1
|
Zhang Z, Guo K, Chu X, Liu M, Du C, Hu Z, Wang X. Development and evaluation of a test strip for the rapid detection of antibody against equine infectious anemia virus. Appl Microbiol Biotechnol 2024; 108:85. [PMID: 38189948 PMCID: PMC10774152 DOI: 10.1007/s00253-023-12980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Equine infectious anemia (EIA) is a contagious disease of horses caused by the equine infectious anemia virus (EIAV). The clinical signs at the acute phase include intermittent high fever, thrombocytopenia, hemorrhage, edema, and anemia. The clinical signs at chronic and relapsing subclinical levels include emaciation and progressive weakness. Surviving horses become lifelong carriers because of the integration of the viral genome into that of the host, and these horses can produce and transmit the virus to other animals. This increases the difficulty of imposing practical control measures to prevent epidemics of this disease. Serological tests measuring the antibodies in equine sera are considered to be a reliable tool for the long-term monitoring of EIA. However, the standard serological tests for EIV either have low sensitivity (e.g., agar gel immunodiffusion test, AGID) or are time consuming to perform (e.g., ELISA and western blotting). The development of a rapid and simple method for detecting the disease is therefore critical to control the spread of EIA. In this study, we designed and developed a colloidal gold immunochromatographic (GICG) test strip to detect antibodies against EIAV based on the double-antigen sandwich. Both the p26 and gp45 proteins were used as the capture antigens, which may help to improve the positive detection rate of the strip. We found that the sensitivity of the test strip was 8 to 16 times higher than those of two commercially available ELISA tests and 128 to 256 times higher than AGID, but 8 to 16 times lower than that of western blotting. The strip has good specificity and stability. When serum samples from experimental horses immunized with the attenuated EIAV vaccine (n = 31) were tested, the results of the test strip showed 100% coincidence with those from NECVB-cELISA and 70.97% with AGID. When testing clinical serum samples (n = 1014), the test strip surprisingly provided greater sensitivity and a higher number of "true positive" results than other techniques. Therefore, we believe that the GICG test strip has demonstrated great potential in the field trials as a simple and effective tool for the detection of antibodies against EIAV. KEY POINTS: • A colloidal gold immunochromatographic (GICG) fast test strip was developed with good specificity, sensitivity, stability, and repeatability • The test strip can be used in point-of-care testing for the primary screening of EIAV antibodies • Both the p26 and gp45 proteins were used as the capture antigens, giving a high positive detection rate in the testing of experimentally infected animal and field samples.
Collapse
Affiliation(s)
- Zenan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kui Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyu Chu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, China
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingru Liu
- Shenzhen Lvshiyuan Biotechnology Co., Shenzhen, China
| | - Cheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhe Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
2
|
Câmara RJF, Bueno BL, Resende CF, Balasuriya UBR, Sakamoto SM, dos Reis JKP. Viral Diseases that Affect Donkeys and Mules. Animals (Basel) 2020; 10:ani10122203. [PMID: 33255568 PMCID: PMC7760297 DOI: 10.3390/ani10122203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Donkeys have been neglected and threatened by abandonment, indiscriminate slaughter, and a lack of proper sanitary management. They are often treated as “small horses.” However, donkeys and horses have significant genetic, physiological, and behavioral differences. Specific knowledge about viral infectious diseases that affect donkeys and mules is important to mitigate disease outbreaks. Thus, the purpose of this review is to provide a brief update on viral diseases of donkeys and mules and ways to prevent their spread. Abstract Donkeys (Equus asinus) and mules represent approximately 50% of the entire domestic equine herd in the world and play an essential role in the lives of thousands of people, primarily in developing countries. Despite their importance, donkeys are currently a neglected and threatened species due to abandonment, indiscriminate slaughter, and a lack of proper sanitary management. Specific knowledge about infectious viral diseases that affect this group of Equidae is still limited. In many cases, donkeys and mules are treated like horses, with the physiological differences between these species usually not taken into account. Most infectious diseases that affect the Equidae family are exclusive to the family, and they have a tremendous economic impact on the equine industry. However, some viruses may cross the species barrier and affect humans, representing an imminent risk to public health. Nevertheless, even with such importance, most studies are conducted on horses (Equus caballus), and there is little comparative information on infection in donkeys and mules. Therefore, the objective of this article is to provide a brief update on viruses that affect donkeys and mules, thereby compromising their performance and well-being. These diseases may put them at risk of extinction in some parts of the world due to neglect and the precarious conditions they live in and may ultimately endanger other species’ health and humans.
