH/gL/UL128-131 in the virion envelope. J Virol 2013; 87:9680-90. [PMID: 23804643 DOI: 10.1128/jvi.01167-13] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpesvirus glycoprotein complex gH/gL provides a core entry function through interactions with the fusion protein gB and can also influence tropism through receptor interactions. The Epstein-Barr virus gH/gL and gH/gL/gp42 serve both functions for entry into epithelial and B cells, respectively. Human cytomegalovirus (HCMV) gH/gL can be bound by the UL128-131 proteins or gO. The phenotypes of gO and UL128-131 mutants suggest that gO-gH/gL interactions are necessary for the core entry function on all cell types, whereas the binding of UL128-131 to gH/gL likely relates to a distinct receptor-binding function for entry into some specific cell types (e.g., epithelial) but not others (e.g., fibroblasts and neurons). There are at least eight isoforms of gO that differ by 10 to 30% of amino acids, and previous analysis of two HCMV strains suggested that some isoforms of gO function like chaperones, disassociating during assembly to leave unbound gH/gL in the virion envelope, while others remain bound to gH/gL. For the current report, we analyzed the gH/gL complexes present in the virion envelope of several HCMV strains, each of which encodes a distinct gO isoform. Results indicate that all strains of HCMV contain stable gH/gL/gO trimers and gH/gL/UL128-131 pentamers and little, if any, unbound gH/gL. TR, TB40/e, AD169, and PH virions contained vastly more gH/gL/gO than gH/gL/UL128-131, whereas Merlin virions contained mostly gH/gL/UL128-131, despite abundant unbound gO remaining in the infected cells. Suppression of UL128-131 expression during Merlin replication dramatically shifted the ratio toward gH/gL/gO. These data suggest that Merlin gO is less efficient than other gO isoforms at competing with UL128-131 for binding to gH/gL. Thus, gO diversity may influence the pathogenesis of HCMV through effects on the assembly of the core versus tropism gH/gL complexes.
Collapse
|
18
|
Bacterial artificial chromosome clones of viruses comprising the towne cytomegalovirus vaccine. J Biomed Biotechnol 2011; 2012:428498. [PMID: 22187535 PMCID: PMC3236503 DOI: 10.1155/2012/428498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/24/2011] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. Instead, genetic composition and in vitro growth properties have been inferred from studies of laboratory stocks that may not always accurately represent the viruses that comprise the vaccine. Here we describe the use of BAC cloning to define the genotypic and phenotypic properties of viruses from the Towne vaccine. Given the extensive safety history of the Towne vaccine, these BACs provide a logical starting point for the development of next-generation rationally engineered cytomegalovirus vaccines.
Collapse
|
19
|
The latency-associated UL138 gene product of human cytomegalovirus sensitizes cells to tumor necrosis factor alpha (TNF-alpha) signaling by upregulating TNF-alpha receptor 1 cell surface expression. J Virol 2011; 85:11409-21. [PMID: 21880774 DOI: 10.1128/jvi.05028-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many viruses antagonize tumor necrosis factor alpha (TNF-α) signaling in order to counteract its antiviral properties. One way viruses achieve this goal is to reduce TNF-α receptor 1 (TNFR1) on the surface of infected cells. Such a mechanism is also employed by human cytomegalovirus (HCMV), as recently reported by others and us. On the other hand, TNF-α has also been shown to foster reactivation of HCMV from latency. By characterizing a new variant of HCMV AD169, we show here that TNFR1 downregulation by HCMV only becomes apparent upon infection of cells with HCMV strains lacking the so-called ULb' region. This region contains genes involved in regulating viral immune escape, cell tropism, or latency and is typically lost from laboratory strains but present in low-passage strains and clinical isolates. We further show that although ULb'-positive viruses also contain the TNFR1-antagonizing function, this activity is masked by a dominant TNFR1 upregulation mediated by the ULb' gene product UL138. Isolated expression of UL138 in the absence of viral infection upregulates TNFR1 surface expression and can rescue both TNFR1 reexpression and TNF-α responsiveness of cells infected with an HCMV mutant lacking the UL138-containing transcription unit. Given that the UL138 gene product is one of the few genes recognized to be expressed during HCMV latency and the known positive effects of TNF-α on viral reactivation, we suggest that via upregulating TNFR1 surface expression UL138 may sensitize latently infected cells to TNF-α-mediated reactivation of HCMV.
