1
|
Chen P, Wojdyla JA, Colasanti O, Li Z, Qin B, Wang M, Lohmann V, Cui S. Biochemical and structural characterization of hepatitis A virus 2C reveals an unusual ribonuclease activity on single-stranded RNA. Nucleic Acids Res 2022; 50:9470-9489. [PMID: 35947700 PMCID: PMC9458454 DOI: 10.1093/nar/gkac671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
The HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24-27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity. We identified an ATPase-independent nuclease activity of HAV 2C with a preference for polyuridylic single-stranded RNAs. We determined the crystal structure of an HAV 2C fragment to 2.2 Å resolution, containing an ATPase domain, a region equivalent to enterovirus 2C zinc-finger (ZFER) and a C-terminal amphipathic helix (PBD). The PBD of HAV 2C occupies a hydrophobic pocket (Pocket) in the adjacent 2C, and we show the PBD-Pocket interaction is vital for 2C functions. We identified acidic residues that are essential for the ribonuclease activity and demonstrated mutations at these sites abrogate virus replication. We built a hexameric-ring model of HAV 2C, revealing the ribonuclease-essential residues clustering around the central pore of the ring, whereas the ATPase active sites line up at the gaps between adjacent 2Cs. Finally, we show the ribonuclease activity is shared by other picornavirus 2Cs. Our findings identified a previously unfound activity of picornavirus 2C, providing novel insights into the mechanisms of virus replication.
Collapse
Affiliation(s)
| | | | | | | | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Volker Lohmann
- Correspondence may also be addressed to Volker Lohmann. Tel: +49 6221 56 6449; Fax: +49 6221 56 4570;
| | - Sheng Cui
- To whom correspondence should be addressed. Tel: +86 10 67828669; Fax: +86 10 67855012;
| |
Collapse
|
2
|
Genotyping and Molecular Diagnosis of Hepatitis A Virus in Human Clinical Samples Using Multiplex PCR-Based Next-Generation Sequencing. Microorganisms 2022; 10:microorganisms10010100. [PMID: 35056549 PMCID: PMC8779169 DOI: 10.3390/microorganisms10010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatitis A virus (HAV) is a serious threat to public health worldwide. We used multiplex polymerase chain reaction (PCR)-based next-generation sequencing (NGS) to derive information on viral genetic diversity and conduct precise phylogenetic analysis. Four HAV genome sequences were obtained using multiplex PCR-based NGS. HAV whole-genome sequence of one sample was obtained by conventional Sanger sequencing. The HAV strains demonstrated a geographic cluster with sub-genotype IA strains in the Republic of Korea. The phylogenetic pattern of HAV viral protein (VP) 3 region showed no phylogenetic conflict between the whole-genome and partial-genome sequences. The VP3 region in serum and stool samples showed sensitive detection of HAV with differences of quantification that did not exceed <10 copies/μL than the consensus VP4 region using quantitative PCR (qPCR). In conclusion, multiplex PCR-based NGS was implemented to define HAV genotypes using nearly whole-genome sequences obtained directly from hepatitis A patients. The VP3 region might be a potential candidate for tracking the genotypic origin of emerging HAV outbreaks. VP3-specific qPCR was developed for the molecular diagnosis of HAV infection. This study may be useful to predict for the disease management and subsequent development of hepatitis A infection at high risk of severe illness.
Collapse
|
3
|
Abe H, Ushijima Y, Bikangui R, Ondo GN, Zadeh VR, Pemba CM, Mpingabo PI, Igasaki Y, de Vries SG, Grobusch MP, Loembe MM, Agnandji ST, Lell B, Yasuda J. First evidence for continuous circulation of hepatitis A virus subgenotype IIA in Central Africa. J Viral Hepat 2020; 27:1234-1242. [PMID: 32564517 PMCID: PMC7586949 DOI: 10.1111/jvh.13348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
Although a high seroprevalence of antibodies against hepatitis A virus (HAV) has been estimated in Central Africa, the current status of both HAV infections and seroprevalence of anti-HAV antibodies remains unclear due to a paucity of surveillance data available. We conducted a serological survey during 2015-2017 in Gabon, Central Africa, and confirmed a high seroprevalence of anti-HAV antibodies in all age groups. To identify the currently circulating HAV strains and to reveal the epidemiological and genetic characteristics of the virus, we conducted molecular surveillance in a total of 1007 patients presenting febrile illness. Through HAV detection and sequencing, we identified subgenotype IIA (HAV-IIA) infections in the country throughout the year. A significant prevalence trend emerged in the young child population, presenting several infection peaks which appeared to be unrelated to dry or rainy seasons. Whole-genome sequencing and phylogenetic analyses revealed local HAV-IIA evolutionary events in Central Africa, indicating the circulation of HAV-IIA strains of a region-specific lineage. Recombination analysis of complete genome sequences revealed potential recombination events in Gabonese HAV strains. Interestingly, Gabonese HAV-IIA possibly acquired the 5'-untranslated region (5'-UTR) of the rare subgenotype HAV-IIB in recent years, suggesting the present existence of HAV-IIB in Central Africa. These findings indicate a currently stable HAV-IIA circulation in Gabon, with a high risk of infections in children aged under 5 years. Our findings will enhance the understanding of the current status of HAV infections in Central Africa and provide new insight into the molecular epidemiology and evolution of HAV genotype II.
Collapse
Affiliation(s)
- Haruka Abe
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan
| | - Yuri Ushijima
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan
| | - Rodrigue Bikangui
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Institute for Tropical MedicineUniversity of TübingenTübingenGermany
| | | | - Vahid R. Zadeh
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan,Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Christelle M. Pemba
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan,Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Patrick I. Mpingabo
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan,Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Yui Igasaki
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan
| | - Sophia G. de Vries
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Division of Internal MedicineDepartment of Infectious DiseasesCenter of Tropical Medicine and Travel MedicineAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamNetherlands
| | - Martin P. Grobusch
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Institute for Tropical MedicineUniversity of TübingenTübingenGermany,Division of Internal MedicineDepartment of Infectious DiseasesCenter of Tropical Medicine and Travel MedicineAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamNetherlands
| | | | - Selidji T. Agnandji
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Institute for Tropical MedicineUniversity of TübingenTübingenGermany
| | - Bertrand Lell
- Centre de Recherches Médicales de LambarénéLambarénéGabon,Division of Infectious Diseases and Tropical MedicineMedical University of ViennaViennaAustria
| | - Jiro Yasuda
- Department of Emerging Infectious DiseasesInstitute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan,Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan,National Research Center for the Control and Prevention of Infectious Diseases (CCPID)Nagasaki UniversityNagasakiJapan
| |
Collapse
|
4
|
Wassenaar TM, Jun S, Robeson M, Ussery DW. Comparative genomics of hepatitis A virus, hepatitis C virus, and hepatitis E virus provides insights into the evolutionary history of Hepatovirus species. Microbiologyopen 2020; 9:e973. [PMID: 31742930 PMCID: PMC7002107 DOI: 10.1002/mbo3.973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
The intraspecies genomic diversity of the single-strand RNA (+) virus species hepatitis A virus (Hepatovirus), hepatitis C virus (Hepacivirus), and hepatitis E virus (Orthohepevirus) was compared. These viral species all can cause liver inflammation (hepatitis), but share no gene similarity. The codon usage of human hepatitis A virus (HAV) is suboptimal for replication in its host, a characteristic it shares with taxonomically related rodent, simian, and bat hepatitis A virus species. We found this codon usage to be strikingly similar to that of Triatoma virus that infects blood-sucking kissing bugs. The codon usage of that virus is well adapted to its insect host. The codon usage of HAV is also similar to other invertebrate viruses of various taxonomic families. An evolutionary ancestor of HAV and related virus species is hypothesized to be an insect virus that underwent a host jump to infect mammals. The similarity between HAV and invertebrate viruses goes beyond codon usage, as they also share amino acid composition characteristics, while not sharing direct sequence homology. In contrast, hepatitis C virus and hepatitis E virus are highly similar in codon usage preference, nucleotide composition, and amino acid composition, and share these characteristics with Human pegivirus A, West Nile virus, and Zika virus. We present evidence that these observations are only partly explained by differences in nucleotide composition of the complete viral codon regions. We consider the combination of nucleotide composition, amino acid composition, and codon usage preference suitable to provide information on possible evolutionary similarities between distant virus species that cannot be investigated by phylogeny.