Collapse
Affiliation(s)
- Rebeca Jéssica Falcão Câmara
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Bruna Lopes Bueno
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Cláudia Fideles Resende
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, River Rd, Room 1043, Baton Rouge, LA 70803, USA;
| | - Sidnei Miyoshi Sakamoto
- Laboratório Multidisciplinar do Centro de Ciências Biológicas e da Saúde, Departamento de Ciências da Saúde (DCS), Universidade Federal Rural do Semi-Árido, Rio Grande do Norte 59625-900, Brazil;
| | - Jenner Karlisson Pimenta dos Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
- Correspondence: ; Tel.: +55-31-3409-2100
| |
Collapse
|
3
|
Cook SJ, Li G, Zheng Y, Willand ZA, Issel CJ, Cook RF. Molecular Characterization of the Major Open Reading Frames (ORFs) and Enhancer Elements From Four Geographically Distinct North American Equine Infectious Anemia Virus (EIAV) Isolates. J Equine Vet Sci 2019; 85:102852. [PMID: 31952638 DOI: 10.1016/j.jevs.2019.102852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/01/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
Although the equine lentivirus (equine infectious anemia virus [EIAV]) poses a major threat to equid populations throughout most regions of the world, detailed knowledge concerning its molecular epidemiology is still in its infancy. Such information is important because the few studies conducted to date suggest there is extensive genetic variation between viral isolates that if confirmed has significant implications for future vaccine design and development of newer diagnostic procedures. Here, we avoid potential assembly artifacts inherent in composite sequencing techniques by using long-range PCR in conjunction with next-generation sequencing for the rapid molecular characterization of all major open reading frames (ORFs) and known transcription factor binding motifs within the long terminal repeats (LTRs) of four North American EIAV isolates from Pennsylvania (EIAVPA), Tennessee (EIAVTN), North Carolina (EIAVNC), and Florida (EIAVFL). These were compared with complete published EIAV field strain genomic sequences from Asia (EIAVLIA, EIAVMIY), Europe (EIAVIRE), and North America (EIAVWY) plus EIAVUK a laboratory variant of EIAVWY. Phylogenetic analysis using the long-range PCR products suggested all the New World EIAV isolates comprised a single monophyletic group associated with EIAVIRE. This is distinct from the Asian isolates and so consistent with known historical details concerning the reintroduction of equids into North America by European settlers. Nonetheless nucleotide sequence identity for example between EIAVPA and EIAVTN, EIAVNC, EIAVFL, EIAVWY, EIAVUK plus EIAVIRE was limited to 84.6%, 81.0%, 82.1%, 80.4%, 80.1%, and 77.6%, respectively, with some of these values being not too dissimilar to those between EIAVPA and EIAVLIA or EIAVMIY at 78.0% and 75.4%, respectively. Overall, these results suggest substantial genetic diversity exists even within North American EIAV isolates. Comparative alignment of predicted amino acid sequences from all strains provides increased understanding concerning the extent of permitted substitutions in each viral ORF and known transcriptional LTR control elements.
Collapse
Affiliation(s)
- Sheila J Cook
- Department of Veterinary Science, Maxwell-Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | - Ganwu Li
- NGS Unit, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Ying Zheng
- NGS Unit, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Zachary A Willand
- Department of Veterinary Science, Maxwell-Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | - Charles J Issel
- Department of Veterinary Science, Maxwell-Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | - R Frank Cook
- Department of Veterinary Science, Maxwell-Gluck Equine Research Center, University of Kentucky, Lexington, KY.
| |
Collapse
|
4
|
Cook RF, Barrandeguy M, Lee PYA, Tsai CF, Shen YH, Tsai YL, Chang HFG, Wang HTT, Balasuriya UBR. Rapid detection of equine infectious anaemia virus nucleic acid by insulated isothermal RT-PCR assay to aid diagnosis under field conditions. Equine Vet J 2018; 51:489-494. [PMID: 30353944 DOI: 10.1111/evj.13032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/24/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Control of equine infectious anaemia (EIA) currently depends on serological diagnosis of infected equids. However, recently infected equids may not produce detectable anti-EIAV antibodies up to 157 days post infection and so present a high transmission risk. Therefore, direct nucleic acid detection methods are urgently needed to improve EIAV surveillance and management programs in counties where the disease is endemic. OBJECTIVES To evaluate a field-deployable, reverse transcription-insulated isothermal PCR (RT-iiPCR) assay targeting the conserved 5' untranslated region (5' UTR)/exon 1 of the tat gene of EIAV. STUDY DESIGN The analytical and clinical performance of the newly developed EIAV RT-iiPCR was evaluated by comparison with a EIAV real-time RT-PCR (RT-qPCR) along with the AGID test. METHODS Analytical sensitivity was determined using in vitro transcribed RNA containing the target area of the 5' UTR/tat gene and samples from two EIAV-positive horses. Specificity was verified using nine common equine viruses. Clinical performance was evaluated by comparison with EIAV RT-qPCR and AGID using samples derived from 196 inapparent EIAV carrier horses. RESULTS EIAV RT-iiPCR did not react with other commonly encountered equine viruses and had equivalent sensitivity (95% detection limit of eight genome equivalents), with a concordance of 95.41% to conventional EIAV RT-qPCR. However, the RT-qPCR and RT-iiPCR had sensitivities of 43.75 and 50.00%, respectively, when compared to the AGID test. MAIN LIMITATIONS Low viral loads commonly encountered in inapparent EIAV carriers may limit the diagnostic sensitivity of RT-PCR-based tests. CONCLUSIONS Although EIAV RT-iiPCR is not sufficiently sensitive to replace the current AGID test, it can augment control efforts by identifying recently exposed or "serologically silent" equids, particularly as the latter often represent a significant transmission risk because of high viral loads. Furthermore, the relatively low cost and field-deployable design enable utilisation of EIAV RT-iiPCR even in remote regions.