Collapse
|
20
|
The human cytomegalovirus gene products essential for late viral gene expression assemble into prereplication complexes before viral DNA replication. J Virol 2011; 85:6629-44. [PMID: 21507978 DOI: 10.1128/jvi.00384-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of human cytomegalovirus (HCMV) late gene expression by viral proteins is poorly understood, and these viral proteins could be targets for novel antivirals. HCMV open reading frames (ORFs) UL79, -87, and -95 encode proteins with homology to late gene transcription factors of murine gammaherpesvirus 68 ORFs 18, 24, and 34, respectively. To determine whether these HCMV proteins are also essential for late gene transcription of a betaherpesvirus, we mutated HCMV ORFs UL79, -87, and -95. Cells were infected with the recombinant viruses at high and low multiplicities of infection (MOIs). While viral DNA was detected with the recombinant viruses, infectious virus was not detected unless the wild-type viral proteins were expressed in trans. At a high MOI, mutation of ORF UL79, -87, or -95 had no effect on the level of major immediate-early (MIE) gene expression or viral DNA replication, but late viral gene expression from the UL44, -75, and -99 ORFs was not detected. At a low MOI, preexpression of UL79 or -87, but not UL95, in human fibroblast cells negatively affected the level of MIE viral gene expression and viral DNA replication. The products of ORFs UL79, -87, and -95 were expressed as early viral proteins and recruited to prereplication complexes (pre-RCs), along with UL44, before the initiation of viral DNA replication. All three HCMV ORFs are indispensable for late viral gene expression and viral growth. The roles of UL79, -87, and -95 in pre-RCs for late viral gene expression are discussed.
Collapse
|
21
|
Jung GS, Kim YY, Kim JI, Ji GY, Jeon JS, Yoon HW, Lee GC, Ahn JH, Lee KM, Lee CH. Full genome sequencing and analysis of human cytomegalovirus strain JHC isolated from a Korean patient. Virus Res 2011; 156:113-20. [PMID: 21255625 DOI: 10.1016/j.virusres.2011.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen and contains double stranded DNA genome with approximately 230 kbp. Because of its huge size, comparative genomic studies of HCMV genome have been limited. In this study it was attempted to obtain and analyze the full genome sequence from clinical isolate from Korea. The strain JHC was isolated from Korean patient undergoing bone marrow transplantation who exhibited resistance to ganciclovir treatment (Lee et al., 2005). The virus was plaque-purified, and the full genome sequence was determined by pyrosequencing technique. The JHC genome was found to contain 235,476 bp and 165 open reading frames (ORFs). Comparison with the full genome nucleotide sequences of 11 other HCMV strains suggest that JHC is not closely related with any other strains at genome level. As expected, JHC lacked IRL sequences found in lab-adapted AD169-varUK strain and this region was replaced by ORFs UL133-UL150 as in other clinical isolates. Two ORFs (UL1 and UL119) of the strain JHC were found to be truncated due to early stop codons, and RL6 contains an unusual start codon TTG. The strain JHC contains all the genetic information for micro RNAs known to be present in HCMV.
Collapse
Affiliation(s)
- Gyoo Seung Jung
- Department of Microbiology, College of Natural Sciences, Chungbuk National University, 410 Seongbong-Ro, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McGregor A, Choi KY, Schleiss MR. Guinea pig cytomegalovirus GP84 is a functional homolog of the human cytomegalovirus (HCMV) UL84 gene that can complement for the loss of UL84 in a chimeric HCMV. Virology 2010; 410:76-87. [PMID: 21094510 DOI: 10.1016/j.virol.2010.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/23/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
The guinea pig cytomegalovirus (GPCMV) co-linear gene and potential functional homolog of HCMV UL84 (GP84) was investigated. The GP84 gene had delayed early transcription kinetics and transient expression studies of GP84 protein (pGP84) demonstrated that it targeted the nucleus and co-localized with the viral DNA polymerase accessory protein as described for HCMV pUL84. Additionally, pGP84 exhibited a transdominant inhibitory effect on viral growth as described for HCMV. The inhibitory domain could be localized to a minimal peptide sequence of 99 aa. Knockout of GP84 generated virus with greatly impaired growth kinetics. Lastly, the GP84 ORF was capable of complementing for the loss of the UL84 coding sequence in a chimeric HCMV. Based on this research and previous studies we conclude that GPCMV is similar to HCMV by encoding single copy co-linear functional homologs of HCMV UL82 (pp71), UL83 (pp65) and UL84 genes.