Collapse
Affiliation(s)
| | - Se‐Ran Jun
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Michael Robeson
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - David W. Ussery
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
5
|
Investigation of the Complete Sequence of HAV1B Isolated in Ahvaz City, Iran. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.83965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Hamza H, Abd-Elshafy DN, Fayed SA, Bahgat MM, El-Esnawy NA, Abdel-Mobdy E. Detection and characterization of hepatitis A virus circulating in Egypt. Arch Virol 2017; 162:1921-1931. [PMID: 28303345 DOI: 10.1007/s00705-017-3294-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
Abstract
Hepatitis A virus (HAV) still poses a considerable problem worldwide. In the current study, hepatitis A virus was recovered from wastewater samples collected from three wastewater treatment plants over one year. Using RT-PCR, HAV was detected in 43 out of 68 samples (63.2%) representing both inlet and outlet. Eleven positive samples were subjected to sequencing targeting the VP1-2A junction region. Phylogenetic analysis revealed that all samples belonged to subgenotype IB with few substitutions at the amino acid level. The complete sequence of one isolate (HAV/Egy/BI-11/2015) showed that the similarity at the amino acid level was not reflected at the nucleotide level. However, the deduced amino acid sequence derived from the complete nucleotide sequence showed distinct substitutions in the 2B, 2C, and 3A regions. Recombination analysis revealed a recombination event between X75215 (subgenotype IA) and AF268396 (subgenotype IB) involving a portion of the 2B nonstructural protein coding region (nucleotides 3757-3868) assuming the herein characterized sequence an actual recombinant. Despite the role of recombination in picornaviruses evolution, its involvement in HAV evolution has rarely been reported, and this may be due to the limited available complete HAV sequences. To our knowledge, this represents the first characterized complete sequence of an Egyptian isolate and the described recombination event provides an important update on the circulating HAV strains in Egypt.
Collapse
Affiliation(s)
- Hazem Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt.
| | - Dina Nadeem Abd-Elshafy
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt
| | - Sayed A Fayed
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Mahmoud Mohamed Bahgat
- Immune and Biomarkers for Infection Laboratory, The Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| | - Nagwa Abass El-Esnawy
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt
| | - Emam Abdel-Mobdy
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Gaunt E, Harvala H, Österback R, Sreenu VB, Thomson E, Waris M, Simmonds P. Genetic characterization of human coxsackievirus A6 variants associated with atypical hand, foot and mouth disease: a potential role of recombination in emergence and pathogenicity. J Gen Virol 2015; 96:1067-1079. [PMID: 25614593 PMCID: PMC4631059 DOI: 10.1099/vir.0.000062] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/15/2015] [Indexed: 01/21/2023] Open
Abstract
Human coxsackievirus A6 (CVA6) is an enterically transmitted enterovirus. Until recently, CVA6 infections were considered as being of minor clinical significance, and only rarely aetiologically linked with hand, foot and mouth disease (HFMD) associated with other species A enteroviruses (particularly EV71 and CVA16). From 2008 onwards, however, CVA6 infections have been associated with several outbreaks worldwide of atypical HFMD (aHFMD) accompanied by a varicelliform rash. We recently reported CVA6-associated eczema herpeticum occurring predominantly in children and young adults in Edinburgh in January and February 2014. To investigate genetic determinants of novel clinical phenotypes of CVA6, we genetically characterized and analysed CVA6 variants associated with eczema herpeticum in Edinburgh in 2014 and those with aHFMD in CAV isolates collected from 2008. A total of eight recombinant forms (RFs) have circulated worldwide over the past 10 years, with the particularly recent appearance of RF-H associated with eczema herpeticum cases in Edinburgh in 2014. Comparison of phylogenies and divergence of complete genome sequences of CVA6 identified recombination breakpoints in 2A-2C, within VP3, and between 5' untranslated region and VP1. A Bayesian temporal reconstruction of CVA6 evolution since 2004 provided estimates of dates and the actual recombination events that generated more recently appearing recombination groups (RF-E, -F, -G and -H). Associations were observed between recombination groups and clinical presentations of herpangina, aHFMD and eczema herpeticum, but not with VP1 or other structural genes. These observations provided evidence that NS gene regions may potentially contribute to clinical phenotypes and outcomes of CVA6 infection.
Collapse
Affiliation(s)
- Eleanor Gaunt
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Heli Harvala
- Specialist Virology Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Riikka Österback
- Department of Virology, University of Turku, 20520 Turku, Finland
| | - Vattipally B Sreenu
- MRC University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Emma Thomson
- MRC University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Matti Waris
- Department of Virology, University of Turku, 20520 Turku, Finland
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| |
Collapse
|
8
|
Coudray-Meunier C, Fraisse A, Mokhtari C, Martin-Latil S, Roque-Afonso AM, Perelle S. Hepatitis A virus subgenotyping based on RT-qPCR assays. BMC Microbiol 2014; 14:296. [PMID: 25420941 PMCID: PMC4258257 DOI: 10.1186/s12866-014-0296-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 11/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background The hepatitis A virus (HAV) is the most frequent cause of viral hepatitis worldwide and is recognized as one of the most widespread foodborne pathogens. HAV genotypes and subtypes differ in their geographic distribution and the incidence of HAV infection varies considerably among countries, and is particularly high in areas with poor sanitation and hygiene. Phylogenetic analyses are traditionally used in clinical microbiology for tracing the geographic origin of HAV strains. In food microbiology, this approach is complicated by the low contamination levels of food samples. To date, real-time reverse-transcription PCR has been one of the most promising detection methods due to its sensitivity, specificity and ability to deliver quantitative data in food samples, but it does not provide HAV subtyping information. Results Six subtype-specific RT-qPCR assays were developed for human HAV. The limit of detection of HAV was 50 genome copies/assay for subtype IIB, 500 genome copies assay for IA, IB, IIA and IIIB and 5000 genome copies/assay for IIIA. The specificity of the assays was evaluated by testing reference isolates and in vitro HAV RNA transcripts. No significant cross reactivity was observed. Subtyping results concordant with sequencing analysis were obtained from 34/35 clinical samples. Co-infection with a minor strain of a different subtype was suggested in 5 cases and a recombinant event in one case. Conclusions These RT-qPCR assays may be particularly useful for accurately tracing HAV in low-level contaminated samples such as food matrices but also to allow co-infection identification in human samples.
