1
|
Zhao Z, Wang J, Kong W, Fang Z, Coleman MF, Milne GL, Burkett WC, Newton MA, Lara O, Lee D, Deng B, Shen X, Suo H, Sun W, Hursting SD, Zhou C, Bae-Jump VL. Intermittent energy restriction inhibits tumor growth and enhances paclitaxel response in a transgenic mouse model of endometrial cancer. Gynecol Oncol 2024; 186:126-136. [PMID: 38669767 PMCID: PMC11216885 DOI: 10.1016/j.ygyno.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Overweight/obesity is the strongest risk factor for endometrial cancer (EC), and weight management can reduce that risk and improve survival. We aimed to establish the differential benefits of intermittent energy restriction (IER) and low-fat diet (LFD), alone and in combination with paclitaxel, to reverse the procancer effects of high-fat diet (HFD)-induced obesity in a mouse model of EC. METHODS Lkb1fl/flp53fl/fl mice were fed HFD or LFD to generate obese and lean phenotypes, respectively. Obese mice were maintained on a HFD or switched to a LFD (HFD-LFD) or IER (HFD-IER). Ten weeks after induction of endometrial cancer, mice in each group received paclitaxel or placebo for 4 weeks. Body and tumor weights; tumoral transcriptomic, metabolomic and oxylipin profiles; and serum metabolic hormones and chemocytokines were assessed. RESULTS HFD-IER and HFD-LFD, relative to HFD, reduced body weight; reversed obesity-induced alterations in serum insulin, leptin and inflammatory factors; and decreased tumor incidence and mass, often to levels emulating those associated with continuous LFD. Concurrent paclitaxel, versus placebo, enhanced tumor suppression in each group, with greatest benefit in HFD-IER. The diets produced distinct tumoral gene expression and metabolic profiles, with HFD-IER associated with a more favorable (antitumor) metabolic and inflammatory environment. CONCLUSION In Lkb1fl/flp53fl/fl mice, IER is generally more effective than LFD in promoting weight loss, inhibiting obesity-related endometrial tumor growth (particularly in combination with paclitaxel), and reversing detrimental obesity-related metabolic effects. These findings lay the foundation for further investigations of IER as an EC prevention and treatment strategies in overweight/obesity women.
Collapse
Affiliation(s)
- Ziyi Zhao
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
| | - Weimin Kong
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
| | - Ziwei Fang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ginger L Milne
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wesley C Burkett
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith A Newton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia Lara
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Boer Deng
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaochang Shen
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongyan Suo
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Zhao Z, Wang J, Kong W, Fang Z, Coleman M, Milne G, Burkett WC, Newton MA, Lee D, Deng B, Shen X, Suo H, Sun W, Hursting S, Zhou C, Bae-Jump VL. Intermittent energy restriction inhibits tumor growth and enhances paclitaxel response in a transgenic mouse model of endometrial cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578679. [PMID: 38370796 PMCID: PMC10871198 DOI: 10.1101/2024.02.02.578679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Objective Overweight/obesity is the strongest risk factor for endometrial cancer (EC), and weight management can reduce that risk and improve survival. We aimed to establish the differential abilities of intermittent energy restriction (IER) and low-fat diet (LFD), alone and in combination with paclitaxel, to reverse the procancer effects of high-fat diet (HFD)-induced obesity in a mouse model of EC. Methods Lkb1 fl/fl p53 fl/fl mice were fed high-fat diet (HFD) or LFD to generate obese and lean phenotypes, respectively. Obese mice were maintained on HFD or switched to LFD (HFD-LFD) or IER (HFD-IER). Ten weeks after induction of endometrial tumor, mice in each group received paclitaxel or placebo for 4 weeks. Body and tumor weights; tumoral transcriptomic, metabolomic and oxylipin profiles; and serum metabolic hormones and chemocytokines were assessed. Results HFD-IER and HFD-LFD, relative to HFD, reduced body weight; reversed obesity-induced alterations in serum insulin, leptin and inflammatory factors; and decreased tumor incidence and mass, often to levels emulating those associated with continuous LFD. Concurrent paclitaxel, versus placebo, enhanced tumor suppression in each group, with greatest benefit in HFD-IER. The diets produced distinct tumoral gene expression and metabolic profiles, with HFD-IER associated with a more favorable (antitumor) metabolic and inflammatory environment. Conclusion In Lkb1 fl/fl p53 fl/fl mice, IER is generally more effective than LFD in promoting weight loss, inhibiting obesity-related endometrial tumor growth (particularly in combination with paclitaxel), and reversing detrimental obesity-related metabolic effects. These findings lay the foundation for further investigations of IER as a EC prevention strategy in women with overweight/obesity.
