1
|
Contreras-Soto MB, Castro-Del Campo N, Chaidez C, Velázquez-García FE, González-Gómez JP, Martínez-Rodríguez CI, Gaxiola-Montoya J, Castro-Del Campo N. Ozone disinfection of treated wastewater for inactivation of Cryptosporidium parvum for agricultural irrigation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70002. [PMID: 39868813 DOI: 10.1002/wer.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 12/14/2024] [Indexed: 01/28/2025]
Abstract
The reliance on agriculture in many nations has increased the use of treated wastewater for irrigation. However, reclaimed water still poses health risks from resistant pathogens like Cryptosporidium spp. Ozone, a strong disinfectant, has been used in water treatment. This study assessed the microbiological quality of treated wastewater for irrigation and evaluated ozone effectiveness in inactivating C. parvum oocysts. All samples contained Cryptosporidium spp., with 163 to 850 oocysts 100 L-1, and 50% contained viable oocysts. When C. parvum was exposed to different ozone residual concentrations (0.1, 0.8, and 1.3 mg L-1), oocyst viability reduction of 73%, 85%, and 99% and infectivity of 0.8, 1.36, and 2 Log10 was achieved. The predicted values for infectious oocysts were 4.19, 3.64, and 3.27, representing absolute counts of infective oocysts after ozone treatment. These findings demonstrate ozone's effectiveness in inactivating C. parvum in treated wastewater, supporting its potential for safe water reuse. PRACTITIONER POINTS: All wastewater samples contained Cryptosporidium spp., with 163 to 850 oocysts per 100 L. Wastewater had 50% contained viable oocysts. Ozone concentrations (0.1, 0.8, 1.3 mg/l) achieved oocyst viability of 73.33%, 85.0%, and 99.4%, respectively. The predicted values for infectious oocysts were 4.19, 3.64, and 3.27, respectively for each ozone concentration.
Collapse
Affiliation(s)
- María B Contreras-Soto
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Nohemí Castro-Del Campo
- Laboratorio de Parasitología Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa (UAS), Culiacán, Sinaloa, Mexico
| | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Flavio E Velázquez-García
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Jean P González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Célida I Martínez-Rodríguez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| | - Joel Gaxiola-Montoya
- Laboratorio de Parasitología Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa (UAS), Culiacán, Sinaloa, Mexico
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico
| |
Collapse
|
2
|
Zhao W, Ye C, Li J, Yu X. Increased risk of antibiotic resistance in surface water due to global warming. ENVIRONMENTAL RESEARCH 2024; 263:120149. [PMID: 39414103 DOI: 10.1016/j.envres.2024.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
As the pace of global warming accelerates, so do the threats to human health, urgent priority among them being antibiotic-resistant infections. In the context of global warming, this review summarises the direct and indirect effects of rising surface water temperatures on the development of bacterial antibiotic resistance. First, the resistance of typical pathogens such as E. coli increased with average temperature. This is not only related to increased bacterial growth rate and horizontal gene transfer frequency at high temperatures but also heat shock responses and cumulative effects. Secondly, the acceleration of bacterial growth indirectly promotes antibiotic residues in surface water, which is conducive to the growth and spread of resistant bacteria. Furthermore, the cascading effects of global warming, including the release of nutrients into the water and the resulting increase of bacteria and algae, indirectly promote the improvement of resistance. Water treatment processes exposed to high temperatures also increase the risk of resistance in surface water. The fitness costs of antibiotic resistance under these dynamic conditions are also discussed, concluding the relationship between various factors and resistance persistence. It was expected to provide a comprehensive basis for mitigating antibiotic resistance in the face of global warming.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Jianguo Li
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China.
| |
Collapse
|
3
|
Zheng X, Zhong T, Zhao H, Huang F, Huang W, Hu L, Xia D, Tian S, Shu D, He C. MnO 2-based capacitive system enhances ozone inactivation of bacteria by disrupting cell membrane. WATER RESEARCH 2024; 256:121608. [PMID: 38657310 DOI: 10.1016/j.watres.2024.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.