Collapse
Affiliation(s)
- A McGregor
- Center for Infectious Diseases and Microbiology, Translational Research and Division of Infectious Diseases, University of Minnesota Medical School, Department of Pediatrics, 2001 Sixth Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
23
|
Herpesvirus BACs: past, present, and future. J Biomed Biotechnol 2010; 2011:124595. [PMID: 21048927 PMCID: PMC2965428 DOI: 10.1155/2011/124595] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/19/2010] [Indexed: 12/12/2022] Open
Abstract
The herpesviridae are a large family of DNA viruses with large and complicated genomes. Genetic manipulation and the generation of recombinant viruses have been extremely difficult. However, herpesvirus bacterial artificial chromosomes (BACs) that were developed approximately 10 years ago have become useful and powerful genetic tools for generating recombinant viruses to study the biology and pathogenesis of herpesviruses. For example, BAC-directed deletion mutants are commonly used to determine the function and essentiality of viral genes. In this paper, we discuss the creation of herpesvirus BACs, functional analyses of herpesvirus mutants, and future applications for studies of herpesviruses. We describe commonly used methods to create and mutate herpesvirus BACs (such as site-directed mutagenesis and transposon mutagenesis). We also evaluate the potential future uses of viral BACs, including vaccine development and gene therapy.
Collapse
|
24
|
Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O, Seirafian S, McSharry BP, Neale ML, Davies JA, Tomasec P, Davison AJ, Wilkinson GWG. Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 2010; 120:3191-208. [PMID: 20679731 DOI: 10.1172/jci42955] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/23/2010] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) in clinical material cannot replicate efficiently in vitro until it has adapted by mutation. Consequently, wild-type HCMV differ fundamentally from the passaged strains used for research. To generate a genetically intact source of HCMV, we cloned strain Merlin into a self-excising BAC. The Merlin BAC clone had mutations in the RL13 gene and UL128 locus that were acquired during limited replication in vitro prior to cloning. The complete wild-type HCMV gene complement was reconstructed by reference to the original clinical sample. Characterization of viruses generated from repaired BACs revealed that RL13 efficiently repressed HCMV replication in multiple cell types; moreover, RL13 mutants rapidly and reproducibly emerged in transfectants. Virus also acquired mutations in genes UL128, UL130, or UL131A, which inhibited virus growth specifically in fibroblast cells in wild-type form. We further report that RL13 encodes a highly glycosylated virion envelope protein and thus has the potential to modulate tropism. To overcome rapid emergence of mutations in genetically intact HCMV, we developed a system in which RL13 and UL131A were conditionally repressed during virus propagation. This technological advance now permits studies to be undertaken with a clonal, characterized HCMV strain containing the complete wild-type gene complement and promises to enhance the clinical relevance of fundamental research on HCMV.
Collapse
Affiliation(s)
- Richard J Stanton
- Section of Medical Microbiology, Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Isomura H, Stinski MF, Murata T, Nakayama S, Chiba S, Akatsuka Y, Kanda T, Tsurumi T. The human cytomegalovirus UL76 gene regulates the level of expression of the UL77 gene. PLoS One 2010; 5:e11901. [PMID: 20689582 PMCID: PMC2912765 DOI: 10.1371/journal.pone.0011901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 07/07/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs) have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5' mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein. METHODOLOGY/PRINCIPAL FINDINGS To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth. CONCLUSIONS/SIGNIFICANCE While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.
Collapse
Affiliation(s)
- Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, Kanokoden, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sauer A, Wang JB, Hahn G, McVoy MA. A human cytomegalovirus deleted of internal repeats replicates with near wild type efficiency but fails to undergo genome isomerization. Virology 2010; 401:90-5. [PMID: 20211481 PMCID: PMC2849842 DOI: 10.1016/j.virol.2010.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/28/2009] [Accepted: 02/10/2010] [Indexed: 01/30/2023]
Abstract
The class E genome of human cytomegalovirus (HCMV) contains long and short segments that invert due to recombination between flanking inverted repeats, causing the genome to isomerize into four distinct isomers. To determine if isomerization is important for HCMV replication, one copy of each repeat was deleted. The resulting virus replicated in cultured human fibroblasts with only a slight growth impairment. Restriction and Southern analyses confirmed that its genome is locked in the prototypic arrangement and unable to isomerize. We conclude that efficient replication of HCMV in fibroblasts does not require (i) the ability to undergo genome isomerization, (ii) genes that lie partially within the deleted repeats, or (iii) diploidy of genes that lie wholly within repeats. The simple genomic structure of this virus should facilitate studies of genome circularization, latency or persistence, and concatemer packaging as such studies are hindered by the complexities imposed by isomerization.
