1
|
Costa P, Pereira C, Oliveira V, Gomes NCM, Romalde JL, Almeida A. Characterising phages for the control of pathogenic bacteria associated with bivalve consumption. Int J Food Microbiol 2025; 432:111096. [PMID: 39946989 DOI: 10.1016/j.ijfoodmicro.2025.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
In the present study, five new bacteriophages (or phages) were characterized, and their efficacy in controlling pathogenic bacteria-Escherichia coli, Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, Aeromonas hydrophila, and Vibrio parahaemolyticus-associated with bivalve consumption was evaluated. The isolated phages include both siphovirus [vB_EcoS_UALMA_PCEc3 (PCEc3), vB_SeTS_UALMA_PCST1 (PCST1), and vB_VpaS_UALMA_PCVp3 (PCVp3)] and myovirus [vB_SeEM_UALMA_PCSE1 (PCSE1) and vB_AhyM_UALMA_PCAh2 (PCAh2)] morphotypes. Four phages are safe for bacterial control, with only one (PCAh2) showing potential lysogenic characteristics. All phages exhibited a narrow host range, capable of infecting up to six additional bacterial strains besides their original host, and four could infect the host bacteria of other phages. Adsorption rates ranged from 24% and 98% within 1 h. One-step growth assays revealed different latent periods, ranging from 10 to 120 min, and low to average burst sizes, ranging from 7.60 to 83.97 PFU/mL. Generally, increasing the multiplicity of infection (MOI) enhanced phage efficiency significantly. All phages effectively reduced the bacterial load of their respective hosts, achieving maximum reductions between 3.73 and 5.57 log CFU/mL within 10 h of treatment. These results suggest that phage biocontrol can be an effective alternative to combat pathogenic bacteria associated with bivalve consumption.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Mota LC, Silva EC, Quinde CA, Cieza B, Basu A, Rodrigues LMR, Vila MMDC, Balcão VM. Potential of a newly isolated lytic bacteriophage to control Pseudomonas coronafaciens pv. garcae in coffee plants: Molecular characterization with in vitro and ex vivo experiments. Enzyme Microb Technol 2025; 184:110573. [PMID: 39700746 DOI: 10.1016/j.enzmictec.2024.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Traditionally, control of coffee plant bacterial halo blight (BHB) caused by the phytopathogen Pseudomonas coronafaciens pv. garcae (Pcg) involves frequent spraying of coffee plantations with non-environmentally friendly and potentially bacterial resistance-promoting copper products or with kasugamycin hydrochloride. In this study we report a leap forward in the quest for a new ecofriendly approach, characterizing (both physicochemically and biologically) and testing both in vitro and ex vivo a new lytic phage for Pcg. An in-depth molecular (genomic and DNA structural features) characterization of the phage was also undertaken. Phage PcgS01F belongs to the class Caudoviricetes, Drexlerviridae family and genus Guelphvirus, and presents a siphovirus-like morphotype. Phage PcgS01F showed a latency period of 40 min and a burst size of 46 PFU/host cell, allowing to conclude that it replicates well in Pcg IBSBF-158. At Multiplicity Of Infection (MOI, or the ratio of phage to bacteria) 1000, the performance of phage PcgS01F was much better than at MOI 10, promoting increasing bacterial reductions until the end of the in vitro inactivation assays, stabilizing at a significant 82 % bacterial load reduction. Phage PcgS01F infected and killed Pcg cells ex vivo in coffee plant leaves artificially contaminated, with a maximum of Pcg inactivation of 7.66 log CFU/mL at MOI 1000 after 36 h of incubation. This study provides evidence that the isolated phage is a promising candidate against the causative agent of BHB in coffee plants.
Collapse
Affiliation(s)
- Luan C Mota
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil.
| | - Erica C Silva
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil.
| | - Carlos A Quinde
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| | - Basilio Cieza
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham, United Kingdom.
| | - Lucas M R Rodrigues
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; Agronomic Institute of Campinas (IAC), Centro de Café Alcides Carvalho, Campinas, SP 13075-630, Brazil.
| | - Marta M D C Vila
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil.
| | - Victor M Balcão
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro P-3810-193, Portugal.
| |
Collapse
|
3
|
Ruiz-Cruz S, Erazo Garzon A, Cambillau C, Ortiz Charneco G, Lugli GA, Ventura M, Mahony J, van Sinderen D. The tal gene of lactococcal bacteriophage TP901-1 is involved in DNA release following host adsorption. Appl Environ Microbiol 2024; 90:e0069424. [PMID: 39132999 PMCID: PMC11409707 DOI: 10.1128/aem.00694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Temperate P335 phage TP901-1 represents one of the best-characterized Gram-positive phages regarding its structure and host interactions. Following its reversible adsorption to the polysaccharidic side-chain of the cell wall polysaccharide of its host Lactococcus cremoris 3107, TP901-1 requires a glucosylated cell envelope moiety to trigger its genome delivery into the host cytoplasm. Here, we demonstrate that three distinct single amino acid substitutions in the Tal protein of TP901-1 baseplate are sufficient to overcome the TP901-1 resistance of three L. cremoris 3107 derivatives, whose resistance is due to impaired DNA release of the phage. All of these Tal alterations are located in the N-terminally located gp27-like domain of the protein, conserved in many tailed phages. AlphaFold2 predictions of the Tal mutant proteins suggest that these mutations favor conformational changes necessary to reposition the Tal fiber and thus facilitate release of the tape measure protein from the tail tube and subsequent DNA ejection in the absence of the trigger otherwise required for phage genome release. IMPORTANCE Understanding the molecular mechanisms involved in phage-host interactions is essential to develop phage-based applications in the food and probiotic industries, yet also to reduce the risk of phage infections in fermentations. Lactococcus, extensively used in dairy fermentations, has been widely employed to unravel such interactions. Phage infection commences with the recognition of a suitable host followed by the release of its DNA into the bacterial cytoplasm. Details on this latter, irreversible step are still very scarce in lactococci and other Gram-positive bacteria. We demonstrate that a component of the baseplate of the lactococcal phage TP901-1, the tail-associated lysin (Tal), is involved in the DNA delivery into its host, L. cremoris 3107. Specifically, we have found that three amino acid changes in Tal appear to facilitate structural rearrangements in the baseplate necessary for the DNA release process, even in the absence of an otherwise required host trigger.
Collapse
Affiliation(s)
- Sofía Ruiz-Cruz
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrea Erazo Garzon
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université—CNRS, Marseille, France
| | | | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - Marco Ventura
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parma, Italy
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Herasimovich A, Akhremchuk A, Valentovich L, Sidarenka A. Whole genome analysis, thermal and UV-tolerance of Lactococcus phage BIM BV-114 isolated from cheese brine. Res Microbiol 2024; 175:104203. [PMID: 38685370 DOI: 10.1016/j.resmic.2024.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Lactococcus phages that belong to the genus Ceduovirus are among the three most frequently isolated phage groups infecting Lactococcus lactis starter strains in dairy plants. In this study, we characterized virulent Lactococcus phage BIM BV-114 isolated from industrial cheese brine in Belarus and identified as Ceduovirus. The bacteriophage demonstrated a relatively short lytic cycle (latent period of 23 ± 5 min, lysis time of 90 ± 5 min), high thermal stability (inactivation after 7 min at 95 °C in skimmed milk) and tolerance to UV radiation (inactivation time - 15 min), indicating adaptation for better persistence in dairy facilities. The genome of the phage BIM BV-114 (21 499 bp; 37 putative open reading frames) has a similar organization to that of other Ceduovirus phages. RLf1_00140 and RLf_00050 gene products, found in the early genes region, may be involved in the sensitivity of phage to the lactococcal abortive infection mechanisms AbiV and AbiQ, respectively. Furthermore, nucleotide deletion, observed in the middle region of the gene encoding putative tape measure protein (RLf1_00300), is possibly responsible for increased thermal tolerance of phage BIM BV-114. Together, these findings will contribute to a better knowledge of virulent Lactococcus phages and the development of effective methods of their control for dairy technologies.
Collapse
Affiliation(s)
- Aliaksandra Herasimovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich str., 2, 220084, Minsk, Belarus.
| | - Artur Akhremchuk
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich str., 2, 220084, Minsk, Belarus.
| | - Leonid Valentovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich str., 2, 220084, Minsk, Belarus.
| | - Anastasiya Sidarenka
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich str., 2, 220084, Minsk, Belarus.
| |
Collapse
|
5
|
Chuksina TA, Fatkulin AA, Sorokina NP, Smykov IT, Kuraeva EV, Masagnaya ES, Smagina KA, Shkurnikov MY. Genome Characterization of Two Novel Lactococcus lactis Phages vL_296 and vL_20A. Acta Naturae 2024; 16:102-109. [PMID: 39555173 PMCID: PMC11569839 DOI: 10.32607/actanaturae.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 11/19/2024] Open
Abstract
Fermented dairy products are produced using starter cultures. They ferment milk to create products with a certain texture, aroma, and taste. However, the lactic acid bacteria used in this production are prone to bacteriophage infection. We examined the genomes of two newly discovered bacteriophage species that were isolated from cheese whey during the cheesemaking process. We have determined the species and the lytic spectrum of these bacteriophages. Phages vL_20A and vL_296 were isolated using lactococcal indicator cultures. They have unique lytic spectra: of the 21 possible identified host bacteria, only four are shared amongst them. The vL_20A and vL_296 genomes comprise linear double-stranded DNA lengths with 21,909 and 22,667 nucleotide pairs, respectively. Lactococcus phage bIL67 (ANI 93.3 and 92.6, respectively) is the closest to the phages vL_20A and vL_296. The analysis of the CRISPR spacers in the genomes of starter cultures did not reveal any phage-specific vL_20A or vL_296 among them. This study highlights the biodiversity of L. lactis phages, their widespread presence in dairy products, and their virulence. However, the virulence of phages is balanced by the presence of a significant number of bacterial strains with different sensitivities to phages in the starter cultures due to the bacterial immune system.