Collapse
|
9
|
Vaughan G, Goncalves Rossi LM, Forbi JC, de Paula VS, Purdy MA, Xia G, Khudyakov YE. Hepatitis A virus: host interactions, molecular epidemiology and evolution. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:227-243. [PMID: 24200587 DOI: 10.1016/j.meegid.2013.10.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/25/2013] [Accepted: 10/26/2013] [Indexed: 12/16/2022]
Abstract
Infection with hepatitis A virus (HAV) is the commonest viral cause of liver disease and presents an important public health problem worldwide. Several unique HAV properties and molecular mechanisms of its interaction with host were recently discovered and should aid in clarifying the pathogenesis of hepatitis A. Genetic characterization of HAV strains have resulted in the identification of different genotypes and subtypes, which exhibit a characteristic worldwide distribution. Shifts in HAV endemicity occurring in different parts of the world, introduction of genetically diverse strains from geographically distant regions, genotype displacement observed in some countries and population expansion detected in the last decades of the 20th century using phylogenetic analysis are important factors contributing to the complex dynamics of HAV infections worldwide. Strong selection pressures, some of which, like usage of deoptimized codons, are unique to HAV, limit genetic variability of the virus. Analysis of subgenomic regions has been proven useful for outbreak investigations. However, sharing short sequences among epidemiologically unrelated strains indicates that specific identification of HAV strains for molecular surveillance can be achieved only using whole-genome sequences. Here, we present up-to-date information on the HAV molecular epidemiology and evolution, and highlight the most relevant features of the HAV-host interactions.
Collapse
Affiliation(s)
- Gilberto Vaughan
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | | | - Joseph C Forbi
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vanessa S de Paula
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Michael A Purdy
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Guoliang Xia
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Yury E Khudyakov
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
10
|
Villabona-Arenas CJ, de Brito AF, de Andrade Zanotto PM. Genomic mosaicism in two strains of Dengue virus type 3. INFECTION GENETICS AND EVOLUTION 2013; 18:202-12. [PMID: 23727343 DOI: 10.1016/j.meegid.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
Recombination is a significant factor driving genomic evolution, but it is not well understood in Dengue virus. We used phylogenetic methods to search for recombination in 636 Dengue virus type 3 (DENV-3) genomes and unveiled complex recombination patterns in two strains, which appear to be the outcome of recombination between genotype II and genotype I parental DENV-3 lineages. Our findings of genomic mosaic structures suggest that strand switching during RNA synthesis may be involved in the generation of genetic diversity in dengue viruses.
Collapse
Affiliation(s)
- Christian Julián Villabona-Arenas
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1734, CEP: 05508-000, São Paulo, SP, Brazil
| | | | | |
Collapse
|
11
|
Zhang Y, Liu Y, Liu W, Zhou J, Chen H, Wang Y, Ma L, Ding Y, Zhang J. Analysis of synonymous codon usage in hepatitis A virus. Virol J 2011; 8:174. [PMID: 21496278 PMCID: PMC3087699 DOI: 10.1186/1743-422x-8-174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/16/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Hepatitis A virus is the causative agent of type A viral hepatitis, which causes occasional acute hepatitis. Nevertheless, little information about synonymous codon usage pattern of HAV genome in the process of its evolution is available. In this study, the key genetic determinants of codon usage in HAV were examined. RESULTS The overall extent of codon usage bias in HAV is high in Picornaviridae. And the patterns of synonymous codon usage are quite different in HAV genomes from different location. The base composition is closely correlated with codon usage bias. Furthermore, the most important determinant that results in such a high codon bias in HAV is mutation pressure rather than natural selection. CONCLUSIONS HAV presents a higher codon usage bias than other members of Picornaviridae. Compositional constraint is a significant element that influences the variation of synonymous codon usage in HAV genome. Besides, mutation pressure is supposed to be the major factor shaping the hyperendemic codon usage pattern of HAV.
Collapse
Affiliation(s)
- Yiqiang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
- Laboratory of Animal Quarantine, College of Animal Medical, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Wenqian Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Jianhua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Haotai Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yin Wang
- Laboratory of Animal Quarantine, College of Animal Medical, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Yaozhong Ding
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China
| |
Collapse
|
12
|
Belalov IS, Isaeva OV, Lukashev AN. Recombination in hepatitis A virus: evidence for reproductive isolation of genotypes. J Gen Virol 2011; 92:860-72. [DOI: 10.1099/vir.0.024786-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Abstract
Picornaviruses are small non-enveloped positive strand RNA viruses that can cause a wide range of clinical manifestations in humans and animals. Many of these viruses are highly diversified and globally prevalent. Natural recombination has been reported in most picornavirus genera and is a key genetic feature of these infectious agents. In several socially relevant picornavirus genera, such as enteroviruses, aphthoviruses, parechoviruses and cardioviruses, recombination, combined with dynamic global epidemiology, maintains virus species as a worldwide pool of genetic information. It can be suggested that on a short time scale recombination acts to promote virus diversity, and new recombinant forms of picornaviruses emerge frequently as 'snapshots' of this global pool. On a longer time scale, recombination maintains stability of a gene pool of a species by shuffling sequences and thus limiting divergence and speciation. This review covers existing evidence of recombination in most genera of the family Picornaviridae and possible implications for diagnostics, epidemiology and classification.
Collapse
Affiliation(s)
- A N Lukashev
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region, Russia.
| |
Collapse
|
14
|
Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis. J Clin Microbiol 2010; 49:728-31. [PMID: 21106800 DOI: 10.1128/jcm.01093-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human astrovirus (HAstV) strain from Kenya was characterized by nucleotide sequence analysis. Sequences from open reading frame 1a (ORF1a) clustered with genotype 6/7, those from ORF1b clustered with genotype 3, and those from ORF2 clustered with genotype 2. A recombination point in the ORF1b-ORF2 junction was identified, with a second possible recombination point within the ORF1a region.