Collapse
Affiliation(s)
- Anne Sauer
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| | - Jian Ben Wang
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| | - Gabriele Hahn
- Institut für Laboratoriumsmedizin, Abteilung Mikrobiologie, Klinikum Ingolstadt, Krumenauerstr. 25, 85049 Ingolstadt, Germany
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Richmond Virginia 23298-0163, USA
| |
Collapse
|
27
|
Bradley AJ, Lurain NS, Ghazal P, Trivedi U, Cunningham C, Baluchova K, Gatherer D, Wilkinson GWG, Dargan DJ, Davison AJ. High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169. J Gen Virol 2009; 90:2375-2380. [PMID: 19553388 PMCID: PMC2885757 DOI: 10.1099/vir.0.013250-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genomes of commonly used variants of human cytomegalovirus (HCMV) strains Towne and AD169 each contain a substantial mutation in which a region (UL/b′) at the right end of the long unique region has been replaced by an inverted duplication of a region from the left end of the genome. Using high-throughput technology, we have sequenced HCMV strain Towne (ATCC VR-977) and confirmed the presence of two variants, one exhibiting the replacement in UL/b′ and the other intact in this region. Both variants are mutated in genes RL13, UL1, UL40, UL130, US1 and US9. We have also sequenced a novel AD169 variant (varUC) that is intact in UL/b′ except for a small deletion that affects genes UL144, UL142, UL141 and UL140. Like other AD169 variants, varUC is mutated in genes RL5A, RL13, UL36 and UL131A. A subpopulation of varUC contains an additional deletion affecting genes IRS1, US1 and US2.
Collapse
Affiliation(s)
- Amanda J Bradley
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Nell S Lurain
- Department of Immunology and Microbiology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | - Peter Ghazal
- Division of Pathway Medicine, University of Edinburgh Medical School, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Urmi Trivedi
- The Gene Pool, Ashworth Laboratories, Institute of Evolutionary Biology, King's Buildings, Edinburgh EH9 3JT, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Katarina Baluchova
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Derek Gatherer
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Gavin W G Wilkinson
- Department of Medical Microbiology, Tenovus Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XX, UK
| | - Derrick J Dargan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
28
|
Development of cell lines that provide tightly controlled temporal translation of the human cytomegalovirus IE2 proteins for complementation and functional analyses of growth-impaired and nonviable IE2 mutant viruses. J Virol 2008; 82:7059-77. [PMID: 18463148 DOI: 10.1128/jvi.00675-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86 protein is essential for viral replication. Two other proteins, IE2 60 and IE2 40, which arise from the C-terminal half of IE2 86, are important for later stages of the infection. Functional analyses of IE2 86 in the context of the infection have utilized bacterial artificial chromosomes as vectors to generate mutant viruses. One limitation is that many mutations result in debilitated or nonviable viruses. Here, we describe a novel system that allows tightly controlled temporal expression of the IE2 proteins and provides complementation of both growth-impaired and nonviable IE2 mutant viruses. The strategy involves creation of cell lines with separate lentiviruses expressing a bicistronic RNA with a selectable marker as the first open reading frame (ORF) and IE2 86, IE2 60, or IE2 40 as the second ORF. Induction of expression of the IE2 proteins occurs only following DNA recombination events mediated by Cre and FLP recombinases that delete the first ORF. HCMV encodes Cre and FLP, which are expressed at immediate-early (for IE2 86) and early-late (for IE2 40 and IE2 60) times, respectively. We show that the presence of full-length IE2 86 alone provides some complementation for virus production, but the correct temporal expression of IE2 86 and IE2 40 together has the most beneficial effect for early-late gene expression and synthesis of infectious virus. This approach for inducible protein translation can be used for complementation of other mutations as well as controlled expression of toxic cellular and microbial proteins.