Collapse
Affiliation(s)
- T. A. Chuksina
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| | - A. A. Fatkulin
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| | - N. P. Sorokina
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - I. T. Smykov
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - E. V. Kuraeva
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - E. S. Masagnaya
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - K. A. Smagina
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - M. Yu. Shkurnikov
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| |
Collapse
|
6
|
Silva EC, Rodrigues LMR, Vila MMDC, Balcão VM. Newly isolated phages preying on Pseudomonas syringae pv. garcae: In vitro and ex vivo inactivation studies in coffee plant leafs. Enzyme Microb Technol 2023; 171:110325. [PMID: 37716050 DOI: 10.1016/j.enzmictec.2023.110325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Coffee canker, or bacterial halo blight (BHB) of coffee, is a disease caused by the phytopathogenic bacterium Pseudomonas syringae pv. garcae (Psg), having been found for the first time in 1955, in the Garça region (State of São Paulo), and which has stood out in the Brazilian coffee plantations in recent years, leading to severe economic losses that seriously affect coffee trade. The treatments available are still scarce, involving frequent spraying of coffee plantations with either copper derivatives or the antibiotic kasugamycin. However, these compounds should be avoided due to environmental toxicity and the development of bacterial resistances. Herein we report the isolation and physical/biological characterisation of two novel lytic phages and their efficacy in the control of Psg. Phages ph002F and ph004F were isolated from coffee plant leaves in Brazil (Sorocaba/SP and Itu/SP cities), using Psg IBSBF-158 as the host. According to the transmission electron microscopy analyses, both phages belong to the class Caudoviricetes and present myovirus-like morphotypes. Phages ph002F and ph004F showed eclipse times of 5 min and 20 min, respectively, and a burst size of 123 PFU/host cell and 12 PFU/host cell, respectively, allowing to conclude they replicate well in Psg IBSBF-158 with latency periods of 50 min. Phage ph002F (reduction of 4.59 log CFU/mL, compared to uninfected culture) was more effective in inactivating Psg than phage ph004F (reduction of 3.85 log CFU/mL) after 10 h of incubation at a MOI of 10. As a cocktail, the two phages were highly effective in reducing the bacterial load (reduction of 5.26 log CFU/mL at a MOI of 0.1 or reduction of 5.03 log CFU/mL at a MOI of 10, relative to untreated culture), after 12 h of treatment. This study provides evidence that the isolated phages are promising candidates against the causative agent of BHB in coffee plants.
Collapse
Affiliation(s)
- Erica C Silva
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Lucas M R Rodrigues
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil; Agronomic Institute of Campinas (IAC), Centro de café Alcides Carvalho, Campinas, SP, Brazil
| | - Marta M D C Vila
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Victor M Balcão
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil; Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Zou H, Ding Y, Shang J, Ma C, Li J, Yang Y, Cui X, Zhang J, Ji G, Wei Y. Isolation, characterization, and genomic analysis of a novel bacteriophage MA9V-1 infecting Chryseobacterium indologenes: a pathogen of Panax notoginseng root rot. Front Microbiol 2023; 14:1251211. [PMID: 37779709 PMCID: PMC10537231 DOI: 10.3389/fmicb.2023.1251211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Chryseobacterium indologenes is one of the primary causative agents of root rot of Panax notoginseng, which significantly affected plant growth and caused economic losses. With the increasing incidence of antibiotic-resistant bacterial phytopathogens, phage therapy has been garnered renewed attention in treating pathogenic bacteria. However, the therapeutic potential of phage therapy on root rot of P. notoginseng has not been evaluated. In this study, we isolated a novel lytic phage MA9V-1 infecting C. indologenes MA9 from sewage and monitored the formation of clear and round plaques with a diameter of approximately 0.5-1.5 mm. Phage MA9V-1 exhibited rapid absorption (>75% in 8 min), a latency period of 20 min, and a burst size of 10 particles per cell. Transmission electron microscopy indicated that the phage MA9V-1 is a new myovirus hosting C. indologenes MA9. Sequencing of phage genomes revealed that phage MA9V-1 contained a linear double-stranded DNA genome of 213,507 bp with 263 predicted open reading frames, including phage structure, host lysing, and DNA polymerase/helicase but no genes of tRNA, virulence, and antibiotic resistance. Our proteomic tree and genomic analysis revealed that phage MA9V-1 shares identity with Sphingomonas phage PAU and Tenacibaculum phage PTm1; however, they also showed apparent differences. Further systemic evaluation using phage therapy experiments on P. notoginseng suggested that phage MA9V-1 can be a potential candidate for effectively controlling C. indologenes MA9 infection. Thus, we have presented a novel approach to solving root rot in P. notoginseng.
Collapse
Affiliation(s)
- He Zou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yafang Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junjie Shang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chunlan Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinhua Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ye Yang
- Key Laboratory of Sustainable Development and Utilization of Panax notoginseng Resources in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Development and Utilization of Panax notoginseng Resources in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinhao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guanghai Ji
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Key Laboratory of Sustainable Development and Utilization of Panax notoginseng Resources in Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
8
|
Pereira AO, Barros NMA, Guerrero BR, Emencheta SC, Baldo DÂ, Oliveira JM, Vila MMDC, Balcão VM. An Edible Biopolymeric Microcapsular Wrapping Integrating Lytic Bacteriophage Particles for Salmonella enterica: Potential for Integration into Poultry Feed. Antibiotics (Basel) 2023; 12:988. [PMID: 37370307 DOI: 10.3390/antibiotics12060988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This research work aimed at developing an edible biopolymeric microcapsular wrapping (EBMW) integrating lytic bacteriophage particles for Salmonella enterica, with potential application in poultry feed for biocontrol of that pathogen. This pathogen is known as one of the main microorganisms responsible for contamination in the food industry and in foodstuff. The current techniques for decontamination and pathogen control in the food industry can be very expensive, not very selective, and even outdated, such as the use of broad-spectrum antibiotics that end up selecting resistant bacteria. Hence, there is a need for new technologies for pathogen biocontrol. In this context, bacteriophage-based biocontrol appears as a potential alternative. As a cocktail, both phages were able to significantly reduce the bacterial load after 12 h of treatment, at either multiplicity of infection (MOI) 1 and 10, by 84.3% and 87.6%, respectively. Entrapment of the phage virions within the EBMW matrix did not exert any deleterious effect upon their lytic activity. The results obtained showed high promise for integration in poultry feed aiming at controlling Salmonella enterica, since the edible biopolymeric microcapsular wrapping integrating lytic bacteriophage particles developed was successful in maintaining lytic phage viability while fully stabilizing the phage particles.
Collapse
Affiliation(s)
- Arthur O Pereira
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Nicole M A Barros
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Bruna R Guerrero
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Stephen C Emencheta
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Enugu, Nigeria
| | - Denicezar  Baldo
- LaFiNAU-Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - José M Oliveira
- LaFiNAU-Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Marta M D C Vila
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Victor M Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Balcão VM, Belline BG, Silva EC, Almeida PFFB, Baldo DÂ, Amorim LRP, Oliveira Júnior JM, Vila MMDC, Del Fiol FS. Isolation and Molecular Characterization of Two Novel Lytic Bacteriophages for the Biocontrol of Escherichia coli in Uterine Infections: In Vitro and Ex Vivo Preliminary Studies in Veterinary Medicine. Pharmaceutics 2022; 14:2344. [PMID: 36365162 PMCID: PMC9692438 DOI: 10.3390/pharmaceutics14112344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 09/18/2023] Open
Abstract
E. coli is one of the etiological agents responsible for pyometra in female dogs, with conventional treatment involving ovariohysterectomy. Here, we report the isolation and full characterization of two novel lytic phages, viz. vB_EcoM_Uniso11 (ph0011) and vB_EcoM_Uniso21 (ph0021). Both phages belong to the order Caudovirales and present myovirus-like morphotypes, with phage ph0011 being classified as Myoviridae genus Asteriusvirus and phage ph0021 being classified as Myoviridae genus Tequatrovirus, based on their complete genome sequences. The 348,288 bp phage ph0011 and 165,222 bp phage ph0021 genomes do not encode toxins, integrases or antimicrobial resistance genes neither depolymerases related sequences. Both phages were shown to be effective against at least twelve E. coli clinical isolates in in vitro antibacterial activity assays. Based on their features, both phages have potential for controlling pyometra infections caused by E. coli. Phage ph0011 (reduction of 4.24 log CFU/mL) was more effective than phage ph0021 (reduction of 1.90 log CFU/mL) after 12 h of incubation at MOI 1000. As a cocktail, the two phages were highly effective in reducing the bacterial load (reduction of 5.57 log CFU/mL) at MOI 100, after 12 h of treatment. Both phages were structurally and functionally stabilized in vaginal egg formulations.