Collapse
Affiliation(s)
- Xiyuan Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Fan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenbin Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Liang Z, Xu X, Cao R, Wan Q, Xu H, Wang J, Lin Y, Huang T, Wen G. Synergistic effect of ozone and chlorine on inactivating fungal spores: Influencing factors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126610. [PMID: 34271445 DOI: 10.1016/j.jhazmat.2021.126610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Effective control of fungal contamination in water is vital to provide healthy and safe drinking water for human beings. Although ozone was highly effective in inactivating fungi in water, it was limited by a lack of continuous disinfection ability in water supply system. In present study, the inactivation of fungal spores by combining ozone and chlorine was investigated. The synergistic effects of Aspergillus niger and Trichoderma harzianum spores reached 0.47- and 0.55-log within 10 min, respectively. The inactivation efficiency and the synergistic effect would be affected by disinfectant concentration, pH, and temperature. The combined inactivation caused more violent oxidative stimulation and more severe damage to the fungal spores than the individual inactivation based on the flow cytometry analysis and the scanning electron microscopy observation. The synergistic effect during the combined inactivation process was attributed to the generation of hydroxyl radicals by the reaction between ozone and chlorine and the promotion of chlorine penetration by the destruction of cell wall by ozone. The combined inactivation efficiency in natural water samples was reduced by 26.4-43.8% compared with that in PBS. The results of this study provided an efficient and feasible disinfection method for the control of fungi in drinking water.
Collapse
Affiliation(s)
- Zhiting Liang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yingzi Lin
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
5
|
Brodowska AJ, Nowak A, Kondratiuk-Janyska A, Piątkowski M, Śmigielski K. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1196. [PMID: 28991199 PMCID: PMC5664697 DOI: 10.3390/ijerph14101196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O₃/m³ O₂, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.
Collapse
Affiliation(s)
- Agnieszka Joanna Brodowska
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland.
| | | | - Marcin Piątkowski
- Division of Heat and Mass Transfer, Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Krzysztof Śmigielski
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland.
| |
Collapse
|
6
|
Tachikawa M, Yamanaka K. Synergistic disinfection and removal of biofilms by a sequential two-step treatment with ozone followed by hydrogen peroxide. WATER RESEARCH 2014; 64:94-101. [PMID: 25043797 DOI: 10.1016/j.watres.2014.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/14/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
Synergistic disinfection and removal of biofilms by ozone (O3) water in combination with hydrogen peroxide (H2O2) solution was studied by determining disinfection rates and observing changes of the biofilm structure in situ by confocal laser scanning microscopy (CLSM) using an established biofilm of Pseudomonas fluorescence. The sequential treatment with O3, 1.0-1.7 mg/L, followed by H2O2, 0.8-1.1%, showed synergistic disinfection effects, while the reversed treatment, first H2O2 followed by O3, showed only an additive effect. The decrease of synergistic disinfection effect by addition of methanol (CH3OH), a scavenger of hydroxyl radical (OH), into the H2O2 solution suggested generation of hydroxyl radicals on or in the biofilm by the sequential treatment with O3 followed by H2O2. The primary treatment with O3 increased disinfection rates of H2O2 in the secondary treatment, and the increase of O3 concentration enhanced the rates. The cold temperature of O3 water (14 °C and 8 °C) increased the synergistic effect, suggesting the increase of O3 adsorption and hydroxyl radical generation in the biofilm. CLSM observation showed that the sequential treatment, first with O3 followed by H2O2, loosened the cell connections and thinned the extracellular polysaccharides (EPS) in the biofilm. The hydroxyl radical generation in the biofilm may affect the EPS and biofilm structure and may induce effective disinfection with H2O2. This sequential treatment method may suggest a new practical procedure for disinfection and removal of biofilms by inorganic oxidants such as O3 and H2O2.
Collapse
Affiliation(s)
- Mariko Tachikawa
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| | - Kenzo Yamanaka
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| |
Collapse
|
7
|
Cho M, Gandhi V, Hwang TM, Lee S, Kim JH. Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine. WATER RESEARCH 2011; 45:1063-70. [PMID: 21126749 DOI: 10.1016/j.watres.2010.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/08/2010] [Accepted: 10/14/2010] [Indexed: 05/05/2023]
Abstract
A sequential application of UV as a primary disinfectant with and without H(2)O(2) addition followed by free chlorine as secondary, residual disinfectant was performed to evaluate the synergistic inactivation of selected indicator microorganisms, MS-2 bacteriophage and Bacillus subtilis spores. No synergism was observed when the UV irradiation treatment was followed by free chlorine, i.e., the overall level of inactivation was the same as the sum of the inactivation levels achieved by each disinfection step. With the addition of H(2)O(2) in the primary UV disinfection step, however, enhanced microbial inactivation was observed. The synergism was observed in two folds manners: (1) additional inactivation achieved by hydroxyl radicals generated from the photolysis of H(2)O(2) in the primary UV disinfection step, and (2) damage to microorganisms in the primary step which facilitated the subsequent chlorine inactivation. Addition of H(2)O(2) in the primary disinfection step was also found to be beneficial for the degradation of selected model organic pollutants including bisphenol-A (endocrine disruptor), geosmin (taste and odor causing compound) and 2,4-D (herbicide). The results suggest that the efficiency of UV/free chlorine sequential disinfection processes, which are widely employed in drinking water treatment, could be significantly enhanced by adding H(2)O(2) in the primary step and hence converting the UV process to an advanced oxidation process.