Collapse
|
15
|
Aguirre S, Malirat V, Scodeller E, Mattion N. First full-length genomic sequence of a hepatitis A virus isolated in Argentina shows recombination between subgenotypes IA and IB. Virus Res 2010; 155:316-24. [PMID: 21056065 DOI: 10.1016/j.virusres.2010.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/21/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022]
Abstract
A hepatitis A virus (HAV) recovered in Argentina from a stool sample of a sick child in the year 2006 (HAV-Arg/06) was entirely sequenced. Phylogenetic analysis included the HAV-Arg/06 sequence in subgenotype IA, either considering the usual VP1-2A variable junction fragment or the full length nucleotide sequence. Interestingly, a recombination event with subgenotype IB, involving a portion of the 2C-3A nonstructural proteins coding region (nucleotides 4961-5140) was detected using specific software. Only subgenotype IA strains have been detected in Argentina or Uruguay, whereas subgenotype IA and IB strains have been reported to circulate in Brazil. Although recombination has been given an important role in the evolution of picornaviruses, there have been only a few reports of its involvement in the evolution of HAV, probably due to the limited number of complete HAV sequences available. This study constitutes the first report of a full-length HAV sequence in Argentina and the third in South America, after the sequence of the IA isolate HAV5 from Uruguay and the IB isolate HAF-203 from Brazil. The availability of new sequence data covering the complete HAV genome will help establish a more consistent genetic relatedness among HAV isolates and the role of recombination in its evolution.
Collapse
Affiliation(s)
- Sebastian Aguirre
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr César Milstein, CONICET, Saladillo 2468, 1440 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Desbois D, Couturier E, Graube A, Letort MJ, Dussaix E, Roque-Afonso AM. [Genetic diversity of a rare hepatitis A virus genotype]. ACTA ACUST UNITED AC 2010; 59:57-65. [PMID: 20822864 DOI: 10.1016/j.patbio.2010.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/02/2010] [Indexed: 11/19/2022]
Abstract
PURPOSE OF THE STUDY Very few is known on genotype II hepatitis A virus (HAV) since it is rarely isolated. From 2002 to 2007, the French observatory of HAV identified six sub-genotype IIA strains of which one from a patient having travelled to West Africa. To investigate the possible African origin of sub-genotype IIA, we determined its prevalence among French travellers in 2008 and characterised its genetic variability. PATIENTS AND METHODS The 2008 mandatory notification records were screened for travel to Africa. Viral genotype was determined on the nucleotide sequencing of the VP1/2A junction region. The P1 region coding for capsid proteins was used to compare the genetic diversity of IIA isolates to those of other genotypes. RESULTS In 2008, five out of 54 patients returning from West Africa were infected by IIA strains and an additional "autochthonous" case was identified. Two more African cases were identified in 2009. A total of 14 IIA isolates (eight African and six "autochthonous") were analysed. Nucleotide and amino-acid variability of IIA sequences was lower than that of the other genotypes. Phylogenetic analysis revealed the clustering of two "autochthonous" cases with African isolates whereas the other ones belonged to a different lineage. CONCLUSION Most IIA strains isolated in France are imported by travellers returning from West Africa. However, the unexplained contamination mode of some "autochthonous" cases suggests another geographical origin to discover or a French reservoir to explore.
Collapse
Affiliation(s)
- D Desbois
- Laboratoire de virologie, centre national de Référence pour les virus des hépatites à transmission entérique, hôpital Paul-Brousse, AP-HP, 94804 Villejuif, France.
| | | | | | | | | | | |
Collapse
|
17
|
Epidemiology and genetic characterization of hepatitis A virus genotype IIA. J Clin Microbiol 2010; 48:3306-15. [PMID: 20592136 DOI: 10.1128/jcm.00667-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Three hepatitis A virus (HAV) genotypes, I, II, and III, divided into subtypes A and B, infect humans. Genotype I is the most frequently reported, while genotype II is hardly ever isolated, and its genetic diversity is unknown. From 2002 to 2007, a French epidemiological survey of HAV identified 6 IIA isolates, mostly from patients who did not travel abroad. The possible African origin of IIA strains was investigated by screening the 2008 mandatory notification records of HAV infection: 171 HAV strains from travelers to West Africa and Morocco were identified. Genotyping was performed by sequencing of the VP1/2A junction in 68 available sera. Entire P1 and 5' untranslated regions of IIA strains were compared to reference sequences of other genotypes. The screening retrieved 5 imported IIA isolates. An additional autochthonous case and 2 more African cases were identified in 2008 and 2009, respectively. A total of 14 IIA isolates (8 African and 6 autochthonous) were analyzed. IIA sequences presented lower nucleotide and amino acid variability than other genotypes. The highest variability was observed in the N-terminal region of VP1, while for other genotypes the highest variability was observed at the VP1/2A junction. Phylogenetic analysis identified 2 clusters, one gathering all African and two autochthonous cases and a second including only autochthonous isolates. In conclusion, most IIA strains isolated in France are imported by travelers returning from West Africa. However, the unexplained contamination mode of autochthonous cases suggests another, still to be discovered geographical origin or a French reservoir to be explored.
Collapse
|
18
|
de Souza Luna LK, Baumgarte S, Grywna K, Panning M, Drexler JF, Drosten C. Identification of a contemporary human parechovirus type 1 by VIDISCA and characterisation of its full genome. Virol J 2008; 5:26. [PMID: 18269761 PMCID: PMC2270820 DOI: 10.1186/1743-422x-5-26] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 02/12/2008] [Indexed: 01/12/2023] Open
Abstract
Background Enteritis is caused by a spectrum of viruses that is most likely not fully characterised. When testing stool samples by cell culture, virus isolates are sometimes obtained which cannot be typed by current methods. In this study we used VIDISCA, a virus identification method which has not yet been widely applied, on such an untyped virus isolate. Results We found a human parechovirus (HPeV) type 1 (strain designation: BNI-788st). Because genomes of contemporary HPeV1 were not available, we determined its complete genome sequence. We found that the novel strain was likely the result of recombination between structural protein genes of an ancestor of contemporary HPeV1 strains and nonstructural protein genes from an unknown ancestor, most closely related to HPeV3. In contrast to the non-structural protein genes of other HPeV prototype strains, the non-structural protein genes of BNI-788st and HPeV3 prototype strains did not co-segregate in bootscan analysis with that of other prototype strains. Conclusion HPeV3 nonstructural protein genes may form a distinct element in a pool of circulating HPeV non-structural protein genes. More research into the complex HPeV evolution is required to connect virus ecology with disease patterns in humans.
Collapse
|
19
|
Munné MS, Vladimirsky S, Moreiro R, Ciocca M, Cuarterolo M, Otegui L, Soto S, Brajterman L, Castro R, Sasbón J, Gianivelli S, Buamscha D, Quarleri J, González JE. Molecular characterization of hepatitis A virus in children with fulminant hepatic failure in Argentina. Liver Int 2008; 28:47-53. [PMID: 18028318 DOI: 10.1111/j.1478-3231.2007.01634.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Hepatitis A infection, a vaccine-preventable disease, is an important cause of fulminant hepatic failure (FHF) in children in Argentina. Universal vaccination in 1-year-old children was implemented in June 2005. The limited studies about the correlation between the characteristics of the hepatitis A virus (HAV) and FHF have been carried out in adults. METHODS Samples from 41 children with FHF were studied from September 2003 to January 2006 and HAV RNA was detected, sequenced and analysed in the 5' non-coding region and VP1/2A region. RESULTS Eighteen HAV strains were characterized and found to be different at the nucleotide level from the self-limited acute infection strains that have been circulating in Argentina with no temporal or geographical pattern. They did not form a genetic cluster, but some of them were identical in the largest fragment characterized and some of them seemed to be more closely related in time and/or geographically. CONCLUSION Our results suggest that viral factors could be involved in the severity of the clinical presentation of HAV infection in children in Argentina.