Collapse
Affiliation(s)
- R F Cook
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - M Barrandeguy
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología, Argentina
| | - P-Y A Lee
- GeneReach USA, Lexington, Massachusetts, USA
| | - C-F Tsai
- GeneReach USA, Lexington, Massachusetts, USA
| | - Y-H Shen
- GeneReach USA, Lexington, Massachusetts, USA
| | - Y-L Tsai
- GeneReach USA, Lexington, Massachusetts, USA
| | - H-F G Chang
- GeneReach USA, Lexington, Massachusetts, USA
| | - H-T T Wang
- GeneReach USA, Lexington, Massachusetts, USA
| | - U B R Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
5
|
Amino acid mutations in the env gp90 protein that modify N-linked glycosylation of the Chinese EIAV vaccine strain enhance resistance to neutralizing antibodies. Virus Genes 2016; 52:814-822. [PMID: 27572122 DOI: 10.1007/s11262-016-1382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/12/2016] [Indexed: 02/05/2023]
Abstract
The Chinese EIAV vaccine is an attenuated live virus vaccine obtained by serial passage of a virulent horse isolate (EIAVL) in donkeys (EIAVD) and, subsequently, in donkey cells in vitro. In this study, we compare the env gene of the original horse virulent virus (EIAVL) with attenuated strains serially passaged in donkey MDM (EIAVDLV) and donkey dermal cells (EIAVFDDV). Genetic comparisons among parental and attenuated strains found that vaccine strains contained amino acid substitutions/deletions in gp90 that resulted in a loss of three potential N-linked glycosylation sites, designated g5, g9, and g10. To investigate the biological significance of these changes, reverse-mutated viruses were constructed in the backbone of the EIAVFDDV infectious molecular clone (pLGFD3). The resulting virus stocks were characterized for replication efficiency in donkey dermal cells and donkey MDM, and were tested for sensitivity to neutralization using sera from two ponies experimentally infected with EIAVFDDV. Results clearly show that these mutations generated by site-directed mutagenesis resulted in cloned viruses with enhanced resistance to serum neutralizing antibodies that were also able to recognize parental viruses. This study indicates that these mutations played an important role in the attenuation of the EIAV vaccine strains.
Collapse
|
6
|
Evolution of equine infectious anaemia in naturally infected mules with different serological reactivity patterns prior and after immune suppression. Vet Microbiol 2016; 189:15-23. [PMID: 27259822 DOI: 10.1016/j.vetmic.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 11/21/2022]
Abstract
Information on equine infectious anaemia (EIA) in mules, including those with an equivocal reaction in agar gel immunodiffusion test (AGIDT), is scarce. For this, a study was conducted to evaluate the clinical, viral loads and pathological findings of two groups of naturally infected asymptomatic mules, respectively with a negative/equivocal and positive AGIDT reactivity, which were subjected to pharmacological immune suppression (IS). A non-infected control was included in the study that remained negative during the observation period. Throughout the whole study, even repeated episodes of recrudescence of EIA were observed in 9 infected mules, independently from their AGIDT reactivity. These events were generally characterised by mild, transient alterations, typical of the EIA acute form represented by hyperthermia and thrombocytopenia, in concomitance with viral RNA (vRNA) peaks that were higher in the Post-IS period, reaching values similar to those of horses during the clinical acute phase of EIA. Total tissue viral nucleic acid loads were greatest in animals with the major vRNA activity and in particular in those with negative/equivocal AGIDT reactivity. vRNA replication levels were around 10-1000 times lower than those reported in horses, with the animals still presenting typical alterations of EIA reactivation. Macroscopic lesions were absent in all the infected animals while histological alterations were characterised by lymphomonocyte infiltrates and moderate hemosiderosis in the cytoplasm of macrophages. On the basis of the above results, even mules with an equivocal/negative AGIDT reaction may act as EIAV reservoirs. Moreover, such animals could escape detection due to the low AGIDT sensitivity and therefore contribute to the maintenance and spread of the infection.
Collapse
|
7
|
Duan L, Du J, Wang X, Zhou J, Wang X, Liu X. Structural and functional characterization of EIAV gp45 fusion peptide proximal region and asparagine-rich layer. Virology 2016; 491:64-72. [PMID: 26874586 DOI: 10.1016/j.virol.2016.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Equine infectious anaemia virus (EIAV) and human immunodeficiency virus (HIV) are members of the lentiviral genus. Similar to HIV gp41, EIAV gp45 is a fusogenic protein that mediates fusion between the viral particle and the host cell membrane. The crystal structure of gp45 reported reveals a different conformation in the here that includes the fusion peptide proximal region (FPPR) and neighboring asparagine-rich layer compared with previous HIV-1 gp41 structures. A complicated hydrogen-bond network containing a cluster of solvent molecules appears to be critical for the stability of the gp45 helical bundle. Interestingly, viral replication was relatively unaffected by site-directed mutagenesis of EIAV, in striking contrast to that of HIV-1. Based on these observations, we speculate that EIAV is more adaptable to emergent mutations, which might be important for the evolution of EIAV as a quasi-species, and could potentially contribute to the success of the EIAV vaccine.