Collapse
|
29
|
A cis element between the TATA Box and the transcription start site of the major immediate-early promoter of human cytomegalovirus determines efficiency of viral replication. J Virol 2007; 82:849-58. [PMID: 17989180 DOI: 10.1128/jvi.01593-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The promoter of the major immediate-early (MIE) genes of human cytomegalovirus (HCMV), also referred to as the CMV promoter, possesses a cis-acting element positioned downstream of the TATA box between positions -14 and -1 relative to the transcription start site (+1). We determined the role of the cis-acting element in viral replication by comparing recombinant viruses with the cis-acting element replaced with other sequences. Recombinant virus with the simian CMV counterpart replicated efficiently in human foreskin fibroblasts, as well as wild-type virus. In contrast, replacement with the murine CMV counterpart caused inefficient MIE gene transcription, RNA splicing, MIE and early viral gene expression, and viral DNA replication. To determine which nucleotides in the cis-acting element are required for efficient MIE gene transcription and splicing, we constructed mutations within the cis-acting element in the context of a recombinant virus. While mutations in the cis-acting element have only a minor effect on in vitro transcription, the effects on viral replication are major. The nucleotides at -10 and -9 in the cis-acting element relative to the transcription start site (+1) affect efficient MIE gene transcription and splicing at early times after infection. The cis-acting element also acts as a cis-repression sequence when the viral IE86 protein accumulates in the infected cell. We demonstrate that the cis-acting element has an essential role in viral replication.
Collapse
|
30
|
Goodrum F, Reeves M, Sinclair J, High K, Shenk T. Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood 2007; 110:937-45. [PMID: 17440050 PMCID: PMC1924770 DOI: 10.1182/blood-2007-01-070078] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/05/2007] [Indexed: 01/20/2023] Open
Abstract
Latency enables human cytomegalovirus (HCMV) to persist in the hematopoietic cells of infected individuals indefinitely and prevents clearance of the pathogen. Despite its critical importance to the viral infectious cycle, viral mechanisms that contribute to latency have not been identified. We compared the ability of low-passage clinical and laboratory-adapted strains of HCMV to establish a latent infection in primary human CD34(+) cells. The low-passage strains, Toledo and FIX, established an infection with the hallmarks of latency, whereas the laboratory strains, AD169 and Towne, replicated producing progeny virus. We hypothesized that ULb' region of the genome, which is unique to low-passage strains, may encode a latency-promoting activity. We created and analyzed recombinant viruses lacking segments or individual open reading frames (ORFs) in the ULb' region. One 5-kb segment, and more specifically the UL138 ORF, was required for HCMV to establish and/or maintain a latent infection in hematopoietic progenitor cells infected in vitro. This is the first functional demonstration of a virus-coded sequence required for HCMV latency. Importantly, UL138 RNA was expressed in CD34(+) cells and monocytes from HCMV-seropositive, healthy individuals. UL138 might be a target for antivirals against latent virus.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ 85711, USA.
| | | | | | | | | |
Collapse
|
31
|
Santos K, Sanfilippo CM, Narrow WC, Casey AE, Rodriguez-Colon SM, McDermott MP, Federoff HJ, Bowers WJ, Dewhurst S. Infectivity of herpes simplex virus type-1 (HSV-1) amplicon vectors in dendritic cells is determined by the helper virus strain used for packaging. J Virol Methods 2007; 145:37-46. [PMID: 17606303 PMCID: PMC2080840 DOI: 10.1016/j.jviromet.2007.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 05/01/2007] [Accepted: 05/03/2007] [Indexed: 11/16/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) amplicon vectors are being explored for a wide range of potential applications, including vaccine delivery and immunotherapy of cancer. While extensive effort has been directed towards the improvement of the amplicon "payload" in these vectors, relatively little attention has been paid to the effect of the packaging HSV-1 strains on the biological properties of co-packaged amplicon vectors. We therefore compared the biological properties of amplicon stocks prepared using a panel of primary HSV-1 isolates, a molecularly cloned strain used to package helper-free amplicons (designated here as F5), and two laboratory isolates (KOS and strain 17, which is the parent of the F5 clone). This analysis revealed considerable inter-strain variability in the ability of amplicon stocks packaged by different primary HSV-1 isolates to efficiently transduce established cell lines and primary human dendritic cells (DC). Amplicons packaged by both the F5 molecularly cloned virus and its laboratory-adapted parent (strain 17) were very inefficient at transducing DC, when compared to amplicons packaged by KOS or by several of the primary virus isolates. These finding have important implications for the future development of improved amplicon-based vaccine delivery systems and suggest that DC tropism may be an instrinsic property of some HSV-1 strains, independent of passage history or molecular cloning.