Collapse
Affiliation(s)
- María Silvina Munné
- National Reference Laboratory in Viral Hepatitis, National Institute of Infectious Diseases, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Quer J, Martell M, Rodriguez F, Bosch A, Jardi R, Buti M, Esteban J. The Impact of Rapid Evolution of Hepatitis Viruses. ORIGIN AND EVOLUTION OF VIRUSES 2008:303-349. [DOI: 10.1016/b978-0-12-374153-0.00015-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Hepatitis A virus mutant spectra under the selective pressure of monoclonal antibodies: codon usage constraints limit capsid variability. J Virol 2007; 82:1688-700. [PMID: 18057242 DOI: 10.1128/jvi.01842-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe structural constraints in the hepatitis A virus (HAV) capsid have been suggested as the reason for the lack of emergence of new serotypes in spite of the occurrence of complex distributions of mutants or quasispecies. Analysis of the HAV mutant spectra under immune pressure by the monoclonal antibodies (MAbs) K34C8 (immunodominant site) and H7C27 (glycophorin binding site) has revealed different evolutionary dynamics. Populations composed of complex ensembles of mutants with very low fitness or single dominant mutants with high fitness permit the acquisition of resistance to each of the MAbs, respectively. Deletion mutants were detected as components of the mutant spectra: up to 61 residues, with an average of 19, and up to 83 residues, with an average of 45, in VP3 and VP1 proteins, respectively. A clear negative selection of those replacements affecting the residues encoded by rare codons of the capsid surface has been detected through the present quasispecies analysis, confirming a certain beneficial role of such clusters. Since these clusters are located near or at the epitope regions, the need to maintain such clusters might prevent the emergence of new serotypes.
Collapse
|
22
|
Zhu D, Fox GE, Chakravarty S. RECOVIR: An application package to automatically identify some single stranded RNA viruses using capsid protein residues that uniquely distinguish among these viruses. BMC Bioinformatics 2007; 8:379. [PMID: 17927830 PMCID: PMC2174958 DOI: 10.1186/1471-2105-8-379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 10/10/2007] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Most single stranded RNA (ssRNA) viruses mutate rapidly to generate large number of strains having highly divergent capsid sequences. Accurate strain recognition in uncharacterized target capsid sequences is essential for epidemiology, diagnostics, and vaccine development. Strain recognition based on similarity scores between target sequences and sequences of homology matched reference strains is often time consuming and ambiguous. This is especially true if only partial target sequences are available or if different ssRNA virus families are jointly analyzed. In such cases, knowledge of residues that uniquely distinguish among known reference strains is critical for rapid and unambiguous strain identification. Conventional sequence comparisons are unable to identify such capsid residues due to high sequence divergence among the ssRNA virus reference strains. Consequently, automated general methods to reliably identify strains using strain distinguishing residues are not currently available.
Results
We present here RECOVIR ("recognize viruses"), a software tool to automatically detect strains of caliciviruses and picornaviruses by comparing their capsid residues with built-in databases of residues that uniquely distinguish among known reference strains of these viruses. The databases were created by constructing partitioned phylogenetic trees of complete capsid sequences of these viruses. Strains were correctly identified for more than 300 complete and partial target sequences by comparing the database residues with the aligned residues of these sequences. It required about 5 seconds of real time to process each sequence. A Java-based user interface coupled with Perl-coded computational modules ensures high portability of the software. RECOVIR currently runs on Windows XP and Linux platforms. The software generalizes a manual method briefly outlined earlier for human caliciviruses.
Conclusion
This study shows implementation of an automated method to identify virus strains using databases of capsid residues. The method is implemented to detect strains of caliciviruses and picornaviruses, two of the most highly divergent ssRNA virus families, and therefore, especially difficult to identify using a uniform method. It is feasible to incorporate the approach into classification schemes of caliciviruses and picornaviruses and to extend the approach to recognize and classify other ssRNA virus families.
Collapse
|
23
|
Domingo E, Gomez J. Quasispecies and its impact on viral hepatitis. Virus Res 2007; 127:131-50. [PMID: 17349710 PMCID: PMC7125676 DOI: 10.1016/j.virusres.2007.02.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/11/2007] [Accepted: 02/03/2007] [Indexed: 12/17/2022]
Abstract
Quasispecies dynamics mediates adaptability of RNA viruses through a number of mechanisms reviewed in the present article, with emphasis on the medical implications for the hepatitis viruses. We discuss replicative and non-replicative molecular mechanisms of genome variation, modulating effects of mutant spectra, and several modes of viral evolution that can affect viral pathogenesis. Relevant evolutionary events include the generation of minority virus variants with altered functional properties, and alterations of mutant spectrum complexity that can affect disease progression or response to treatment. The widespread occurrence of resistance to antiviral drugs encourages new strategies to control hepatic viral disease such as combination therapies and lethal mutagenesis. In particular, ribavirin may be exerting in some cases its antiviral activity with participation of its mutagenic action. Despite many unanswered questions, here we document that quasispecies dynamics has provided an interpretation of the adaptability of the hepatitis viruses, with features conceptually similar to those observed with other RNA viruses, a reflection of the common underlying Darwinian principles.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
24
|
Cristina J, Costa-Mattioli M. Genetic variability and molecular evolution of hepatitis A virus. Virus Res 2007; 127:151-7. [PMID: 17328982 DOI: 10.1016/j.virusres.2007.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 01/08/2007] [Indexed: 02/08/2023]
Abstract
Hepatitis A virus (HAV), the causative agent of type A viral hepatitis, was first identified about three decades ago. Recent findings have shown that HAV possess several characteristics that make it unique among the family Picornaviridae, particularly in terms of its mechanisms of polyprotein processing and virion morphogenesis. HAV circulates in vivo as distributions of closely genetically related variants referred to as quasispecies. HAV exploits all known mechanisms of genetic variation to ensure its survival, including mutation and recombination. Only one serotype and six different genetic groups (three humans and three simian) have been described. HAV mutation rate is significantly lower as compared to other members of the family Picornaviridae. The mode of evolution appears, at least in part, to contribute to the presence of only one known serotype.