Collapse
Affiliation(s)
- Victor M. Balcão
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, P-3810-193 Aveiro, Portugal
| | - Bianca G. Belline
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Erica C. Silva
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Pablo F. F. B. Almeida
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Denicezar Â. Baldo
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Lara R. P. Amorim
- Department of Education, Faculty of Sciences, University of Porto, P-4169-007 Porto, Portugal
| | - José M. Oliveira Júnior
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Marta M. D. C. Vila
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Fernando S. Del Fiol
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| |
Collapse
|
10
|
Ruiz‐Cruz S, Erazo Garzon A, Kelleher P, Bottacini F, Breum SØ, Neve H, Heller KJ, Vogensen FK, Palussière S, Courtin P, Chapot‐Chartier M, Vinogradov E, Sadovskaya I, Mahony J, van Sinderen D. Host genetic requirements for DNA release of lactococcal phage TP901-1. Microb Biotechnol 2022; 15:2875-2889. [PMID: 36259418 PMCID: PMC9733650 DOI: 10.1111/1751-7915.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
The first step in phage infection is the recognition of, and adsorption to, a receptor located on the host cell surface. This reversible host adsorption step is commonly followed by an irreversible event, which involves phage DNA delivery or release into the bacterial cytoplasm. The molecular components that trigger this latter event are unknown for most phages of Gram-positive bacteria. In the current study, we present a comparative genome analysis of three mutants of Lactococcus cremoris 3107, which are resistant to the P335 group phage TP901-1 due to mutations that affect TP901-1 DNA release. Through genetic complementation and phage infection assays, a predicted lactococcal three-component glycosylation system (TGS) was shown to be required for TP901-1 infection. Major cell wall saccharidic components were analysed, but no differences were found. However, heterologous gene expression experiments indicate that this TGS is involved in the glucosylation of a cell envelope-associated component that triggers TP901-1 DNA release. To date, a saccharide modification has not been implicated in the DNA delivery process of a Gram-positive infecting phage.
Collapse
Affiliation(s)
- Sofía Ruiz‐Cruz
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Andrea Erazo Garzon
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Francesca Bottacini
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland,Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Solvej Østergaard Breum
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark,Present address:
Department of Virus & Microbiological Special Diagnostics, Division of Infectious Disease Preparedness, Statens Serum InstitutCopenhagenDenmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner‐InstitutFederal Research Institute of Nutrition and FoodKielGermany
| | - Knut J. Heller
- Department of Microbiology and Biotechnology, Max Rubner‐InstitutFederal Research Institute of Nutrition and FoodKielGermany
| | - Finn K. Vogensen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Simon Palussière
- Université Paris‐Saclay, INRAE, AgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| | - Pascal Courtin
- Université Paris‐Saclay, INRAE, AgroParisTech, Micalis InstituteJouy‐en‐JosasFrance
| | | | - Evgeny Vinogradov
- National Research Council CanadaInstitute for Biological SciencesOttawaOntarioCanada
| | - Irina Sadovskaya
- Equipe BPA, Université du Littoral‐Côte d'Opale, Institut Charles Violette EA 7394 USC AnsesBoulogne‐sur‐merFrance
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
11
|
Costa SP, Nogueira CL, Cunha AP, Lisac A, Carvalho CM. Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 2022:1-18. [PMID: 35848817 DOI: 10.1080/07388551.2022.2071671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial pathogens are leading causes of infections with high mortality worldwide having a great impact on healthcare systems and the food industry. Gold standard methods for bacterial detection mainly rely on culture-based technologies and biochemical tests which are laborious and time-consuming. Regardless of several developments in existing methods, the goal of achieving high sensitivity and specificity, as well as a low detection limit, remains unaccomplished. In past years, various biorecognition elements, such as antibodies, enzymes, aptamers, or nucleic acids, have been widely used, being crucial for the pathogens detection in different complex matrices. However, these molecules are usually associated with high detection limits, demand laborious and costly production, and usually present cross-reactivity. (Bacterio)phage-encoded proteins, especially the receptor binding proteins (RBPs) and cell-wall binding domains (CBDs) of endolysins, are responsible for the phage binding to the bacterial surface receptors in different stages of the phage lytic cycle. Due to their remarkable properties, such as high specificity, sensitivity, stability, and ability to be easily engineered, they are appointed as excellent candidates to replace conventional recognition molecules, thereby contributing to the improvement of the detection methods. Moreover, they offer several possibilities of application in a variety of detection systems, such as magnetic, optical, and electrochemical. Herein we provide a review of phage-derived bacterial binding proteins, namely the RBPs and CBDs, with the prospect to be employed as recognition elements for bacteria. Moreover, we summarize and discuss the various existing methods based on these proteins for the detection of nosocomial and foodborne pathogens.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Ana Lisac
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
12
|
Harada LK, Silva EC, Rossi FP, Cieza B, Oliveira TJ, Pereira C, Tomazetto G, Silva BB, Squina FM, Vila MM, Setubal JC, Ha T, da Silva AM, Balcão VM. Characterization and in vitro testing of newly isolated lytic bacteriophages for the biocontrol of Pseudomonas aeruginosa. Future Microbiol 2022; 17:111-141. [PMID: 34989245 DOI: 10.2217/fmb-2021-0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Two lytic phages were isolated using P. aeruginosa DSM19880 as host and fully characterized. Materials & methods: Phages were characterized physicochemically, biologically and genomically. Results & conclusion: Host range analysis revealed that the phages also infect some multidrug-resistant (MDR) P. aeruginosa clinical isolates. Increasing MOI from 1 to 1000 significantly increased phage efficiency and retarded bacteria regrowth, but phage ph0034 (reduction of 7.5 log CFU/ml) was more effective than phage ph0031 (reduction of 5.1 log CFU/ml) after 24 h. Both phages belong to Myoviridae family. Genome sequencing of phages ph0031 and ph0034 showed that they do not carry toxin, virulence, antibiotic resistance and integrase genes. The results obtained are highly relevant in the actual context of bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Liliam K Harada
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Erica C Silva
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Fernando Pn Rossi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Basilio Cieza
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Thais J Oliveira
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Carla Pereira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Geizecler Tomazetto
- Department of Engineering, Biological & Chemical Engineering Section (BCE), Aarhus University, Aarhus, Denmark
| | - Bianca B Silva
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Fabio M Squina
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Marta Mdc Vila
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - João C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Taekjip Ha
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Victor M Balcão
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil.,Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
13
|
Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2021; 44:909-932. [PMID: 33016324 DOI: 10.1093/femsre/fuaa048] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage-host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the composition of an industrial phage collection, providing insight into the development of starter strains and cultures and the evolution of phages in the industry. Research advances in the diversity of phages and structural bases for phage-host recognition and an overview of the perpetual arms race between phage virulence and host defense are presented, with a perspective toward the development of improved phage-resistant starter culture systems.
Collapse
Affiliation(s)
- Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Damian Magill
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Anne Millen
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| |
Collapse
|
14
|
Silva EC, Oliveira TJ, Moreli FC, Harada LK, Vila MMDC, Balcão VM. Newly isolated lytic bacteriophages for Staphylococcus intermedius, structurally and functionally stabilized in a hydroxyethylcellulose gel containing choline geranate: Potential for transdermal permeation in veterinary phage therapy. Res Vet Sci 2020; 135:42-58. [PMID: 33440244 DOI: 10.1016/j.rvsc.2020.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
In the present research work, we propose a new antimicrobial treatment for pyoderma via cutaneous permeation of bacteriophage particles conveyed in a hydroxyethylcellulose (HEC) gel integrating ionic liquid as a permeation enhancer. Ionic liquids are highly viscous fluids constituted exclusively by ions, that are usually hydrolytically stable and promote solubilization of amphipathic molecules such as proteins, hence serving as green solvents and promoting the transdermal permeation of biomolecules. In the research effort entertained herein, the synthesis and use of choline geranate for integrating a HEC gel aiming at the structural and functional stabilization of a cocktail of isolated lytic bacteriophage particles was sought, aiming at transdermal permeation in the antimicrobial treatment of animal pyoderma. The results obtained showed a high ability of the ionic liquid in enhancing transdermal permeation of the bacteriophage particles, with concomitant high potential of the HEC gel formulation in the antimicrobial treatment of animal skin infections.