Collapse
Affiliation(s)
- Liangwei Duan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiansen Du
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuefeng Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jianhua Zhou
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xiaojun Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Liu Q, Ma J, Wang XF, Xiao F, Li LJ, Zhang JE, Lin YZ, Du C, He XJ, Wang X, Zhou JH. Infection with equine infectious anemia virus vaccine strain EIAVDLV121 causes no visible histopathological lesions in target organs in association with restricted viral replication and unique cytokine response. Vet Immunol Immunopathol 2016; 170:30-40. [PMID: 26832985 PMCID: PMC7112881 DOI: 10.1016/j.vetimm.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 11/10/2015] [Accepted: 01/20/2016] [Indexed: 11/06/2022]
Abstract
The live equine infectious anemia virus (EIAV) vaccine strain EIAVDLV121 was developed by in vitro attenuation of a virulent strain, EIAVLN40, in the 1970s, and it has been demonstrated to induce protective immunity under laboratory and natural EIAV infection conditions. The detailed biological features of this attenuated virus remain to be further investigated. Experimental inoculation with EIAVDLV121 did not result in clinical symptoms even with immunosuppressive treatment in our previous studies. Here, we further investigated whether the replication of the vaccine strain EIAVDLV121 in experimentally infected horses causes histopathological lesions to develop in the targeted organs. Both the lungs and the spleen have been demonstrated to support EIAV replication. By evaluating the gross macroscopic and histological changes, we found that EIAVDLV121 did not cause detectable histopathological lesions and that it replicated several hundred times more slowly than its parental virulent strain, EIAVLN40, in tissues. Immunochemical assays of these tissues indicated that the primary target cells of EIAVDLV121 were monocytes/macrophages, but that EIAVLN40 also infected alveolar epithelial cells and vascular endothelial cells. In addition, both of these viral strains promoted the up- and down-regulation of the expression of various cytokines and chemokines, implicating the potential involvement of these cellular factors in the pathological outcomes of EIAV infection and host immune responses. Taken together, these results demonstrate that the EIAV vaccine strain does not cause obvious histopathological lesions or clinical symptoms and that it induces a unique cytokine response profile. These features are considered essential for EIAVDLV121 to function as an effective live vaccine.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Fei Xiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Li-Jia Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jiao-Er Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Harbin Pharmaceutical Group Biovaccine Company, Harbin 150069, China.
| |
Collapse
|
9
|
Craigo JK, Ezzelarab C, Cook SJ, Liu C, Horohov D, Issel CJ, Montelaro RC. Protective efficacy of centralized and polyvalent envelope immunogens in an attenuated equine lentivirus vaccine. PLoS Pathog 2015; 11:e1004610. [PMID: 25569288 PMCID: PMC4287611 DOI: 10.1371/journal.ppat.1004610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022] Open
Abstract
Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data. We previously reported on a live-attenuated (attenuated) equine infectious anemia (EIAV) virus vaccine, which provides 100% protection from disease after virulent, homologous, virus challenge. Further, protective efficacy demonstrated a significant, inverse, linear relationship between EIAV Env divergence and protection from disease when vaccinates were challenged with viral strains of increasing Env divergence from the vaccine strain Env. Here, we sought to comprehensively examine the protective efficacy of centralized immunogens in our attenuated vaccine platform. We developed, constructed, and extensively tested a consensus Env, which in a virulent proviral backbone generated a fully replication-competent pathogenic virus, and compared this consensus Env to an ancestral Env in our attenuated proviral backbone. A polyvalent attenuated vaccine was established for comparison to the centralized vaccines. Additionally, an engineered quasispecies challenge model was created for rigorous assessment of protective efficacy. Twenty-four EIAV-naïve animals were vaccinated and challenged along with six-control animals six months post-second inoculation. Pre-challenge data indicated the consensus Env was more broadly immunogenic than the Env of the other attenuated vaccines. However, challenge data demonstrated a significant increase in protective efficacy of the polyvalent vaccine. These findings reveal, for the first time, a consensus Env immunogen that generated a fully-functional, replication-competent lentivirus, which when experimentally evaluated, demonstrated broader immunogenicity that does not equate to higher protective efficacy.
Collapse
Affiliation(s)
- Jodi K. Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Corin Ezzelarab
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sheila J. Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chong Liu
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - David Horohov
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Charles J. Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Issel CJ, Cook RF, Mealey RH, Horohov DW. Equine infectious anemia in 2014: live with it or eradicate it? Vet Clin North Am Equine Pract 2014; 30:561-77. [PMID: 25441114 DOI: 10.1016/j.cveq.2014.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In the absence of an effective vaccine, the success of the test and removal approach for the control of equine infectious anemia (EIA) cannot be overstated, at least in those areas where testing has been traditionally routine. This article addresses 4 main aspects: what has been learned about EIA virus, host control of its replication, and inapparent carriers; international status regarding the control of EIA; diagnostic and laboratory investigation; and reducing the spread of blood-borne infections by veterinarians. An attempt is made to put these issues into practical contemporary perspectives for the equine practitioner.