Collapse
Affiliation(s)
- Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay.
| | | |
Collapse
|
25
|
Chitambar S, Joshi M, Lole K, Walimbe A, Vaidya S. Cocirculation of and coinfections with hepatitis A virus subgenotypes IIIA and IB in patients from Pune, western India. Hepatol Res 2007; 37:85-93. [PMID: 17300702 DOI: 10.1111/j.1872-034x.2007.00025.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM During the 1990s, a changing pattern of epidemiology of hepatitis A was reported in different populations of India. The present study was undertaken to investigate the molecular epidemiology of hepatitis A virus (HAV) strains over a period of 10 years. METHODS Stool/serum samples were collected from hepatitis A patients clinically presenting acute viral hepatitis and hepatic encephalopathy. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to detect HAV-RNA. HAV genomes were examined by sequencing PCR products of VP1/2A junction (168 bp) and RNA polymerase (116 bp) regions. RESULTS Subgenotype IIIA and IB were detected in 74.2% and 9.7% of specimens, respectively, while 16.1% of patients had mixed infections. Sewage samples also showed presence of both IIIA (9/10) and IB (1/10) subgenotypes. RNA polymerase region showed two clusters constituting 51.6% and 19.4% strains closer to Nor21 and HM175 strains, respectively, in clinical specimens. Three isolates appeared as discordant subgenotypes in VP1/2A and RNA polymerase regions. CONCLUSION The data revealed cocirculation of and coinfection with subgenotypes IIIA and IB, with predominance of IIIA and genetic heterogeneity of HAV strains in western India.
Collapse
Affiliation(s)
- Shobha Chitambar
- Rotavirus Department, National Institute of Virology, Pune, India
| | | | | | | | | |
Collapse
|
26
|
Simmonds P. Recombination and selection in the evolution of picornaviruses and other Mammalian positive-stranded RNA viruses. J Virol 2006; 80:11124-40. [PMID: 16956935 PMCID: PMC1642140 DOI: 10.1128/jvi.01076-06] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Picornaviridae are a large virus family causing widespread, often pathogenic infections in humans and other mammals. Picornaviruses are genetically and antigenically highly diverse, with evidence for complex evolutionary histories in which recombination plays a major part. To investigate the nature of recombination and selection processes underlying the evolution of serotypes within different picornavirus genera, large-scale analysis of recombination frequencies and sites, segregation by serotype within each genus, and sequence selection and composition was performed, and results were compared with those for other nonenveloped positive-stranded viruses (astroviruses and human noroviruses) and with flavivirus and alphavirus control groups. Enteroviruses, aphthoviruses, and teschoviruses showed phylogenetic segregation by serotype only in the structural region; lack of segregation elsewhere was attributable to extensive interserotype recombination. Nonsegregating viruses also showed several characteristic sequence divergence and composition differences between genome regions that were absent from segregating virus control groups, such as much greater amino acid sequence divergence in the structural region, markedly elevated ratios of nonsynonymous-to-synonymous substitutions, and differences in codon usage. These properties were shared with other picornavirus genera, such as the parechoviruses and erboviruses. The nonenveloped astroviruses and noroviruses similarly showed high frequencies of recombination, evidence for positive selection, and differential codon use in the capsid region, implying similar underlying evolutionary mechanisms and pressures driving serotype differentiation. This process was distinct from more-recent sequence evolution generating diversity within picornavirus serotypes, in which neutral or purifying selection was prominent. Overall, this study identifies common themes in the diversification process generating picornavirus serotypes that contribute to understanding of their evolution and pathogenicity.
Collapse
Affiliation(s)
- Peter Simmonds
- Virus Evolution Group, Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom.
| |
Collapse
|
27
|
Cristina J, Colina R. Evidence of structural genomic region recombination in Hepatitis C virus. Virol J 2006; 3:53. [PMID: 16813646 PMCID: PMC1533811 DOI: 10.1186/1743-422x-3-53] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 06/30/2006] [Indexed: 01/01/2023] Open
Abstract
Background/Aim Hepatitis C virus (HCV) has been the subject of intense research and clinical investigation as its major role in human disease has emerged. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there have been few studies reporting recombination on natural populations of HCV. Recombination break-points have been identified in non structural proteins of the HCV genome. Given the implications that recombination has for RNA virus evolution, it is clearly important to determine the extent to which recombination plays a role in HCV evolution. In order to gain insight into these matters, we have performed a phylogenetic analysis of 89 full-length HCV strains from all types and sub-types, isolated all over the world, in order to detect possible recombination events. Method Putative recombinant sequences were identified with the use of SimPlot program. Recombination events were confirmed by bootscaning, using putative recombinant sequence as a query. Results Two crossing over events were identified in the E1/E2 structural region of an intra-typic (1a/1c) recombinant strain. Conclusion Only one of 89 full-length strains studied resulted to be a recombinant HCV strain, revealing that homologous recombination does not play an extensive roll in HCV evolution. Nevertheless, this mechanism can not be denied as a source for generating genetic diversity in natural populations of HCV, since a new intra-typic recombinant strain was found. Moreover, the recombination break-points were found in the structural region of the HCV genome.
Collapse
Affiliation(s)
- Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
28
|
Carrilho FJ, Mendes Clemente C, Silva LCD. Epidemiology of hepatitis A and E virus infection in Brazil. GASTROENTEROLOGIA Y HEPATOLOGIA 2006; 28:118-25. [PMID: 15771857 DOI: 10.1157/13072011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review has the objective to discuss the epidemiological aspects of the enterically transmitted hepatitis A and E in Brazil. The prevalence of hepatitis A varies greatly in different Brazilian regions, from 56% in South and Southeast to 93% in North region (Manaus, Amazon). Such differences are also found in different socioeconomic levels among age groups. A significantly higher prevalence was seen in the low socioeconomic group between 1-30 years. This difference is most striking in the first 10 years of age (23.5% vs 60.0%, high/middle vs low, respectively). Despite the improvements in sanitary conditions, hepatitis A is still endemic and outbreaks may occur. As an increasing proportion of the population is becoming susceptible to hepatitis A virus infection and as adult individuals may present more severe forms of the disease, the authors conclude that the implement of hepatitis A vaccination should be considered. Some Brazilian data have shown that the genotype found in our country were IA and IB. Isolates from this study were closely related genetically (or even identical) to isolates originating in other South American countries and overseas, providing firm evidence for epidemiological links between persons who travel to endemic areas. In spite of favorable environmental conditions, outbreaks of hepatitis E have never been reported in Brazil. Nevertheless, reports have demonstrated the evidence of anti-hepatitis E virus antibodies in some Brazilian regions. The seroprevalence of IgG anti-hepatitis E virus among normal populations shows positivities of 6.1% in gold-miners, 3.3% in general population, 2.0-7.5% in blood donors, 1.0% in pregnant women, and 4.5% in children, with no differences among regions. In populations at risk the prevalence of anti-hepatits E virus varies greatly. Among patients with acute non-A, non-B, non-C hepatitis 2.1% was detected in the Southeast to 29% in the Northeast, in 10.6% of acute non-A, non-B, non-C hepatitis relatives in the Amazon basin, in 12% of acute sporadic non-A non-B hepatitis patients in the Northeast, a co-infection with acute hepatitis A in 25 to 38% in the Northeast, in 14 to 18% among prostitutes and women considered at risk for human immunodeficiency virus in the Southeast, and in 12% of the intravenous drug users in the Southeast.