Collapse
Affiliation(s)
- Erica C Silva
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Thais J Oliveira
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Fernanda C Moreli
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Liliam K Harada
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Marta M D C Vila
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Victor M Balcão
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil; Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Ledormand P, Desmasures N, Dalmasso M. Phage community involvement in fermented beverages: an open door to technological advances? Crit Rev Food Sci Nutr 2020; 61:2911-2920. [PMID: 32649837 DOI: 10.1080/10408398.2020.1790497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteriophages (phages) are considered the most abundant biological entities on Earth. An increasing interest in understanding phage communities, also called viromes or phageomes, has arisen over the past decade especially thanks to the development and the accessibility of Next Generation Sequencing techniques. Despite the increasing amount of available metagenomic data on microbial communities in various habitats, viromes remain poorly described in the scientific literature particularly when it comes to fermented food and beverages such as wine and cider. In this review, a particular attention is paid to the current knowledge on phage communities, with a special focus on fermented food viromes and the methodological tools available to undertake their study. There is a striking lack of available data on the fermented foods and beverages viromes. As far as we know, and although a number of phages have been isolated from wine, no general study has to date been carried out to assess the diversity of viromes in fermented beverages and their possible interactions with microbiota throughout the fermentation process. With the aim of establishing connections between the currently used technologies to carry out the analysis of viromes, possible applications of current knowledge to fermented beverages are examined.
Collapse
|
16
|
Lactococcus Ceduovirus Phages Isolated from Industrial Dairy Plants-from Physiological to Genomic Analyses. Viruses 2020; 12:v12030280. [PMID: 32138347 PMCID: PMC7150918 DOI: 10.3390/v12030280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022] Open
Abstract
LactococcusCeduovirus (formerly c2virus) bacteriophages are among the three most prevalent phage types reported in dairy environments. Phages from this group conduct a strictly lytic lifestyle and cause substantial losses during milk fermentation processes, by infecting lactococcal host starter strains. Despite their deleterious activity, there are limited research data concerning Ceduovirus phages. To advance our knowledge on this specific phage group, we sequenced and performed a comparative analysis of 10 new LactococcuslactisCeduovirus phages isolated from distinct dairy environments. Host range studies allowed us to distinguish the differential patterns of infection of L. lactis cells for each phage, and revealed a broad host spectrum for most of them. We showed that 40% of the studied Ceduovirus phages can infect both cremoris and lactis strains. A preference to lyse strains with the C-type cell wall polysaccharide genotype was observed. Phage whole-genome sequencing revealed an average nucleotide identity above 80%, with distinct regions of divergence mapped to several locations. The comparative approach for analyzing genomic data and the phage lytic spectrum suggested that the amino acid sequence of the orf8-encoded putative tape measure protein correlates with host range. Phylogenetic studies revealed separation of the sequenced phages into two subgroups. Finally, we identified three types of phage origin of replication regions, and showed they are able to support plasmid replication without additional phage proteins.
Collapse
|
17
|
Pinheiro LAM, Pereira C, Barreal ME, Gallego PP, Balcão VM, Almeida A. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments. Appl Microbiol Biotechnol 2019; 104:1319-1330. [DOI: 10.1007/s00253-019-10301-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/22/2022]
|
18
|
Identification of Novel Bacteriophages with Therapeutic Potential That Target Enterococcus faecalis. Infect Immun 2019; 87:IAI.00512-19. [PMID: 31451618 PMCID: PMC6803325 DOI: 10.1128/iai.00512-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-positive opportunistic pathogen Enterococcus faecalis is frequently responsible for nosocomial infections in humans and represents one of the most common bacteria isolated from recalcitrant endodontic (root canal) infections. E. faecalis is intrinsically resistant to several antibiotics routinely used in clinical settings (such as cephalosporins and aminoglycosides) and can acquire resistance to vancomycin (vancomycin-resistant enterococci). The resistance of E. faecalis to several classes of antibiotics and its capacity to form biofilms cause serious therapeutic problems. Here, we report the isolation of several bacteriophages that target E. faecalis strains isolated from the oral cavity of patients suffering root canal infections. All phages isolated were Siphoviridae with similar tail lengths (200 to 250 nm) and icosahedral heads. The genome sequences of three isolated phages were highly conserved with the exception of predicted tail protein genes that diverge in sequence, potentially reflecting the host range. The properties of the phage with the broadest host range (SHEF2) were further characterized. We show that this phage requires interaction with components of the major and variant region enterococcal polysaccharide antigen to engage in lytic infection. Finally, we explored the therapeutic potential of this phage and show that it can eradicate E. faecalis biofilms formed in vitro on a standard polystyrene surface but also on a cross-sectional tooth slice model of endodontic infection. We also show that SHEF2 cleared a lethal infection of zebrafish when applied in the circulation. We therefore propose that the phage described here could be used to treat a broad range of antibiotic-resistant E. faecalis infections.
Collapse
|
19
|
Pinheiro LAM, Pereira C, Frazão C, Balcão VM, Almeida A. Efficiency of Phage φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in Vitro Preliminary Study. Microorganisms 2019; 7:E286. [PMID: 31450735 PMCID: PMC6780397 DOI: 10.3390/microorganisms7090286] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas syringae is a plant-associated bacterial species that has been divided into more than 60 pathovars, with the Pseudomonas syringae pv. syringae being the main causative agent of diseases in a wide variety of fruit trees. The most common treatments for biocontrol of P. syringae pv. syringae infections has involved copper derivatives and/or antibiotics. However, these treatments should be avoided due to their high toxicity to the environment and promotion of bacterial resistance. Therefore, it is essential to search for new approaches for controlling P. syringae pv. syringae. Phage therapy can be a useful alternative tool to the conventional treatments to control P. syringae pv. syringae infections in plants. In the present study, the efficacy of bacteriophage (or phage) φ6 (a commercially available phage) was evaluated in the control of P. syringae pv. syringae. As the plants are exposed to the natural variability of physical and chemical parameters, the influence of pH, temperature, solar radiation and UV-B irradiation on phage φ6 viability was also evaluated in order to develop an effective phage therapy protocol. The host range analysis revealed that the phage, besides its host (P. syringae pv. syringae), also infects the Pseudomonas syringae pv. actinidiae CRA-FRU 12.54 and P. syringae pv. actinidiae CRA-FRU 14.10 strains, not infecting strains from the other tested species. Both multiplicities of infection (MOIs) tested, 1 and 100, were effective to inactivate the bacterium, but the MOI 1 (maximum reduction of 3.9 log CFU/mL) was more effective than MOI 100 (maximum reduction of 2.6 log CFU/mL). The viability of phage φ6 was mostly affected by exposure to UV-B irradiation (decrease of 7.3 log PFU/mL after 8 h), exposure to solar radiation (maximum reduction of 2.1 PFU/mL after 6 h), and high temperatures (decrease of 8.5 PFU/mL after 6 days at 37 °C, but a decrease of only 2.0 log PFU/mL after 67 days at 15 °C and 25 °C). The host range, high bacterial control and low rates of development of phage-resistant bacterial clones (1.20 × 10-3) suggest that this phage can be used to control P. syringae pv. syringae infections in plants, but also to control infections by P. syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit. Although the stability of phage φ6 was affected by UV-B and solar radiation, this can be overcome by the application of phage suspensions at the end of the day or at night.
Collapse
Affiliation(s)
- Larindja A M Pinheiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carolina Frazão
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, São Paulo, Brazil
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Protein Expression Modifications in Phage-Resistant Mutants of Aeromonas salmonicida after AS-A Phage Treatment. Antibiotics (Basel) 2018. [PMID: 29518018 PMCID: PMC5872132 DOI: 10.3390/antibiotics7010021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells.
Collapse
|
21
|
Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, van Sinderen D. Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. J Dairy Sci 2017; 101:96-105. [PMID: 29103710 DOI: 10.3168/jds.2017-13403] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/10/2017] [Indexed: 01/21/2023]
Abstract
In the current study, we characterized 137 Lactococcus lactis bacteriophages that had been isolated between 1997 and 2012 from whey samples obtained from industrial facilities located in 16 countries. Multiplex PCR grouping of these 137 phage isolates revealed that the majority (61.31%) belonged to the 936 group, with the remainder belonging to the P335 and c2 groups (23.36 and 15.33%, respectively). Restriction profile analysis of phage genomic DNA indicated a high degree of genetic diversity within this phage collection. Furthermore, based on a host-range survey of the phage collection using 113 dairy starter strains, we showed that the c2-group isolates exhibited a broader host range than isolates of the 936 and P335 groups.
Collapse
Affiliation(s)
- Joana Oliveira
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland T12 YT20
| | | | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland T12 YT20.
| |
Collapse
|
22
|
Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int J Food Microbiol 2017. [PMID: 28651078 DOI: 10.1016/j.ijfoodmicro.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Unveiling virus-host interactions are relevant for understanding the biology and evolution of microbes globally, but in particular, it has also a paramount impact on the manufacture of fermented dairy products. In this study, we aim at characterizing phages infecting the commonly used heterofermentative Leuconostoc spp. on the basis of host range patterns and genome analysis. Host range of six Leuconostoc phages was investigated using three methods (efficiency of plaquing, spot and turbidity tests) against Ln. mesenteroides and Ln. pseudomesenteroides strains. Complete genome sequencing from four out of the six studied Leuconostoc phages were obtained in this work, while the remaining two have been sequenced previously. According to our results, cross-species host specificity was demonstrated, as all phages tested were capable of infecting both Ln. pseudomesenteroides and Ln. mesenteroides strains, although with different efficiency of plaquing (EOP). Phage adsorption rates and ability of low-EOP host strains to propagate phages by crossing the Leuconostoc species' barrier confirm results. At the genome level, phages CHA, CHB, Ln-7, Ln-8 and Ln-9 revealed high similarity with previously characterized phages infecting mostly Ln. mesenteroides strains, while phage LDG was highly similar to phages infecting Ln. pseudomesenteroides. Additionally, correlation between receptor binding protein (RBP) and host range patterns allowed us to unveil a finer clustering of Leuconostoc phages studied into four groups. This is the first report of overlapped phage host ranges between Leuconostoc species.