Collapse
Affiliation(s)
- Charles J Issel
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - R Frank Cook
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, PO Box 647040, Pullman, WA 99164-7040, USA
| | - David W Horohov
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
11
|
Ma J, Wang SS, Lin YZ, Liu HF, Liu Q, Wei HM, Wang XF, Wang YH, Du C, Kong XG, Zhou JH, Wang X. Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain. Vet Res 2014; 45:82. [PMID: 25106750 PMCID: PMC4283155 DOI: 10.1186/s13567-014-0082-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 07/23/2014] [Indexed: 11/10/2022] Open
Abstract
The Chinese attenuated equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. Given that the induction of immune protection results from the interactions between viruses and hosts, a better understanding of the characteristics of vaccine strain infection and host responses would be useful for elucidating the mechanism of the induction of immune protection by the Chinese attenuated EIAV strain. In this study, we demonstrate in equine monocyte-derived macrophages (eMDM) that EIAVFDDV13, a Chinese attenuated EIAV strain, induced a strong resistance to subsequent infection by a pathogenic strain, EIAVUK3. Further experiments indicate that the expression of the soluble EIAV receptor sELR1, Toll-like receptor 3 (TLR3) and interferon β (IFNβ) was up-regulated in eMDM infected with EIAVFDDV13 compared with eMDM infected with EIAVUK3. Stimulating eMDM with poly I:C resulted in similar resistance to EIAV infection as induced by EIAVFDDV13 and was correlated with enhanced TLR3, sELR1 and IFNβ expression. The knock down of TLR3 mRNA significantly impaired poly I:C-stimulated resistance to EIAV, greatly reducing the expression of sELR1 and IFNβ and lowered the level of infection resistance induced by EIAVFDDV13. These results indicate that the induction of restraining infection by EIAVFDDV13 in macrophages is partially mediated through the up-regulated expression of the soluble viral receptor and IFNβ, and that the TLR3 pathway activation plays an important role in the development of an EIAV-resistant intracellular environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China.
| | | |
Collapse
|
12
|
Structural and biochemical insights into the V/I505T mutation found in the EIAV gp45 vaccine strain. Retrovirology 2014; 11:26. [PMID: 24656154 PMCID: PMC3997929 DOI: 10.1186/1742-4690-11-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The equine infectious anemia virus (EIAV) is a lentivirus of the Retrovirus family, which causes persistent infection in horses often characterized by recurrent episodes of high fever. It has a similar morphology and life cycle to the human immunodeficiency virus (HIV). Its transmembrane glycoprotein, gp45 (analogous to gp41 in HIV), mediates membrane fusion during the infection. However, the post-fusion conformation of EIAV gp45 has not yet been determined. EIAV is the first member of the lentiviruses for which an effective vaccine has been successfully developed. The attenuated vaccine strain, FDDV, has been produced from a pathogenic strain by a series of passages in donkey dermal cells. We have previously reported that a V/I505T mutation in gp45, in combination with other mutations in gp90, may potentially contribute to the success of the vaccine strain. To this end, we now report on our structural and biochemical studies of the gp45 protein from both wide type and vaccine strain, providing a valuable structural model for the advancement of the EIAV vaccine. RESULTS We resolved crystal structures of the ecto-domain of gp45 from both the wild-type EIAV and the vaccine strain FDDV. We found that the V/I505T mutation in gp45 was located in a highly conserved d position within the heptad repeat, which protruded into a 3-fold symmetry axis within the six-helix bundle. Our crystal structure analyses revealed a shift of a hydrophobic to hydrophilic interaction due to this specific mutation, and further biochemical and virological studies confirmed that the mutation reduced the overall stability of the six-helix bundle in post-fusion conformation. Moreover, we found that altering the temperatures drastically affected the viral infectivity. CONCLUSIONS Our high-resolution crystal structures of gp45 exhibited high conservation between the gp45/gp41 structures of lentiviruses. In addition, a hydrophobic to hydrophilic interaction change in the EIAV vaccine strain was found to modulate the stability and thermal-sensitivity of the overall gp45 structure. Our observations suggest that lowering the stability of the six-helix bundle (post-fusion), which may stabilizes the pre-fusion conformation, might be one of the reasons of acquired dominance for FDDV in viral attenuation.