Collapse
Affiliation(s)
- F J Carrilho
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil.
| | | | | |
Collapse
|
29
|
Costa-Mattioli M, Domingo E, Cristina J. Analysis of sequential hepatitis A virus strains reveals coexistence of distinct viral subpopulations. J Gen Virol 2006; 87:115-118. [PMID: 16361423 DOI: 10.1099/vir.0.81286-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis A
virus (HAV) is a hepatotropic member of the family Picornaviridae. Despite a remarkable antigenic stability, recent results have shown that HAV exists in vivo and in cell culture as distributions of genetically related, non-identical variants, referred to as quasispecies. To gain insight into HAV evolution over time in a specific geographical region, genotype I consensus sequences from strains isolated in France in consecutive years were studied. Phylogenetic neighbour-joining method and a non-hierarchical partition analysis, designed to analyse viral quasispecies, indicate that at least five distinct subpopulations of HAV were identified in the course of the disease episode. Strikingly, over time, different subpopulations cycled in dominance. The coexistence of distinct subpopulations whose frequency varies with time is consistent with quasispecies dynamics, and suggests that variation in the dominant HAV population may provide HAV adaptability without being reflected in significant antigenic variation.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Esteban Domingo
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
30
|
Stene-Johansen K, Jonassen TØ, Skaug K. Characterization and genetic variability of Hepatitis A virus genotype IIIA. J Gen Virol 2005; 86:2739-2745. [PMID: 16186227 DOI: 10.1099/vir.0.81155-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular epidemiological studies of hepatitis A outbreaks in Norway showed the emergence of Hepatitis A virus (HAV) genotype IIIA in association with parenteral transmission among haemophiliacs and intravenous drug users. The complete genomic sequence of one of these outbreak isolates, NOR-21, was determined. This is the first complete genomic sequence of HAV genotype IIIA. Phylogenetic analysis showed that genotype IIIA/NOR-21 was genetically distinct from the other human and simian genotypes. Phylogenetic analysis of the nucleotide sequences clearly distinguished the different HAV genotypes, regardless of the genomic region used for analysis, whereas the amino acid sequences showed a more vague distinction between human HAV genotypes I and II. In particular, the inferred phylogeny based on the capsid proteins showed that the human HAV strains were related more closely to each other than to the simian strains. The greatest variability and clearest distinction between genotypes were observed for the polymerase gene. The outbreak isolates of HAV genotype IIIA in this study showed greater nucleotide variability than is generally seen in outbreaks of genotype I. This high nucleotide variability, which may be characteristic of this HAV genotype, the mode of transmission in this outbreak or parallel introductions, is discussed.
Collapse
Affiliation(s)
- Kathrine Stene-Johansen
- Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Tom Øystein Jonassen
- Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Kjell Skaug
- Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404, Nydalen, NO-0403 Oslo, Norway
| |
Collapse
|
31
|
Tjon GMS, Wijkmans CJ, Coutinho RA, Koek AG, van den Hoek JAR, Leenders ACAP, Schneeberger PM, Bruisten SM. Molecular epidemiology of hepatitis A in Noord-Brabant, The Netherlands. J Clin Virol 2005; 32:128-36. [PMID: 15653415 DOI: 10.1016/j.jcv.2004.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 02/03/2004] [Accepted: 03/16/2004] [Indexed: 01/13/2023]
Abstract
BACKGROUND Previous studies on the molecular epidemiology of hepatitis A virus (HAV) in Amsterdam, The Netherlands, show that subgenotype 1A is mainly seen among homosexual men practising anonymous oral-anal sex in saunas and darkrooms, while subgenotype 1B is usually detected among children originating from Morocco, and subgenotype 3A is mostly found among travellers to Pakistan. OBJECTIVE We studied the genotype distribution in a more rural area of The Netherlands, Noord-Brabant, and compared it with Amsterdam. STUDY DESIGN We collected blood and feces samples from 34 HAV IgM(+) individuals who were reported from August 2001-March 2003 at the Municipal Health Service (MHS) Heart for Brabant (Brabant). We also collected feces samples from nine household contacts of whom the HAV IgM status was not known. HAV RNA was isolated and subsequently amplified by reverse transcriptase polymerase chain reaction (RT-PCR) at the VP1-P2a and the VP3-VP1 region, sequenced and analysed. RESULTS AND CONCLUSIONS In most cases, relations between risk groups and HAV subgenotypes in Noord-Brabant were similar to those in Amsterdam. Next to genotypes 1 and 3 we also detected a genotype 2/7 strain in a Noord-Brabant case. Also, in contrast to the Amsterdam study, sporadic transmission occurred among various risk groups. Children involved in a school-related outbreak were infected with strains identical to one that was previously isolated from a man who has sex with men (MSM). Also, Dutch patients having no epidemiological link with Turkish or Moroccan children harboured strains imported from high-endemic countries. Furthermore, we report a special case in which HAV may be causally involved in meningitis. The results of this study show that the molecular epidemiology of HAV in The Netherlands can be more complicated than previously anticipated and that HAV phylogenetic studies can provide important information for the design of appropriate public health measures.
Collapse
Affiliation(s)
- G M S Tjon
- Municipal Health Service of Amsterdam (Streeklaboratorium voor de Volksgezondheid), Nieuw Achtergracht 100, 1018 WT Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cristina J, Lopez F, Moratorio G, López L, Vasquez S, García-Aguirre L, Chunga A. Hepatitis C virus F protein sequence reveals a lack of functional constraints and a variable pattern of amino acid substitution. J Gen Virol 2005; 86:115-120. [PMID: 15604437 DOI: 10.1099/vir.0.80510-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen that affects 170 million people worldwide. The HCV genome is an RNA molecule that is approximately 9.6 kb in length and encodes a polyprotein that is cleaved proteolytically to generate at least 10 mature viral proteins. Recently, a new HCV protein named F has been described, which is synthesized as a result of a ribosomal frameshift. Little is known about the biological properties of this protein, but the possibility that the F protein may participate in HCV morphology or replication has been raised. In this work, the presence of functional constraints in the F protein was investigated. It was found that the rate of amino acid substitutions along the F protein was significantly higher than the rate of synonymous substitutions, and comparisons involving genes that represented independent phylogenetic lineages yielded very different divergence/conservation patterns. The distribution of stop codons in the F protein across all HCV genotypes was also investigated; genotypes 2 and 3 were found to have more stop codons than genotype 1. The results of this work suggest strongly that the pattern of divergence in the F protein is not affected by functional constraints.