Collapse
|
23
|
Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species. Appl Environ Microbiol 2017; 83:AEM.02748-16. [PMID: 28039135 PMCID: PMC5311409 DOI: 10.1128/aem.02748-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCEStreptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations.
Collapse
|
24
|
Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Romalde JL, Nunes ML, Almeida A. Characterization and in vitro evaluation of new bacteriophages for the biocontrol of Escherichia coli. Virus Res 2016; 227:171-182. [PMID: 27756632 DOI: 10.1016/j.virusres.2016.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/28/2016] [Indexed: 01/21/2023]
Abstract
In the present study two new phages (phT4A and ECA2) were characterized and their efficacy was evaluated separately and in cocktail (phT4A/ECA2) to control Escherichia coli. The isolated phages, phT4A and ECA2, belonged to the Myoviridae and Podoviridae family, respectively and both are safe (no integrase and toxin codifying genes) to be used in bacterial control. In general, the increase of multiplicity of infection (MOI) from 1 to 100 promoted a significant increase in the efficiency of phage phT4A and phage cocktail phT4A/ECA2. Both phages were effective against E. coli, but phage phT4A (reduction of 5.8 log CFU/mL after 8h treatment) was more effective than phage ECA2 phage (reduction of 4.7 log CFU/mL after 8h treatment). The use of a cocktail phT4A/ECA2 was significantly more effective (reductions of 6.2 log CFU/mL after 6h treatment) than the use single phage suspensions of phT4A and ECA2 (reductions 5.3 log CFU/mL and 4.9 log CFU/mL, respectively, after 6h treatment). The rate of emergence of phage-resistant mutants was lower for phage phT4A when compared with phage ECA2 and phage cocktail phT4A/ECA2.The results indicate that in addition to the efficacy, the potential development of phage-resistant mutants must also be considered in the design of phage cocktails.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina Moreirinha
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Magdalena Lewicka
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Paulo Almeida
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Carla Clemente
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Jesús L Romalde
- Departamento de Microbiología e Parasitología, CIBUS-Facultad de Biologia, Universidade de Santiago de Compostela, Campus Vida s/n., 15782 Santiago de Compostela, Spain
| | - Maria L Nunes
- Portuguese Institute for Sea and Atmosphere (IPMA IP), Av. Brasília, 1449-006 Lisbon, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
The Presence of Two Receptor-Binding Proteins Contributes to the Wide Host Range of Staphylococcal Twort-Like Phages. Appl Environ Microbiol 2016; 82:5763-74. [PMID: 27422842 DOI: 10.1128/aem.01385-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Thanks to their wide host range and virulence, staphylococcal bacteriophages (phages) belonging to the genus Twortlikevirus (staphylococcal Twort-like phages) are regarded as ideal candidates for clinical application for Staphylococcus aureus infections due to the emergence of antibiotic-resistant bacteria of this species. To increase the usability of these phages, it is necessary to understand the mechanism underlying host recognition, especially the receptor-binding proteins (RBPs) that determine host range. In this study, we found that the staphylococcal Twort-like phage ΦSA012 possesses at least two RBPs. Genomic analysis of five mutant phages of ΦSA012 revealed point mutations in orf103, in a region unique to staphylococcal Twort-like phages. Phages harboring mutated ORF103 could not infect S. aureus strains in which wall teichoic acids (WTAs) are glycosylated with α-N-acetylglucosamine (α-GlcNAc). A polyclonal antibody against ORF103 also inhibited infection by ΦSA012 in the presence of α-GlcNAc, suggesting that ORF103 binds to α-GlcNAc. In contrast, a polyclonal antibody against ORF105, a short tail fiber component previously shown to be an RBP, inhibited phage infection irrespective of the presence of α-GlcNAc. Immunoelectron microscopy indicated that ORF103 is a tail fiber component localized at the bottom of the baseplate. From these results, we conclude that ORF103 binds α-GlcNAc in WTAs, whereas ORF105, the primary RBP, is likely to bind the WTA backbone. These findings provide insight into the infection mechanism of staphylococcal Twort-like phages. IMPORTANCE Staphylococcus phages belonging to the genus Twortlikevirus (called staphylococcal Twort-like phages) are considered promising agents for control of Staphylococcus aureus due to their wide host range and highly lytic capabilities. Although staphylococcal Twort-like phages have been studied widely for therapeutic purposes, the host recognition process of staphylococcal Twort-like phages remains unclear. This work provides new findings about the mechanisms of host recognition of the staphylococcal Twort-like phage ΦSA012. The details of the host recognition mechanism of ΦSA012 will allow us to analyze the mechanisms of infection and expand the utility of staphylococcal Twort-like phages for the control of S. aureus.
Collapse
|
26
|
Abstract
The human intestine harbors diverse communities of bacteria and bacteriophages. Given the specificity of phages for their bacterial hosts, there is growing interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. A significant barrier to such therapies is the rapid development of phage-resistant bacteria, highlighting the need to understand how bacteria acquire phage resistance in vivo. Here we identify novel lytic phages in municipal raw sewage that kill Enterococcus faecalis, a Gram-positive opportunistic pathogen that resides in the human intestine. We show that phage infection of E. faecalis requires a predicted integral membrane protein that we have named PIPEF (for phage infection protein from E. faecalis). We find that PIPEF is conserved in E. faecalis and harbors a 160-amino-acid hypervariable region that determines phage tropism for distinct enterococcal strains. Finally, we use a gnotobiotic mouse model of in vivo phage predation to show that the sewage phages temporarily reduce E. faecalis colonization of the intestine but that E. faecalis acquires phage resistance through mutations in PIPEF. Our findings define the molecular basis for an evolutionary arms race between E. faecalis and the lytic phages that prey on them. They also suggest approaches for engineering E. faecalis phages that have altered host specificity and that can subvert phage resistance in the host bacteria. Bacteriophage therapy has received renewed attention as a potential solution to the rise in antibiotic-resistant bacterial infections. However, bacteria can acquire phage resistance, posing a major barrier to phage therapy. To overcome this problem, it is necessary to understand phage resistance mechanisms in bacteria. We have unraveled one such resistance mechanism in Enterococcus faecalis, a Gram-positive natural resident of the human intestine that has acquired antibiotic resistance and can cause opportunistic infections. We have identified a cell wall protein hypervariable region that specifies phage tropism in E. faecalis. Using a gnotobiotic mouse model of in vivo phage predation, we show that E. faecalis acquires phage resistance through mutations in this cell wall protein. Our findings define the molecular basis for lytic phage resistance in E. faecalis. They also suggest opportunities for engineering E. faecalis phages that circumvent the problem of bacterial phage resistance.
Collapse
|
27
|
Millen AM, Romero DA. Genetic determinants of lactococcal C2viruses for host infection and their role in phage evolution. J Gen Virol 2016; 97:1998-2007. [PMID: 27389474 PMCID: PMC5156332 DOI: 10.1099/jgv.0.000499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lactococcus lactis is an industrial starter culture used for the production of fermented dairy products. Pip (phage infection protein) bacteriophage-insensitive mutant (BIM) L. lactis DGCC11032 was isolated following challenge of parental strain DGCC7271 with C2viruses. Over a period of industrial use, phages infecting DGCC11032 were isolated from industrial whey samples and identified as C2viruses. Although Pip is reported to be the receptor for many C2viruses including species type phage c2, a similar cell-membrane-associated protein, YjaE, was recently reported as the receptor for C2virus bIL67. Characterization of DGCC7271 BIMs following challenge with phage capable of infecting DGCC11032 identified mutations in yjaE, confirming YjaE to be necessary for infection. DGCC7271 YjaE mutants remained sensitive to the phages used to generate pip variant DGCC11032, indicating a distinction in host phage determinants. We will refer to C2viruses requiring Pip as c2-type andC2viruses that require YjaE as bIL67-type. Genomic comparisons of two c2-type phages unable to infect pip mutant DGCC11032 and four bIL67-type phages isolated on DGCC11032 confirmed the segregation of each group based on resemblance to prototypical phages c2 and bIL67, respectively. The distinguishing feature is linked to three contiguous late-expressed genes: l14-15-16 (c2) and ORF34-35-36 (bIL67). Phage recombinants in which the c2-like l14-15-16 homologue gene set was exchanged with corresponding bIL67 genes ORF34-35-36 were capable of infecting a pip mutated host. Together, these results correlate the phage genes corresponding to l14-15-16 (c2) and ORF34-35-36 (bIL67) to host lactococcal phage determinants Pip and YjaE, respectively.