Collapse
|
13
|
Cook R, Leroux C, Issel C. Equine infectious anemia and equine infectious anemia virus in 2013: A review. Vet Microbiol 2013; 167:181-204. [DOI: 10.1016/j.vetmic.2013.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|
14
|
Is a diagnostic system based exclusively on agar gel immunodiffusion adequate for controlling the spread of equine infectious anaemia? Vet Microbiol 2013; 165:123-34. [DOI: 10.1016/j.vetmic.2013.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/21/2022]
|
15
|
Capomaccio S, Willand Z, Cook S, Issel C, Santos E, Reis J, Cook R. Detection, molecular characterization and phylogenetic analysis of full-length equine infectious anemia (EIAV) gag genes isolated from Shackleford Banks wild horses. Vet Microbiol 2012; 157:320-32. [DOI: 10.1016/j.vetmic.2012.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/13/2011] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
|
16
|
Ma J, Shi N, Jiang CG, Lin YZ, Wang XF, Wang S, Lv XL, Zhao LP, Shao YM, Kong XG, Zhou JH, Shen RX. A proviral derivative from a reference attenuated EIAV vaccine strain failed to elicit protective immunity. Virology 2011; 410:96-106. [DOI: 10.1016/j.virol.2010.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 08/31/2010] [Accepted: 10/22/2010] [Indexed: 11/25/2022]
|
17
|
Molecular detection, epidemiology, and genetic characterization of novel European field isolates of equine infectious anemia virus. J Clin Microbiol 2010; 49:27-33. [PMID: 21084503 DOI: 10.1128/jcm.01311-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of molecular diagnostic techniques along with nucleotide sequence determination to permit contemporary phylogenetic analysis of European field isolates of equine infectious anemia virus (EIAV) has not been widely reported. As a result, of extensive testing instigated following the 2006 outbreak of equine infectious anemia in Italy, 24 farms with a history of exposure to this disease were included in this study. New PCR-based methods were developed, which, especially in the case of DNA preparations from peripheral blood cells, showed excellent correlation with OIE-approved agar gel immunodiffusion (AGID) tests for identifying EIAV-infected animals. In contrast, the OIE-recommended oligonucleotide primers for EIAV failed to react with any of the Italian isolates. Similar results were also obtained with samples from four Romanian farms. In addition, for the first time complete characterization of gag genes from five Italian isolates and one Romanian isolate has been achieved, along with acquisition of extensive sequence information (86% of the total gag gene) from four additional EIAV isolates (one Italian and three Romanian). Furthermore, in another 23 cases we accomplished partial characterization of gag gene sequences in the region encoding the viral matrix protein. Analysis of this information suggested that most Italian isolates were geographically restricted, somewhat reminiscent of the "clades" described for human immunodeficiency virus type 1 (HIV-1). Collectively this represents the most comprehensive genetic study of European EIAV isolates conducted to date.
Collapse
|
18
|
Han X, Zou J, Wang X, Guo W, Huo G, Shen R, Xiang W. Amino acid mutations in the env gp90 protein that modify N-linked glycosylation of the Chinese EIAV vaccine strain enhance resistance to neutralizing antibodies. Viral Immunol 2010; 23:531-9. [PMID: 20883167 DOI: 10.1089/vim.2009.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Chinese EIAV vaccine is an attenuated live-virus vaccine obtained by serial passage of a virulent horse isolate (EIAV(L)) in donkeys (EIAV(D)), and subsequently in donkey cells in vitro. In this study, we compare the env gene of the original horse virulent virus (EIAV(L)) with attenuated strains serially passaged in donkey MDM (EIAV(DLV)), and donkey dermal cells (EIAV(FDDV)). Genetic comparisons among parental and attenuated strains found that vaccine strains contained amino acid substitutions/deletions in gp90 that resulted in a loss of three potential N-linked glycosylation sites, designated g5, g9, and g10. To investigate the biological significance of these changes, reverse-mutated viruses were constructed in the backbone of the EIAV(FDDV) infectious molecular clone (pLGFD3). The resulting virus stocks were characterized for replication efficiency in donkey dermal cells and donkey MDM, and were tested for sensitivity to neutralization using sera from two ponies experimentally infected with EIAV(FDDV). The results clearly show that these mutations generated by site-directed mutagenesis resulted in cloned viruses with enhanced resistance to serum-neutralizing antibodies that were also able to recognize parental viruses. The results of this study indicate that these mutations play an important role in the attenuation of the EIAV vaccine strains.
Collapse
Affiliation(s)
- Xiue Han
- Heilongjiang Dairy Industry Technical Development Center, Northeast Agricultural University, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Craigo JK, Barnes S, Zhang B, Cook SJ, Howe L, Issel CJ, Montelaro RC. An EIAV field isolate reveals much higher levels of subtype variability than currently reported for the equine lentivirus family. Retrovirology 2009; 6:95. [PMID: 19843328 PMCID: PMC2770520 DOI: 10.1186/1742-4690-6-95] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/20/2009] [Indexed: 11/16/2022] Open
Abstract