Collapse
Affiliation(s)
- Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Fernando Lopez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Lilia López
- Cátedra de Hemoterapia, Facultad de Medicina, Av. Italia s/n, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Silvia Vasquez
- Instituto de Investigaciones Clínicas, Facultad de Medicina 'San Fernando', Universidad Nacional Mayor de San Marcos, Parque de la Medicina, Avenida Grau Cuadra 13 s/n, Lima 01, Peru
| | - Laura García-Aguirre
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ausberto Chunga
- Servicio de Inmunología, Hospital Nacional Edgardo Rebagliati Martins HNERN, Domingo Cueto s/n, Jesús María, Lima 11, Peru
| |
Collapse
|
33
|
Lu L, Ching KZ, de Paula VS, Nakano T, Siegl G, Weitz M, Robertson BH. Characterization of the complete genomic sequence of genotype II hepatitis A virus (CF53/Berne isolate). J Gen Virol 2004; 85:2943-2952. [PMID: 15448357 DOI: 10.1099/vir.0.80304-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The complete genomic sequence of hepatitis A virus (HAV) CF53/Berne strain was determined. Pairwise comparison with other complete HAV genomic sequences demonstrated that the CF53/Berne isolate is most closely related to the single genotype VII strain, SLF88. This close relationship was confirmed by phylogenetic analyses of different genomic regions, and was most pronounced within the capsid region. These data indicated that CF53/Berne and SLF88 isolates are related more closely to each other than are subtypes IA and IB. A histogram of the genetic differences between HAV strains revealed four separate peaks. The distance values for CF53/Berne and SLF88 isolates fell within the peak that contained strains of the same subtype, showing that they should be subtypes within a single genotype. The complete genomic data indicated that genotypes II and VII should be considered a single genotype, based upon the complete VP1 sequence, and it is proposed that the CF53/Berne isolate be classified as genotype IIA and strain SLF88 as genotype IIB. The CF53/Berne isolate is cell-adapted, and therefore its sequence was compared to that of two other strains adapted to cell culture, HM-175/7 grown in MK-5 and GBM grown in FRhK-4 cells. Mutations found at nucleotides 3889, 4087 and 4222 that were associated with HAV attenuation and cell adaptation in HM175/7 and GMB strains were not present in the CF53/Berne strain. Deletions found in the 5'UTR and P3A regions of the CF53/Berne isolate that are common to cell-adapted HAV isolates were identified, however.
Collapse
Affiliation(s)
- Ling Lu
- Laboratory Branch, Division of Viral Hepatitis, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS C12, Atlanta, GA 30333, USA
| | - Karen Z Ching
- Laboratory Branch, Division of Viral Hepatitis, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS C12, Atlanta, GA 30333, USA
| | - Vanessa Salete de Paula
- Laboratory Branch, Division of Viral Hepatitis, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS C12, Atlanta, GA 30333, USA
| | - Tatsunori Nakano
- Laboratory Branch, Division of Viral Hepatitis, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS C12, Atlanta, GA 30333, USA
| | - Gunter Siegl
- Institut für Klinische Mikrobiologie und Immunologie, St Gallen, Switzerland
| | - Manfred Weitz
- Institut für Klinische Mikrobiologie und Immunologie, St Gallen, Switzerland
| | - Betty H Robertson
- Laboratory Branch, Division of Viral Hepatitis, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS C12, Atlanta, GA 30333, USA
| |
Collapse
|
34
|
Moya A, Holmes EC, González-Candelas F. The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol 2004; 2:279-288. [PMID: 15031727 PMCID: PMC7096949 DOI: 10.1038/nrmicro863] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA viruses are ubiquitous intracellular parasites that are responsible for many emerging diseases, including AIDS and SARS. Here, we discuss the principal mechanisms of RNA virus evolution and highlight areas where future research is required. The rapidity of sequence change in RNA viruses means that they are useful experimental models for the study of evolution in general and it enables us to watch them change in 'real time', and retrace the spread through populations with molecular phylogenies. An understanding of the mechanisms of RNA virus sequence change is also crucial to predicting important aspects of their emergence and long-term evolution.
Collapse
Affiliation(s)
- Andrés Moya
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Apartado Postal 22085, 46071 Valencia, Spain.
| | | | | |
Collapse
|
35
|
Colina R, Casane D, Vasquez S, García-Aguirre L, Chunga A, Romero H, Khan B, Cristina J. Evidence of intratypic recombination in natural populations of hepatitis C virus. J Gen Virol 2004; 85:31-37. [PMID: 14718617 DOI: 10.1099/vir.0.19472-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis C virus (HCV) has high genomic variability and, since its discovery, at least six different types and an increasing number of subtypes have been reported. Genotype 1 is the most prevalent genotype found in South America. In the present study, three different genomic regions (5'UTR, core and NS5B) of four HCV strains isolated from Peruvian patients were sequenced in order to investigate the congruence of HCV genotyping for these three genomic regions. Phylogenetic analysis using 5'UTR-core sequences found strain PE22 to be related to subtype 1b. However, the same analysis using the NS5B region found it to be related to subtype 1a. To test the possibility of genetic recombination, phylogenetic studies were carried out, revealing that a crossover event had taken place in the NS5B protein. We discuss the consequences of this observation on HCV genotype classification, laboratory diagnosis and treatment of HCV infection.
Collapse
Affiliation(s)
- Rodney Colina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Didier Casane
- Populations, Génétique et Evolution, CNRS, 91198 Gif-sur-Yvette, France
| | - Silvia Vasquez
- Laboratorio de Biología Molecular, Centro Nuclear RACSO, Instituto Peruano de Energía Nuclear IPEN, Av. Canadá 1470, San Borja, Apartado 1687, Lima 41, Peru
| | - Laura García-Aguirre
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ausberto Chunga
- Servicio de Inmunología, Hospital Nacional Edgardo Rebagliati Martins HNERN, Domingo Cueto s/n, Jesús María, Lima 11, Peru
| | - Héctor Romero
- Laboratorio de Organización y Evolución del Genoma. Instituto de Biología. Facultad de Ciencias. Iguá 4225, 11400 Montevideo, Uruguay
| | - Baldip Khan
- Division of Human Health, International Atomic Energy Agency, Wagramerstrasse 5, 1400 Vienna, Austria
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
36
|
Costa-Mattioli M, Napoli AD, Ferré V, Billaudel S, Perez-Bercoff R, Cristina J. Genetic variability of hepatitis A virus. J Gen Virol 2004; 84:3191-3201. [PMID: 14645901 DOI: 10.1099/vir.0.19532-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the molecular biology of hepatitis A virus (HAV) has increased exponentially since its identification. HAV exploits all known mechanisms of genetic variation to ensure survival, including mutation and genetic recombination. HAV has been characterized by the emergence of different genotypes, three human antigenic variants and only one major serotype. This paper reviews the genetic variability and molecular epidemiology of HAV. Its evolutionary mechanisms are described with particular emphasis on genetic recombination and HAV mutation rate. Genotypic classification methods are also discussed.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry, McGill University, McIntyre Medical Building, Montreal, Quebec, Canada H3G 1Y6
| | - Anna Di Napoli
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Virginie Ferré
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu 9, 44093 Nantes, France
| | - Sylviane Billaudel
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu 9, 44093 Nantes, France
| | - Raul Perez-Bercoff
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Juan Cristina
- Departamento de Técnicas Nucleares Aplicadas, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| |
Collapse
|