Collapse
Affiliation(s)
- Anne M Millen
- DuPont Nutrition and Health, Madison, Wisconsin, USA
| | | |
Collapse
|
28
|
Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha Â, Delgadillo I, Romalde JL, Nunes ML, Almeida A. Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails. Virus Res 2016; 220:179-92. [PMID: 27126773 DOI: 10.1016/j.virusres.2016.04.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/21/2023]
Abstract
The aim of this study was to compare the dynamics of three previously isolated bacteriophages (or phages) individually (phSE-1, phSE-2 and phSE-5) or combined in cocktails of two or three phages (phSE-1/phSE-2, phSE-1/phSE-5, phSE-2/phSE-5 and phSE-1/phSE-2/phSE-5) to control Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) in order to evaluate their potential application during depuration. Phages were assigned to the family Siphoviridae and revealed identical restriction digest profiles, although they showed a different phage adsorption, host range, burst size, explosion time and survival in seawater. The three phages were effective against S. Typhimurium (reduction of ∼2.0 log CFU/mL after 4h treatment). The use of cocktails was not significantly more effective than the use of single phages. A big fraction of the remained bacteria are phage-resistant mutants (frequency of phage-resistant mutants 9.19×10(-5)-5.11×10(-4)) but phage- resistant bacterial mutants was lower for the cocktail phages than for the single phage suspensions and the phage phSE-1 presented the highest rate of resistance and phage phSE-5 the lowest one. The spectral changes of S. Typhimurium resistant and phage-sensitive cells were compared and revealed relevant differences for peaks associated to amide I (1620cm(-1)) and amide II (1515cm(-1)) from proteins and from carbohydrates and phosphates region (1080-1000cm(-1)). Despite the similar efficiency of individual phages, the development of lower resistance indicates that phage cocktails might be the most promising choice to be used during the bivalve depuration to control the transmission of salmonellosis.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Catarina Moreirinha
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Magdalena Lewicka
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Paulo Almeida
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Carla Clemente
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, 2825-182 Caparica, Portugal
| | - Ângela Cunha
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ivonne Delgadillo
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jésus L Romalde
- Departamento de Microbiología e Parasitología, CIBUS-Facultad de Biologia, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Maria L Nunes
- CIIMAR/CIMAR-Centro de Investigação Marinha e Ambiental, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology 2015; 477:110-118. [DOI: 10.1016/j.virol.2014.12.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/06/2023]
|
30
|
Di Lallo G, Evangelisti M, Mancuso F, Ferrante P, Marcelletti S, Tinari A, Superti F, Migliore L, D'Addabbo P, Frezza D, Scortichini M, Thaller MC. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. J Basic Microbiol 2014; 54:1210-21. [PMID: 24810619 DOI: 10.1002/jobm.201300951] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/13/2014] [Indexed: 12/28/2022]
Abstract
The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of bacterial canker of kiwifruit. In the last years, it has caused severe economic losses to Actinidia spp. cultivations, mainly in Italy and New Zealand. Conventional strategies adopted did not provide adequate control of infection. Phage therapy may be a realistic and safe answer to the urgent need for novel antibacterial agents aiming to control this bacterial pathogen. In this study, we described the isolation and characterization of two bacteriophages able to specifically infect Psa. φPSA1, a member of the Siphoviridae family, is a temperate phage with a narrow host range, a long latency, and a burst size of 178; φPSA2 is a lytic phage of Podoviridae family with a broader host range, a short latency, a burst size of 92 and a higher bactericidal activity as determined by the TOD value. The genomic sequence of φPSA1 has a length of 51,090 bp and a low sequence homology with the other siphophages, whereas φPSA2 has a length of 40 472 bp with a 98% homology with Pseudomonas putida bacteriophage gh-1. Of the two phages examined, φPSA2 may be considered as a candidate for phage therapy of kiwifruit disease, while φPSA1 seems specific toward the recent outbreak's isolates and could be useful for Psa typing.
Collapse
Affiliation(s)
- Gustavo Di Lallo
- Dipartimento di Biologia, Universita' di Roma "Tor Vergata", Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Habann M, Leiman PG, Vandersteegen K, Van den Bossche A, Lavigne R, Shneider MM, Bielmann R, Eugster MR, Loessner MJ, Klumpp J. Listeriaphage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Mol Microbiol 2014; 92:84-99. [DOI: 10.1111/mmi.12539] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Matthias Habann
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Petr G. Leiman
- Institut de Physique des Systèmes Biologiques; EPF Lausanne; 1015 Lausanne Switzerland
| | | | - An Van den Bossche
- Division of Gene Technology; Katholieke Universiteit Leuven; 3001 Leuven Belgium
| | - Rob Lavigne
- Division of Gene Technology; Katholieke Universiteit Leuven; 3001 Leuven Belgium
| | - Mikhail M. Shneider
- Institut de Physique des Systèmes Biologiques; EPF Lausanne; 1015 Lausanne Switzerland
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; 117997 Moscow Russia
| | - Regula Bielmann
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Marcel R. Eugster
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
32
|
Javed MA, Poshtiban S, Arutyunov D, Evoy S, Szymanski CM. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One 2013. [PMID: 23874996 DOI: 10.1371/journal.pone.0069770; 10.1371/journal.pone.0069770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs), which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40) and 90% for C. coli (n = 19). CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP). Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.
Collapse
Affiliation(s)
- Muhammad A Javed
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
33
|
Javed MA, Poshtiban S, Arutyunov D, Evoy S, Szymanski CM. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One 2013; 8:e69770. [PMID: 23874996 PMCID: PMC3715477 DOI: 10.1371/journal.pone.0069770] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/13/2013] [Indexed: 12/02/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs), which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40) and 90% for C. coli (n = 19). CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP). Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.
Collapse
Affiliation(s)
- Muhammad A. Javed
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Somayyeh Poshtiban
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Denis Arutyunov
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane Evoy
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christine M. Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses. Appl Environ Microbiol 2013; 79:4786-98. [PMID: 23728817 DOI: 10.1128/aem.01197-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed throughout lytic infection. Whole-genome microarrays performed at various time points postinfection demonstrated a rather modest impact on host transcription. The majority of changes in the host transcriptome occur during late infection stages; few changes in host gene transcription occur during the immediate and early infection stages. Alterations in the L. lactis UC509.9 transcriptome during lytic infection appear to be phage specific, with relatively few differentially transcribed genes shared between cells infected with Tuc2009 and those infected with c2. Despite the apparent lack of a coordinated general phage response, three themes common to both infections were noted: alternative transcription of genes involved in catabolic flux and energy production, differential transcription of genes involved in cell wall modification, and differential transcription of genes involved in the conversion of ribonucleotides to deoxyribonucleotides. The transcriptional profiles of both bacteriophages during lytic infection generally correlated with the findings of previous studies and allowed the confirmation of previously predicted promoter sequences. In addition, the host transcriptional response to lysogenization with Tuc2009 was monitored along with tiling array analysis of Tuc2009 in the lysogenic state. Analysis identified 44 host genes with altered transcription during lysogeny, 36 of which displayed levels of transcription significantly reduced from those for uninfected cells.
Collapse
|
35
|
Classification of lytic bacteriophages attacking dairy Leuconostoc starter strains. Appl Environ Microbiol 2013; 79:3628-36. [PMID: 23563949 DOI: 10.1128/aem.00076-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A set of 83 lytic dairy bacteriophages (phages) infecting flavor-producing mesophilic starter strains of the Leuconostoc genus was characterized, and the first in-depth taxonomic scheme was established for this phage group. Phages were obtained from different sources, i.e., from dairy samples originating from 11 German dairies (50 Leuconostoc pseudomesenteroides [Ln. pseudomesenteroides] phages, 4 Ln. mesenteroides phages) and from 3 external phage collections (17 Ln. pseudomesenteroides phages, 12 Ln. mesenteroides phages). All phages belonged to the Siphoviridae family of phages with isometric heads (diameter, 55 nm) and noncontractile tails (length, 140 nm). With the exception of one phage (i.e., phage ΦLN25), all Ln. mesenteroides phages lysed the same host strains and revealed characteristic globular baseplate appendages. Phage ΦLN25, with different Y-shaped appendages, had a unique host range. Apart from two phages (i.e., phages P792 and P793), all Ln. pseudomesenteroides phages shared the same host range and had plain baseplates without distinguishable appendages. They were further characterized by the presence or absence of a collar below the phage head or by unique tails with straight striations. Phages P792 and P793 with characteristic fluffy baseplate appendages could propagate only on other specific hosts. All Ln. mesenteroides and all Ln. pseudomesenteroides phages were members of two (host species-specific) distinct genotypes but shared a limited conserved DNA region specifying their structural genes. A PCR detection system was established and was shown to be reliable for the detection of all Leuconostoc phage types.
Collapse
|
36
|
Identification of the receptor-binding protein in lytic Leuconostoc pseudomesenteroides bacteriophages. Appl Environ Microbiol 2013; 79:3311-4. [PMID: 23503306 DOI: 10.1128/aem.00012-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two phages, P793 and ΦLN04, sharing 80.1% nucleotide sequence identity but having different strains of Leuconostoc pseudomesenteroides as hosts, were selected for identification of the host determinant gene. Construction of chimeric phages leading to the expected switch in host range identified the host determinant genes as ORF21P793/ORF23ΦLN04. The genes are located in the tail structural module and have low sequence similarity at the distal end.