Collapse
Affiliation(s)
- Kathlyn Santos
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry
| | - Christine M. Sanfilippo
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry
| | - Wade C. Narrow
- Center for Aging and Development, University of Rochester School of Medicine and Dentistry
| | - Ann E. Casey
- Center for Aging and Development, University of Rochester School of Medicine and Dentistry
| | - Sol M. Rodriguez-Colon
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry
| | - Michael P. McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry
- Department of Neurology, University of Rochester School of Medicine and Dentistry
| | - Howard J. Federoff
- Department of Neurology, University of Rochester School of Medicine and Dentistry
- Center for Aging and Development, University of Rochester School of Medicine and Dentistry
| | - William J. Bowers
- Department of Neurology, University of Rochester School of Medicine and Dentistry
- Center for Aging and Development, University of Rochester School of Medicine and Dentistry
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry
- James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry
| |
Collapse
|
32
|
Schmeisser F, Weir JP. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes. BMC Biotechnol 2007; 7:22. [PMID: 17501993 PMCID: PMC1885250 DOI: 10.1186/1472-6750-7-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 05/14/2007] [Indexed: 12/20/2022] Open
Abstract
Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC) technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2) BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors.
Collapse
Affiliation(s)
- Falko Schmeisser
- Laboratory of DNA Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Jerry P Weir
- Laboratory of DNA Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Isomura H, Stinski MF, Kudoh A, Nakayama S, Iwahori S, Sato Y, Tsurumi T. The late promoter of the human cytomegalovirus viral DNA polymerase processivity factor has an impact on delayed early and late viral gene products but not on viral DNA synthesis. J Virol 2007; 81:6197-206. [PMID: 17409154 PMCID: PMC1900103 DOI: 10.1128/jvi.00089-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transcription of the DNA polymerase processivity factor gene (UL44) of human cytomegalovirus initiates at three distinct start sites, which are differentially regulated during productive infection. Two of these start sites, the distal and proximal sites, are active at early times, and the middle start site is active at only late times after infection (F. Leach and E. S. Mocarski, J. Virol. 63:1783-1791, 1989). Compared to the wild type, UL44 gene expression was lower for recombinant viruses with the distal or the middle TATA element mutated. The transcripts initiating from the distal or middle start site facilitated late viral gene expression. The level of viral DNA synthesis was affected by mutation of the distal TATA element. In contrast, mutation of the middle TATA element did not affect the level of viral DNA synthesis, but it did affect significantly the level of late viral gene expression. Recombinant viruses with the distal or middle TATA element mutated grew more slowly than the wild type at both low and high multiplicities of infection. Reduced expression of the UL44 gene from the late middle viral promoter correlated with decreased late viral protein expression and decreased viral growth.
Collapse
Affiliation(s)
- Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wills MR, Ashiru O, Reeves MB, Okecha G, Trowsdale J, Tomasec P, Wilkinson GWG, Sinclair J, Sissons JGP. Human cytomegalovirus encodes an MHC class I-like molecule (UL142) that functions to inhibit NK cell lysis. THE JOURNAL OF IMMUNOLOGY 2006; 175:7457-65. [PMID: 16301653 DOI: 10.4049/jimmunol.175.11.7457] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clinical and low passage strains of human CMV (HCMV) encode an additional MHC class I-related molecule UL142, in addition to the previously described UL18. The UL142 open reading frame is encoded within the ULb' region which is missing from a number of common high passage laboratory strains. Cells expressing UL142 following transfection, and fibroblasts infected with a recombinant adenovirus-expressing UL142, were used to screen both polyclonal NK cells and NK cell clones, in a completely autologous system. Analysis of 100 NK cell clones derived from five donors, revealed 23 clones that were inhibited by fibroblasts expressing UL142 alone. Small-interfering RNA-mediated knockdown of UL142 mRNA expression in HCMV-infected cells resulted in increased sensitivity to lysis. From these data we conclude that UL142 is a novel HCMV-encoded MHC class I-related molecule which inhibits NK cell killing in a clonally dependent manner.