Background Equine infectious anemia virus (EIAV), a lentivirus that infects horses, has been utilized as an animal model for the study of HIV. Furthermore, the disease associated with the equine lentivirus poses a significant challenge to veterinary medicine around the world. As with all lentiviruses, EIAV has been shown to have a high propensity for genomic sequence and antigenic variation, especially in its envelope (Env) proteins. Recent studies have demonstrated Env variation to be a major determinant of vaccine efficacy, emphasizing the importance of defining natural variation among field isolates of EIAV. To date, however, published EIAV sequences have been reported only for cell-adapted strains of virus, predominantly derived from a single primary virus isolate, EIAVWyoming (EIAVWY). Results We present here the first characterization of the Env protein of a natural primary isolate from Pennsylvania (EIAVPA) since the widely utilized and referenced EIAVWY strain. The data demonstrated that the level of EIAVPA Env amino acid sequence variation, approximately 40% as compared to EIAVWY, is much greater than current perceptions or published reports of natural EIAV variation between field isolates. This variation did not appear to give rise to changes in the predicted secondary structure of the proteins. While the EIAVPA Env was serologically cross reactive with the Env proteins of the cell-adapted reference strain, EIAVPV (derivative of EIAVWY), the two variant Envs were shown to lack any cross neutralization by immune serum from horses infected with the respective virus strains. Conclusion Taking into account the significance of serum neutralization to universal vaccine efficacy, these findings are crucial considerations towards successful EIAV vaccine development and the potential inclusion of field isolate Envs in vaccine candidates.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Vaccination reduces the viral load and the risk of transmission of Jembrana disease virus in Bali cattle. Virology 2009; 386:317-24. [PMID: 19261319 DOI: 10.1016/j.virol.2009.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 02/06/2023]
Abstract
The efficacy of a tissue-derived vaccine, which is currently used in Indonesia to control the spread of Jembrana disease in Bali cattle, was determined by quantifying the viral load in plasma following experimental infection with Jembrana disease virus. Virus transmission is most likely to occur during the acute phase of infection when viral titers are greater than 10(6) genomes/ml. Vaccinated cattle were found to have a 96% reduction in viral load above this threshold compared to control cattle. This would reduce the chance of virus transmission as the number of days above the threshold in the vaccinated cattle was reduced by 33%. Viral loads at the onset and resolution of fever were significantly lower in the vaccinated cattle and immune function was maintained with the development of antibody responses to Env proteins within 10-24 days post challenge. There was, however, no significant reduction in the duration of the febrile period in vaccinated animals. The duration and severity of clinical parameters were found to be variable within each group of cattle but the quantification of viral load revealed the benefits of vaccinating to reduce the risk of virus transmission as well as to ameliorate disease.
Collapse
|
21
|
Desport M, Ditcham WGF, Lewis JR, McNab TJ, Stewart ME, Hartaningsih N, Wilcox GE. Analysis of Jembrana disease virus replication dynamics in vivo reveals strain variation and atypical responses to infection. Virology 2009; 386:310-6. [PMID: 19230948 DOI: 10.1016/j.virol.2009.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Jembrana disease virus (JDV) is an acute lentiviral infection of Bali cattle in Indonesia. Data generated during a series of cattle infection experiments was examined and significant differences were identified in the mean plasma viral load on the first and second days of the febrile response in cattle infected with JDV(TAB/87) compared to those infected with JDV(PUL/01). The peak and total viral loads >or=10(6) genome copies/ml during the acute stage of the disease were significantly higher in JDV(TAB/87) infected cattle. JDV(PUL/01) infected cattle developed peak rectal temperatures earlier than the JDV(TAB/87) cattle but there were no differences in the duration of the febrile responses observed for the 2 groups of animals. The plasma viremia was above 10(6) genome copies/ml for almost 3 days longer in JDV(TAB/87) compared to JDV(PUL/01) infected cattle. Atypical responses to infection occurred in approximately 15% of experimentally infected animals, characterized by reduced viral loads, lower or absent febrile responses and absence of p26-specific antibody responses. Most of these cattle developed normal Tm-specific antibody responses between 4-12 weeks post-infection.
Collapse
Affiliation(s)
- Moira Desport
- School of Veterinary and Biomedical Science, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Craigo JK, Zhang B, Barnes S, Tagmyer TL, Cook SJ, Issel CJ, Montelaro RC. Envelope variation as a primary determinant of lentiviral vaccine efficacy. Proc Natl Acad Sci U S A 2007; 104:15105-10. [PMID: 17846425 PMCID: PMC1986620 DOI: 10.1073/pnas.0706449104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lentiviral envelope antigenic variation and associated immune evasion are believed to present major obstacles to effective vaccine development. Although this perception is widely assumed by the scientific community, there is, to date, no rigorous experimental data assessing the effect of increasing levels of lentiviral Env variation on vaccine efficacy. It is our working hypothesis that Env is, in fact, a primary determinant of vaccine effectiveness. We previously reported that a successful experimental attenuated equine infectious anemia virus vaccine, derived by mutation of the viral S2 accessory gene, provided 100% protection from disease after virulent virus challenge. Here, we sought to comprehensively test our hypothesis by challenging vaccinated animals with proviral strains of defined, increasing Env variation, using variant envelope SU genes that arose naturally during experimental infection of ponies with equine infectious anemia virus. The reference attenuated vaccine combined with these variant Env challenge strains facilitated evaluation of the protection conferred by ancestral immunogens, because the Env of the attenuated vaccine is a direct ancestor to the variant proviral strain Envs. The results demonstrated that ancestral Env proteins did not impart broad levels of protection against challenge. Furthermore, the results displayed a significant inverse linear correlation of Env divergence and protection from disease. This study demonstrates potential obstacles to the use of single isolate ancestral Env immunogens. Finally, these findings reveal that relatively minor Env variation can pose a substantial challenge to lentiviral vaccine immunity, even when attenuated vaccines are used that, to date, achieve the highest levels of vaccine protection.