Collapse
|
37
|
Kleppen HP, Bang T, Nes IF, Holo H. Bacteriophages in milk fermentations: Diversity fluctuations of normal and failed fermentations. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Campanacci V, Veesler D, Lichière J, Blangy S, Sciara G, Moineau S, van Sinderen D, Bron P, Cambillau C. Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli. J Struct Biol 2010; 172:75-84. [PMID: 20153432 DOI: 10.1016/j.jsb.2010.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
We report here the characterization of several large structural protein complexes forming the baseplates (or part of them) of Siphoviridae phages infecting Lactococcus lactis: TP901-1, Tuc2009 and p2. We revisited a "block cloning" expression strategy and extended this approach to genomic fragments encoding proteins whose interacting partners have not yet been clearly identified. Biophysical characterization of some of these complexes using circular dichroism and size exclusion chromatography, coupled with on-line light scattering and refractometry, demonstrated that the over-produced recombinant proteins interact with each other to form large (up to 1.9MDa) and stable baseplate assemblies. Some of these complexes were characterized by electron microscopy confirming their structural homogeneity as well as providing a picture of their overall molecular shapes and symmetry. Finally, using these results, we were able to highlight similarities and differences with the well characterized much larger baseplate of the myophage T4.
Collapse
Affiliation(s)
- Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 6098 CNRS and Universités Aix-Marseille I & II, Campus de Luminy, Case 932, Marseille Cedex 09, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Analysis of the complete genome sequence of the lactococcal bacteriophage bIBB29. Int J Food Microbiol 2008; 131:52-61. [PMID: 18644641 DOI: 10.1016/j.ijfoodmicro.2008.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 11/24/2022]
Abstract
Bacteriophage bIBB29 was isolated from a whey sample originating from an industrial biotechnological process, disturbed by a bacteriophage attack. Phage bIBB29 was determined to be active against three phage-resistant strains of Lactococcus lactis. It belongs to the 936 species containing virulent phages with isometric head and short non-contractile tail. One-step growth kinetics of bIBB29 phage showed that its latent time was 23 min, and the burst size was about 130 bacteriophages. The complete nucleotide sequence of the virulent L. lactis bacteriophage bIBB29 comprises 29305 nucleotides and is the sixth phage genome of the 936 species published until now. The G+C content of the bIBB29 genome (34.7%) is similar to that of its host and also to that of other phages from the 936 species. The bIBB29 genome counts 54 open reading frames organized in three typical clusters, corresponding to the early, middle and late expressed genes. Only 20 protein products of the predicted genes were found to have their homologs among proteins with known function. The early expressed region in the genomes of 936 group members displays the highest divergence, whereas the late and middle regions share high similarities, with the exception of five genes. The genome of bIBB29 shares the highest overall nucleotide similarity with bIL170 (87%), and the lowest with phage 712 (77%). The host range analysis showed that despite the high level of similarity between the receptor binding protein (RBP) of phage bIBB29 and P475, they have a different host range. This implies that RBP is not a sufficient factor for host range.
Collapse
|
40
|
Özden B, Akçelik M. Genetic analysis of bacteriocin production ability and phage adsorption inhibition type resistance system in sixLactococcus lactisstrains. ACTA ALIMENTARIA 2008. [DOI: 10.1556/aalim.2007.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Chopin A, Deveau H, Ehrlich SD, Moineau S, Chopin MC. KSY1, a lactococcal phage with a T7-like transcription. Virology 2007; 365:1-9. [PMID: 17467024 DOI: 10.1016/j.virol.2007.03.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 03/12/2007] [Accepted: 03/23/2007] [Indexed: 11/20/2022]
Abstract
The virulent lactococcal phage KSY1 possesses a large elongated capsid (223 nm long, 45 nm wide) and a short tail (32 nm). This phage of the Podoviridae group (C3 morphotype) has a linear 79,232-bp double-stranded DNA genome, which encodes 131 putative proteins and 3 tRNAs. This is the first description of the genome of a phage of this morphotype. KSY1 possesses a T7-like transcription system, including an RNA polymerase and a series of specific promoters, showing sequence homology to other known T7-like RNA polymerase promoters. Late stages of KSY1 multiplication are resistant to rifampicin. Otherwise, KSY1 shares limited similarity with other Podoviridae phages. Fourteen KSY1 structural proteins were identified by SDS-PAGE analysis. Among these proteins, those forming the distal tail structure and likely involved in host recognition are encoded by a 5-kb genomic region of KSY1. This region consists of a mosaic of DNA segments highly homologous to DNA of other lactococcal phages, suggesting an horizontal gene transfer.
Collapse
Affiliation(s)
- Alain Chopin
- Laboratoire de Génétique Microbienne, INRA, 78352 Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
42
|
Mc Grath S, Neve H, Seegers JFML, Eijlander R, Vegge CS, Brøndsted L, Heller KJ, Fitzgerald GF, Vogensen FK, van Sinderen D. Anatomy of a lactococcal phage tail. J Bacteriol 2006; 188:3972-82. [PMID: 16707689 PMCID: PMC1482904 DOI: 10.1128/jb.00024-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages of the Siphoviridae family utilize a long noncontractile tail to recognize, adsorb to, and inject DNA into their bacterial host. The tail anatomy of the archetypal Siphoviridae lambda has been well studied, in contrast to phages infecting gram-positive bacteria. This report outlines a detailed anatomical description of a typical member of the Siphoviridae infecting a gram-positive bacterium. The tail superstructure of the lactococcal phage Tuc2009 was investigated using N-terminal protein sequencing, Western blotting, and immunogold transmission electron microscopy, allowing a tangible path to be followed from gene sequence through encoded protein to specific architectural structures on the Tuc2009 virion. This phage displays a striking parity with lambda with respect to tail structure, which reenforced a model proposed for Tuc2009 tail architecture. Furthermore, comparisons with lambda and other lactococcal phages allowed the specification of a number of genetic submodules likely to encode specific tail structures.
Collapse
Affiliation(s)
- Stephen Mc Grath
- Department of Microbiology, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Duplessis M, Lévesque CM, Moineau S. Characterization of Streptococcus thermophilus host range phage mutants. Appl Environ Microbiol 2006; 72:3036-41. [PMID: 16598014 PMCID: PMC1449016 DOI: 10.1128/aem.72.4.3036-3041.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate phage-host interactions in Streptococcus thermophilus, a phage-resistant derivative (SMQ-301R) was obtained by challenging a Tn917 library of phage-sensitive strain S. thermophilus SMQ-301 with virulent phage DT1. Mutants of phages DT1 and MD2 capable of infecting SMQ-301 and SMQ-301R were isolated at a frequency of 10(-6). Four host range phage mutants were analyzed further and compared to the two wild-type phages. Altogether, three genes (orf15, orf17, and orf18) contained point mutations leading to amino acid substitutions and were responsible for the expanded host range. These three proteins were also identified in both phages by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The results suggest that at least three phage structural proteins may be involved in phage-host interactions in S. thermophilus.
Collapse
Affiliation(s)
- Martin Duplessis
- Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Groupe de Recherche en Ecologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada G1K 7P4
| | | | | |
Collapse
|
44
|
Vegge CS, Vogensen FK, Mc Grath S, Neve H, van Sinderen D, Brøndsted L. Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009. J Bacteriol 2006; 188:55-63. [PMID: 16352821 PMCID: PMC1317572 DOI: 10.1128/jb.188.1.55-63.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first step in the infection process of tailed phages is recognition and binding to the host receptor. This interaction is mediated by the phage antireceptor located in the distal tail structure. The temperate Lactococcus lactis phage TP901-1 belongs to the P335 species of the Siphoviridae family, which also includes the related phage Tuc2009. The distal tail structure of TP901-1 is well characterized and contains a double-disk baseplate and a central tail fiber. The structural tail proteins of TP901-1 and Tuc2009 are highly similar, but the phages have different host ranges and must therefore encode different antireceptors. In order to identify the antireceptors of TP901-1 and Tuc2009, a chimeric phage was generated in which the gene encoding the TP901-1 lower baseplate protein (bppL(TP901-1)) was exchanged with the analogous gene (orf53(2009)) of phage Tuc2009. The chimeric phage (TP901-1C) infected the Tuc2009 host strain efficiently and thus displayed an altered host range compared to TP901-1. Genomic analysis and sequencing verified that TP901-1C is a TP901-1 derivative containing the orf53(2009) gene in exchange for bppL(TP901-1); however, a new sequence in the late promoter region was also discovered. Protein analysis confirmed that TP901-1C contains ORF53(2009) and not the lower baseplate protein BppL(TP901-1), and it was concluded that BppL(TP901-1) and ORF53(2009) constitute antireceptor proteins of TP901-1 and Tuc2009, respectively. Electron micrographs revealed altered baseplate morphology of TP901-1C compared to that of the parental phage.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
45
|
Crutz-Le Coq AM, Cantele F, Lanzavecchia S, Marco S. Insights into structural proteins of 936-type virulent lactococcal bacteriophages. Arch Virol 2006; 151:1039-53. [PMID: 16453083 DOI: 10.1007/s00705-005-0709-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 12/14/2005] [Indexed: 11/30/2022]
Abstract
bIL41 and bIL170, virulent phages of Lactococcus lactis belonging to the 936 group, possess a late gene named l12, coding a putative fiber sharing partial similarity to diverse gene products of dairy phages, including host-range determinants, but whose function is unknown in this group. We observed that the full-size gpl12 gene product is a minor protein constitutive of both phage particles. A derivative of bIL41 deleted for part of this gene was constructed by homologous recombination. The recombinant bIL41DeltaL12 showed normal propagation on strain IL1403 and no altered head and tail structures, demonstrating its non-essential role under our laboratory conditions. bIL170 was investigated for major structural components. Tails were characterized by electron microscopy and image analysis, which indicated that the major repeat unit of the tail occupied a maximum volume of 18.5 nm3, corresponding to a size of 20 kDa for a globular protein. Total protein profiles and head-enriched fractions of bIL170 exhibited a major 38 kDa protein, identified by N-terminal sequence as the product of l13. This result questions some of the functional predictions deduced from synteny relationships assumed for the lambda-supergroup of the family Siphoviridae to which the 936-type phages were proposed to belong.