Collapse
Affiliation(s)
- Min Cho
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way, Atlanta, GA 30332-0373, USA
| | | | | | | | | |
Collapse
|
8
|
Cullen P, Tiwari B, O'Donnell C, Muthukumarappan K. Modelling approaches to ozone processing of liquid foods. Trends Food Sci Technol 2009. [DOI: 10.1016/j.tifs.2009.01.049] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Abstract
AIMS To determine the effect of biotic and abiotic components of soil on the viability and infectivity of Cryptosporidium parvum, and evaluate the suitability of viability tests as a surrogate for oocyst infectivity under various environmental settings. METHODS AND RESULTS The die-off of C. parvum in saturated and dry loamy soil was monitored over time by immunofluorescence assay (IFA) and PCR to estimate oocysts viability and by cell culture to estimate oocysts infectivity. Pseudomonas aeruginosa activity resulted in digestion of the outer layer of the oocysts, as demonstrated by loss of the ability to react in IFA. Whereas, P. aeruginosa activity did not affect the DNA amplification by PCR. A 1-log reduction in the oocysts infectivity was observed at 30 degrees C in distilled water and in saturated soil while oocysts viability was unchanged. Incubation for 10 days in dry loamy soil at 32 degrees C resulted in a 3-log(10) reduction in their infectivity while no change of oocysts viability was recorded. CONCLUSIONS Under low temperature, C. parvum oocysts may retain their infectivity for a long time. Soil desiccation and high temperatures enhance the die-off rate of C. parvum. SIGNIFICANCE AND IMPACT OF THE STUDY Previous die-off studies of C. parvum used viability tests that do not necessarily reflect the oocyst infectivity. Under low temperatures, there was an agreement observed between viability and infectivity tests and oocysts retained their infectivity for a long time. Desiccation and high temperatures enhance the loss of infectivity of C. parvum. The presented die-off data have significant implications on the management of wastewater reuse in warm environments.
Collapse
Affiliation(s)
- A M Nasser
- Water Quality Research Laboratory, Ministry of Health, Tel-Aviv, Israel
| | | | | |
Collapse
|
10
|
Erickson MC, Ortega YR. Inactivation of protozoan parasites in food, water, and environmental systems. J Food Prot 2006; 69:2786-808. [PMID: 17133829 DOI: 10.4315/0362-028x-69.11.2786] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protozoan parasites can survive under ambient and refrigerated storage conditions when associated with a range of substrates. Consequently, various treatments have been used to inactivate protozoan parasites (Giardia, Cryptosporidium, and Cyclospora) in food, water, and environmental systems. Physical treatments that affect survival or removal of protozoan parasites include freezing, heating, filtration, sedimentation, UV light, irradiation, high pressure, and ultrasound. Ozone is a more effective chemical disinfectant than chlorine or chlorine dioxide for inactivation of protozoan parasites in water systems. However, sequential inactivation treatments can optimize existing treatments through synergistic effects. Careful selection of methods to evaluate inactivation treatments is needed because many studies that have employed vital dye stains and in vitro excystation have produced underestimations of the effectiveness of these treatments.
Collapse
Affiliation(s)
- Marilyn C Erickson
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA.