Collapse
Affiliation(s)
- Jodi K. Craigo
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Baoshan Zhang
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Shannon Barnes
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Tara L. Tagmyer
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Sheila J. Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516
| | - Charles J. Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516
| | - Ronald C. Montelaro
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
- To whom correspondence should be addressed at:
Department of Molecular Genetics and Biochemistry, W1144 Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261. E-mail:
| |
Collapse
|
23
|
Fagerness AJ, Flaherty MT, Perry ST, Jia B, Payne SL, Fuller FJ. The S2 accessory gene of equine infectious anemia virus is essential for expression of disease in ponies. Virology 2006; 349:22-30. [PMID: 16503341 DOI: 10.1016/j.virol.2005.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/12/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
Equine infectious anemia virus (EIAV) is a macrophage-tropic lentivirus that persistently infects horses and causes a disease that is characterized by periodic episodes of fever, thrombocytopenia, and viremia. EIAV encodes only four regulatory/accessory genes, (tat, rev, ttm, and S2) and is the least genetically complex of all known lentiviruses. We sought to determine the role of the EIAV S2 accessory gene of EIAV by introducing mutations that would prevent S2 expression on the p19/wenv17 infectious molecular clone. Virus derived from the p19/wenv17 molecular clone is highly virulent and routinely fatal when given in high doses (J. Virol. 72 (1998) 483). In contrast, an S2 deletion mutant on the p19/wenv17 background is unable to induce acute disease and plasma virus loads were reduced by 2.5 to 4.0 logs at 15 days post-infection. The S2 deleted virus failed to produce any detectable clinical signs during a 5-month observation period. These results demonstrate that S2 gene expression is essential for disease expression of EIAV.
Collapse
Affiliation(s)
- Angela J Fagerness
- Department of Public Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606-8401, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Liang H, He X, Shen RX, Shen T, Tong X, Ma Y, Xiang WH, Zhang XY, Shao YM. Combined amino acid mutations occurring in the envelope closely correlate with pathogenicity of EIAV. Arch Virol 2006; 151:1387-403. [PMID: 16502285 DOI: 10.1007/s00705-005-0718-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/29/2005] [Indexed: 11/26/2022]
Abstract
The Chinese equine infectious anemia virus (EIAV) donkey-leukocyte attenuated vaccine (DLV) provides a unique natural model system to study the attenuation mechanism and immunological control of lentivirus replication. Critical consensus mutations were identified between virulent Chinese EIAV strains and vaccine strains. Based on a full-length infectious clone of EIAV vaccine strain pLGFD3, two molecular clones, mFD5-4-7 and mFD7-2-11, were successfully constructed, in which 4 and 6 critical consensus mutations in the env gene of the vaccine strain were point-mutated to the wild-type sequence, respectively by an overlap PCR mutagenesis strategy. The infectivity, virulence, and pathogenesis of the constructed clones were investigated in vitro using a reverse transcriptase assay, an indirect immunofluorescence assay, observation of cytopathogenic effect, and virion observation as well as in vivo by inoculation of animals with the resulting infectious clones. The pathogenic symptoms in horses inoculated with mFD7-2-11 were more severe than those inoculated with mFD5-4-7, whereas no pathogenic symptoms were detected in animals inoculated with their parental clone pLGFD3 strain. The results indicate that the consensus mutation residues of the env region involved in this study play significant roles in the virulence and pathogenicity of EIAV. This will contribute to the elucidation of the attenuating and protective mechanisms of the Chinese EIAV vaccine.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Body Temperature
- Cell Line
- Cytopathogenic Effect, Viral
- Disease Models, Animal
- Equidae
- Equine Infectious Anemia/physiopathology
- Equine Infectious Anemia/virology
- Fluorescent Antibody Technique, Direct
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Genes, env
- Horses
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/pathogenicity
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Platelet Count
- Point Mutation
- Sequence Alignment
- Vaccines, Attenuated/genetics
- Viral Vaccines/genetics
- Virulence/genetics
Collapse
Affiliation(s)
- H Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cook RF, Cook SJ, Bolin PS, Howe LJ, Zhou W, Montelaro RC, Issel CJ. Genetic immunization with codon-optimized equine infectious anemia virus (EIAV) surface unit (SU) envelope protein gene sequences stimulates immune responses in ponies. Vet Microbiol 2005; 108:23-37. [PMID: 15885929 DOI: 10.1016/j.vetmic.2005.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
In the context of DNA vaccines the native equine infectious anemia virus (EIAV)-envelope gene has proven to be an extremely weak immunogen in horses probably because the RNA transcripts are poorly expressed owing to an unusual codon-usage bias, the possession of multiple RNA splice sites and potential adenosine-rich RNA instability elements. To overcome these problems a synthetic version of sequences encoding the EIAV surface unit (SU) envelope glycoprotein was produced (SYNSU) in which the codon-usage bias was modified to conform to that of highly expressed horse and human genes. In transfected COS-1 cell cultures, the steady state expression levels of SYNSU were at least 30-fold greater than equivalent native SU sequences. More importantly, EIAV-specific humoral and lymphocyte proliferation responses were induced in ponies immunized with a mammalian expression vector encoding SYNSU. However, these immunological responses were unable to confer protection against infection with a virulent EIAV strain.
Collapse
Affiliation(s)
- R Frank Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | | | | | |
Collapse
|