Collapse
Affiliation(s)
- A-M Crutz-Le Coq
- Laboratoire de Génétique Microbienne, INRA, Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
46
|
Dupont K, Vogensen FK, Josephsen J. Detection of lactococcal 936-species bacteriophages in whey by magnetic capture hybridization PCR targeting a variable region of receptor-binding protein genes. J Appl Microbiol 2005; 98:1001-9. [PMID: 15752347 DOI: 10.1111/j.1365-2672.2005.02548.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To develop PCR assays able to distinguish between groups within lactococcal 936-species bacteriophages, as defined by their different receptor-binding protein (RBP) genes. METHODS AND RESULTS DNA sequences of RBP genes from 17 lactococcal bacteriophages of the 936-species were compared, and six phage groups were identified. For each phage group a specific primer pair targeting a variable region of the RBP genes was designed. In nine of 20 whey samples, from dairies with recorded phage problems, between one and six phage groups were identified by conventional PCR. The sensitivity and specificity of the method was improved by magnetic capture hybridization (MCH)-PCR using a capture probe targeting an 80-bp highly conserved region just upstream from the RBP gene in all the investigated phages. The MCH-PCR was performed on 100 microl whey samples and the detection limit of the assay was 10(2)-10(3) PFU ml(-1) as opposed to the detection limit of 10(4) PFU ml(-1) for conventional PCR performed on 1-microl whey samples. CONCLUSIONS In this study, PCR assays have been developed to detect six different types of RBP genes in lactococcal 936-species bacteriophages. SIGNIFICANCE AND IMPACT OF THE STUDY The PCR assays have practical applications at cheese plants for detection of 936-species phages with different RBP and thereby potentially with different host ranges. This knowledge will make it possible to improve starter culture rotation systems in the dairy industry.
Collapse
Affiliation(s)
- K Dupont
- Department of Food Science and Centre for Advanced Food Studies, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
47
|
Halgasová N, Majtán T, Ugorcáková J, Timko J, Bukovská G. Resistance of corynebacterial strains to infection and lysis by corynephage BFK 20. J Appl Microbiol 2005; 98:184-92. [PMID: 15610431 DOI: 10.1111/j.1365-2672.2004.02448.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Defence mechanisms of the corynebacterial strains against corynephage BFK 20, which causes lysis of Brevibacterium flavum CCM 251. METHODS AND RESULTS We tested adsorption of the phage BFK 20 to the corynebacterial cell surface. We observed strong adsorption ranging from ca 79 to 93% on the cells of B. flavum ATCC strains, but only ca 76% for B. flavum CCM 251. Minor adsorption for Brevibacterium lactofermentum BLOB (ca 13%) and no adsorption for Corynebacterium glutamicum RM3 were determined. BFK 20 infection had no significant effect on growth and viability of C. glutamicum and B. lactofermentum, but significantly influenced growth and viability of B. flavum ATCC 21127, 21128 and 21474. Cell growth stopped in short time after infection but with no lysis. Brevibacterium flavum CCM 251 cell growth was arrested too and lysis occurred. The Southern hybridization confirmed the presence of significant amount of BFK 20 DNA in samples from B. flavum CCM 251 and B. flavum ATCC strains after BFK 20 infection. Only weak hybridization signal was detected for DNA from infected cells of B. lactofermentum BLOB and no signal for C. glutamicum RM3. CONCLUSIONS Based on the above results we suggest presence of a mechanism leading to abortive infection in B. flavum ATCC 21127, 21128 and 21474. In B. lactofermentum BLOB and C. glutamicum RM3 the adsorption barrier is more likely. SIGNIFICANCE AND IMPACT OF THE STUDY This study increases the knowledge on defence mechanisms of corynebacteria against bacteriophages.
Collapse
Affiliation(s)
- N Halgasová
- Institute of Molecular Biology, Centre of Excellence for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
48
|
Rakonjac J, O'Toole PW, Lubbers M. Isolation of lactococcal prolate phage-phage recombinants by an enrichment strategy reveals two novel host range determinants. J Bacteriol 2005; 187:3110-21. [PMID: 15838038 PMCID: PMC1082804 DOI: 10.1128/jb.187.9.3110-3121.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulent lactococcal prolate (or c2-like) phages are the second most common phage group that causes fermentation failure in the dairy industry. We have mapped two host range determinants in two lactococcal prolate phages, c2 and 923, for the host strains MG1363 and 112. Each phage replicates on only one of the two host strains: c2 on MG1363 and 923 on 112. Phage-phage recombinants that replicated on both strains were isolated by a new method that does not require direct selection but rather employs an enrichment protocol. After initial mixed infection of strain 112, two rotations, the first of which was carried out on strain MG1363 and the second on 112, permitted continuous amplification of double-plating recombinants while rendering one of the parent phages unamplified in each of the two rotations. Mapping of the recombination endpoints showed that the presence of the N-terminal two-thirds of the tail protein L10 of phage c2 and a 1,562-bp cosR-terminal fragment of phage 923 genome overcame blocks of infection in strains MG1363 and 112, respectively. Both infection inhibition mechanisms act at the stage of DNA entry; in strain MG1363, the infection block acts early, before phage DNA enters the cytoplasm, and in strain 112, it acts late, after most of the DNA has entered the cell but before it undergoes cos-end ligation. These are the first reported host range determinants in bacteriophage of lactic acid bacteria required for overcoming inhibition of infection at the stage of DNA entry and cos-end ligation.
Collapse
Affiliation(s)
- Jasna Rakonjac
- Institute of Molecular BioSciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
49
|
Dupont K, Vogensen FK, Neve H, Bresciani J, Josephsen J. Identification of the receptor-binding protein in 936-species lactococcal bacteriophages. Appl Environ Microbiol 2004; 70:5818-24. [PMID: 15466519 PMCID: PMC522089 DOI: 10.1128/aem.70.10.5818-5824.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this work was to identify genes responsible for host recognition in the lactococcal phages sk1 and bIL170 belonging to species 936. These phages have a high level of DNA identity but different host ranges. Bioinformatic analysis indicated that homologous genes, orf18 in sk1 and orf20 in bIL170, could be the receptor-binding protein (RBP) genes, since the resulting proteins were unrelated in the C-terminal part and showed homology to different groups of proteins hypothetically involved in host recognition. Consequently, chimeric bIL170 phages carrying orf18 from sk1 were generated. The recombinant phages were able to form plaques on the sk1 host Lactococcus lactis MG1614, and recombination was verified by PCR analysis directly with the plaques. A polyclonal antiserum raised against the C-terminal part of phage sk1 ORF18 was used in immunogold electron microscopy to demonstrate that ORF18 is located at the tip of the tail. Sequence analysis of corresponding proteins from other lactococcal phages belonging to species 936 showed that the N-terminal parts of the RBPs were very similar, while the C-terminal parts varied, suggesting that the C-terminal part plays a role in receptor binding. The phages investigated could be grouped into sk1-like phages (p2, fd13, jj50, and phi 7) and bIL170-like phages (P008, P113G, P272, and bIL66) on the basis of the homology of their RBPs to the C-terminal part of ORF18 in sk1 and ORF20 in bIL170, respectively. Interestingly, sk1-like phages bind to and infect a defined group of L. lactis subsp. cremoris strains, while bIL170-like phages bind to and infect a defined group of L. lactis subsp. lactis strains.
Collapse
Affiliation(s)
- Kitt Dupont
- Department of Food Science, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
50
|
Abstract
Murein hydrolases appear to be widespread in the virions of bacteriophages infecting Gram-positive or Gram-negative bacteria. Muralytic activity has been found in virions of the majority of a diverse collection of phages. Where known, the enzyme is either part of a large protein or found associated with other structural components of the virion that limit enzyme activity. In most cases, the lack of genetic and structural characterization of the phage precludes making a definitive identification of the enzymatic protein species. However, three proteins with muralytic activity have been unequivocally identified. T7gp16 is a 144 kDa internal head protein that is ejected into the cell at the initiation of infection; its enzyme activity is required only when the cell wall is more highly cross-linked. P22gp4 is part of the neck of the particle and is essential for infectivity. The activity associated with virions of Bacillus subtilis phage ø29 and its relatives lies in the terminal protein gp3. These studies lead to a general mechanism describing how phage genomes are transported across the bacterial cell wall.
Collapse
Affiliation(s)
- Michael Moak
- Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712-1095, USA
| | | |
Collapse
|