Collapse
Affiliation(s)
- Mark R Wills
- Department of Medicine, School of Clinical Medicine, University of Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Isomura H, Stinski MF, Kudoh A, Daikoku T, Shirata N, Tsurumi T. Two Sp1/Sp3 binding sites in the major immediate-early proximal enhancer of human cytomegalovirus have a significant role in viral replication. J Virol 2005; 79:9597-607. [PMID: 16014922 PMCID: PMC1181558 DOI: 10.1128/jvi.79.15.9597-9607.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 04/06/2005] [Indexed: 01/29/2023] Open
Abstract
We previously demonstrated that the major immediate early (MIE) proximal enhancer containing one GC box and the TATA box containing promoter are minimal elements required for transcription and viral replication in human fibroblast cells (H. Isomura, T. Tsurumi, M. F. Stinski, J. Virol. 78:12788-12799, 2004). After infection, the level of Sp1 increased while Sp3 remained constant. Here we report that either Sp1 or Sp3 transcription factors bind to the GC boxes located at approximately positions -55 and -75 relative to the transcription start site (+1). Both the Sp1 and Sp3 binding sites have a positive and synergistic effect on the human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. There was little to no change in MIE transcription or viral replication for recombinant viruses with one or the other Sp1 or Sp3 binding site mutated. In contrast, mutation of both the Sp1 and Sp3 binding sites caused inefficient MIE transcription and viral replication. These data indicate that the Sp1 and Sp3 binding sites have a significant role in HCMV replication in human fibroblast cells.
Collapse
Affiliation(s)
- Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Reboredo M, Greaves RF, Hahn G. Human cytomegalovirus proteins encoded by UL37 exon 1 protect infected fibroblasts against virus-induced apoptosis and are required for efficient virus replication. J Gen Virol 2004; 85:3555-3567. [PMID: 15557228 DOI: 10.1099/vir.0.80379-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) strain AD169 mutants carrying transposon insertions or large deletions in UL37 exon 1 (UL37x1) were recovered from modified bacterial artificial chromosomes by reconstitution in human fibroblasts expressing the adenovirus anti-apoptotic protein E1B19K. UL37x1 mutant growth was severely compromised in normal fibroblasts, with minimal release of infectious progeny. Growth in E1B19K-expressing cells was restored, but did not reach wild-type levels. Normal fibroblasts infected by UL37x1 mutants underwent apoptosis spontaneously between 48 and 96 h after infection. Apoptosis was inhibited by treatment of cells with the broad-spectrum caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone, resulting in substantially increased release of virus. Inhibition of viral DNA replication by phosphonoformate or ganciclovir also inhibited apoptosis, implying that death was triggered by late viral functions or by replication and packaging of the viral genome. Immunofluorescent staining showed that although viral proteins accumulated normally during delayed-early phase and viral DNA replication compartments formed, viral late proteins were detected only rarely, suggesting that spontaneous apoptosis occurs early in late phase. These results demonstrate that anti-apoptotic proteins encoded by HCMV UL37x1 [pUL37x1 (vMIA), gpUL37 and gpUL37(M)] prevent apoptosis that would otherwise be initiated by the replication programme of the virus and are required for efficient and sustainable virus replication.
Collapse
Affiliation(s)
- Mercedes Reboredo
- Department of Virology, Division of Investigative Science, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Richard F Greaves
- Department of Virology, Division of Investigative Science, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Gabriele Hahn
- Max von Pettenkofer Institut, Abteilung für Virologie, LMU-München, Germany
| |
Collapse
|
37
|
Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G, Sarasini A, Wagner M, Gallina A, Milanesi G, Koszinowski U, Baldanti F, Gerna G. Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 2004; 78:10023-33. [PMID: 15331735 PMCID: PMC515016 DOI: 10.1128/jvi.78.18.10023-10033.2004] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects and morbidity in immunocompromised patients and a potential trigger for vascular disease. HCMV replicates in vascular endothelial cells and drives leukocyte-mediated viral dissemination through close endothelium- leukocyte interaction. However, the genetic basis of HCMV growth in endothelial cells and transfer to leukocytes is unknown. We show here that the UL131-128 gene locus of HCMV is indispensable for both productive infection of endothelial cells and transmission to leukocytes. The experimental evidence for this is based on both the loss-of-function phenotype in knockout mutants and natural variants and the gain-of-function phenotype by trans-complementation with individual UL131, UL130, and UL128 genes. Our findings suggest that a common mechanism of virus transfer may be involved in both endothelial cell tropism and leukocyte transfer and shed light on a crucial step in the pathogenesis of HCMV infection.