| | | |
Collapse
|
11
|
CAUSER L, HANDZEL T, WELCH P, CARR M, CULP D, LUCHT R, MUDAHAR K, ROBINSON D, NEAVEAR E, FENTON S, ROSE C, CRAIG L, ARROWOOD M, WAHLQUIST S, XIAO L, LEE YM, MIREL L, LEVY D, BEACH M, POQUETTE G, DWORKIN M. An outbreak of Cryptosporidium hominis infection at an Illinois recreational waterpark. Epidemiol Infect 2006; 134:147-56. [PMID: 16409662 PMCID: PMC2870355 DOI: 10.1017/s0950268805004619] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2005] [Indexed: 11/07/2022] Open
Abstract
Cryptosporidium has become increasingly recognized as a pathogen responsible for outbreaks of diarrhoeal illness in both immunocompetent and immunocompromised persons. In August 2001, an Illinois hospital reported a cryptosporidiosis cluster potentially linked to a local waterpark. There were 358 case-patients identified. We conducted community-based and waterpark-based case-control studies to examine potential sources of the outbreak. We collected stool specimens from ill persons and pool water samples for microscopy and molecular analysis. Laboratory-confirmed case-patients (n=77) were more likely to have attended the waterpark [odds ratio (OR) 16.0, 95% confidence interval (CI) 3.8-66.8], had pool water in the mouth (OR 6.0, 95% CI 1.3-26.8), and swallowed pool water (OR 4.5, 95% CI 1.5-13.3) than age-matched controls. Cryptosporidium was found in stool specimens and pool water samples. The chlorine resistance of oocysts, frequent swimming exposures, high bather densities, heavy usage by diaper-aged children, and increased recognition and reporting of outbreaks are likely to have contributed to the increasing trend in number of swimming pool-associated outbreaks of cryptosporidiosis. Recommendations for disease prevention include alteration of pool design to separate toddler pool filtration systems from other pools. Implementation of education programmes could reduce the risk of faecal contamination and disease transmission.
Collapse
Affiliation(s)
- L. M. CAUSER
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Epidemic Intelligence Service, Division of Applied Public Health Training, Epidemiology Program Office, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Author for correspondence: Dr L. M. Causer, Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mailstop F-22, Atlanta, 30341, USA. ()
| | - T. HANDZEL
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Epidemic Intelligence Service, Division of Applied Public Health Training, Epidemiology Program Office, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - P. WELCH
- Tazewell County Health Department, Tremont, IL, USA
| | - M. CARR
- Illinois Department of Public Health, Springfield, IL, USA
| | - D. CULP
- Illinois Department of Public Health, Springfield, IL, USA
| | - R. LUCHT
- Illinois Department of Public Health, Springfield, IL, USA
| | - K. MUDAHAR
- Illinois Department of Public Health, Springfield, IL, USA
| | - D. ROBINSON
- Illinois Department of Public Health, Springfield, IL, USA
| | - E. NEAVEAR
- Tazewell County Health Department, Tremont, IL, USA
| | - S. FENTON
- Tazewell County Health Department, Tremont, IL, USA
| | - C. ROSE
- Tazewell County Health Department, Tremont, IL, USA
| | - L. CRAIG
- Tazewell County Health Department, Tremont, IL, USA
| | - M. ARROWOOD
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S. WAHLQUIST
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L. XIAO
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Y.-M. LEE
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L. MIREL
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - D. LEVY
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. J. BEACH
- Division of Parasitic Diseases, National Center of Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - G. POQUETTE
- Tazewell County Health Department, Tremont, IL, USA
| | - M. S. DWORKIN
- Illinois Department of Public Health, Chicago, IL, USA
| |
Collapse
|
12
|
Baeza C, Ducoste J. A non-biological surrogate for sequential disinfection processes. WATER RESEARCH 2004; 38:3400-3410. [PMID: 15276757 DOI: 10.1016/j.watres.2004.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 03/31/2004] [Accepted: 04/29/2004] [Indexed: 05/24/2023]
Abstract
An evaluation of Fluorescent YG-microspheres (Polysciences Inc.) was performed to simulate Cryptosporidium parvum (C. parvum) oocysts inactivation in treatment systems that utilize multiple disinfectants. Experiments were conducted in batch reactors that included an ozone primary stage and a secondary free chlorine treatment stage. A flow cytometer was used to track changes in the fluorescence intensity distribution due to exposure to the chemical disinfectant. Microsphere 'survival ratios' (N/No) were calibrated by selecting an appropriate fluorescence intensity threshold to replicate the inactivation of different C. parvum oocysts strains. Results showed that fluorescent microspheres displayed synergistic effects in the presence of two sequential disinfectants. In addition, microsphere structural tests showed that the polystyrene surface was damaged due to exposure to ozone. This polystyrene damage enhanced the diffusion of the secondary disinfectant into the microsphere, where dye was degraded in the opened polymer layer. As a result, YG-fluorescent microspheres is a promising non-biological technique that is capable of producing similar synergistic behavior as with C. parvum oocysts exposed to ozone followed by chlorine.
Collapse
Affiliation(s)
- Carolina Baeza
- Department of Civil Engineering, North Carolina State University, 208 Mann Hall CB 7908, Raleigh, NC 27695-7908, USA
| | | |
Collapse
|