Collapse
Affiliation(s)
- Gabriele Hahn
- Max von Pettenkofer Institut, Abteilung Virologie, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Caposio P, Riera L, Hahn G, Landolfo S, Gribaudo G. Evidence that the human cytomegalovirus 46-kDa UL72 protein is not an active dUTPase but a late protein dispensable for replication in fibroblasts. Virology 2004; 325:264-76. [PMID: 15246266 DOI: 10.1016/j.virol.2004.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 04/07/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
The Human Cytomegalovirus (HCMV) UL72 gene is considered to be the equivalent of the dUTPase gene of the Alpha- and Gamma-herpesviruses. To characterize its function, the expression profiles of UL72 at both the RNA and the protein level were determined. The gene is expressed with a late kinetics and the corresponding UL72 46-kDa protein accumulates late during infection in the cytoplasm of infected cells. The pUL72 was expressed in E. coli and the purified recombinant protein did not display a detectable dUTPase activity. The viral yields of reconstituted HCMV RVDeltaUL72 viruses carrying a deletion within the UL72 ORF demonstrated a moderate growth defect following low MOI infections, whereas their DNA synthesis profiles were not significantly different from those of the parental HCMV RVAD169. These results demonstrate that the UL72 gene product is not a dUTPase and is not essential for replication in human fibroblasts.
Collapse
Affiliation(s)
- Patrizia Caposio
- Department of Public Health and Microbiology, University of Torino, 9-10126 Turin, Italy
| | | | | | | | | |
Collapse
|
39
|
Mattick C, Dewin D, Polley S, Sevilla-Reyes E, Pignatelli S, Rawlinson W, Wilkinson G, Dal Monte P, Gompels UA. Linkage of human cytomegalovirus glycoprotein gO variant groups identified from worldwide clinical isolates with gN genotypes, implications for disease associations and evidence for N-terminal sites of positive selection. Virology 2004; 318:582-97. [PMID: 14972526 DOI: 10.1016/j.virol.2003.09.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/18/2003] [Accepted: 09/22/2003] [Indexed: 11/28/2022]
Abstract
Previously, we identified the glycoprotein gO gene, UL74, as a hypervariable locus in the human cytomegalovirus (HCMV) genome [Virology 293 (2002) 281]. Here, we analyze gO from 50 isolates from congenitally infected newborns, transplant recipients, and HIV/AIDS patients from Italy, Australia, and UK. These are compared to four gO groups described from USA transplantation patients [J. Virol. 76 (2002) 10841]. Phylogenetic analyses identified seven genotypes. Divergence between genotypes was up to 55% and within 3%. Discrete linkage was shown between seven hypervariable gO and gN genotypes, but not with gB. This suggests interactions, while gN and gO are known to form complexes with distinct conserved glycoproteins gM, gH/gL, respectively, both are involved in fusogenic entry and exit. Codon-based maximum likelihood models showed evidence for sites of positive selection. Further analyses of disease relationships should take into account these newly defined gO/gN groups.
Collapse
Affiliation(s)
- C Mattick
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, University of London, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F. Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 2003; 100:14223-8. [PMID: 14623981 PMCID: PMC283573 DOI: 10.1073/pnas.2334032100] [Citation(s) in RCA: 538] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous herpesvirus, causes a lifelong subclinical infection in healthy adults but leads to significant morbidity and mortality in neonates and immunocompromised individuals. Its ability to grow in different cell types is responsible for HCMV-associated diseases, including mental retardation and retinitis, and vascular disorders. To globally assess viral gene function for replication in cells, we determined the genomic sequence of a bacterial artificial chromosome (BAC)-based clone of HCMV Towne strain and used this information to delete each of its 162 unique ORFs and generate a collection of viral mutants. The growth of these mutants in different cultured cells was examined to systematically investigate the necessity of each ORF for replication. Our results showed that 45 ORFs are essential for viral replication in fibroblasts and 117 are nonessential. Some genes were found to be required for viral replication in retinal pigment epithelial cells and microvascular endothelial cells, but not in fibroblasts, indicating their role as tropism factors. Interestingly, several viral mutants grew 10- to 500-fold better than the parental strain in different cell types, suggesting that the deleted ORFs encode replication temperance or repressing functions. Thus, HCMV encodes supportive and suppressive growth regulators for optimizing its replication in human fibroblasts, epithelial, and endothelial cells. Suppression of viral replication by virus-encoded temperance factors represents a novel mechanism for regulating the growth of an animal virus, and may contribute to HCMV's optimal infection of different tissues and successful proliferation among the human population.
Collapse
Affiliation(s)
- Walter Dunn
- Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|