Collapse
|
3
|
Abstract
The mammalian Sirtuins (SIRT1-7) are an evolutionarily conserved family of NAD+-dependent deacylase and mono-ADP-ribosyltransferase. Sirtuins display distinct subcellular localizations and functions and are involved in cell survival, senescence, metabolism and genome stability. Among the mammalian Sirtuins, SIRT1 and SIRT6 have been thoroughly investigated and have prominent metabolic regulatory roles. Moreover, SIRT1 and SIRT6 have been implicated in obesity, insulin resistance, type 2 diabetes mellitus (T2DM), fatty liver disease and cardiovascular diseases. However, the roles of other Sirtuins are not fully understood. Recent studies have shown that these Sirtuins also play important roles in inflammation, mitochondrial dysfunction, and energy metabolism. Insulin resistance is the critical pathological trait of obesity and metabolic syndrome as well as the core defect in T2DM. Accumulating clinical and experimental animal evidence suggests the potential roles of the remaining Sirtuins in the regulation of insulin resistance through diverse biological mechanisms. In this review, we summarize recent advances in the understanding of the functions of Sirtuins in various insulin resistance-associated physiological processes, including inflammation, mitochondrial dysfunction, the insulin signaling pathway, glucose, and lipid metabolism. In addition, we highlight the important gaps that must be addressed in this field.
Collapse
Affiliation(s)
- Shuang Zhou
- Internal Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoqiang Tang
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
4
|
Fu ZD, Klaassen CD. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice. Toxicol Appl Pharmacol 2013; 274:137-46. [PMID: 24240088 DOI: 10.1016/j.taap.2013.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 01/22/2023]
Abstract
Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
5
|
Dekker P, Gunn D, McBryan T, Dirks RW, van Heemst D, Lim FL, Jochemsen AG, Verlaan-de Vries M, Nagel J, Adams PD, Tanke HJ, Westendorp RG, Maier AB. Microarray-based identification of age-dependent differences in gene expression of human dermal fibroblasts. Mech Ageing Dev 2012; 133:498-507. [DOI: 10.1016/j.mad.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/07/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
|
6
|
Valerio A, D'Antona G, Nisoli E. Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging (Albany NY) 2011; 3:464-78. [PMID: 21566257 PMCID: PMC3156598 DOI: 10.18632/aging.100322] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Malnutrition is common among older persons, with important consequences increasing frailty and morbidity and reducing health expectancy. On the contrary, calorie restriction (CR, a low-calorie dietary regimen with adequate nutrition) slows the progression of age-related diseases and extends the lifespan of many species. Identification of strategies mimicking key CR mechanisms – increased mitochondrial respiration and reduced production of oxygen radicals – is a hot topic in gerontology. Dietary supplementation with essential and/or branched chain amino acids (BCAAs) exerts a variety of beneficial effects in experimental animals and humans and has been recently demonstrated to support cardiac and skeletal muscle mitochondrial biogenesis, prevent oxidative damage, and enhance physical endurance in middle-aged mice, resulting in prolonged survival. Here we review recent studies addressing the possible role of BCAAs in energy metabolism and in the longevity of species ranging from unicellular organisms to mammals. We also summarize observations from human studies supporting the exciting hypothesis that dietary BCAA enriched mixture supplementation might be a health-promoting strategy in aged patients at risk.
Collapse
Affiliation(s)
- Alessandra Valerio
- Pharmacology Unit, Department of Biomedical Sciences and Biotechnologies, Brescia University, Italy
| | | | | |
Collapse
|
7
|
Metabolism, genomics, and DNA repair in the mouse aging liver. Curr Gerontol Geriatr Res 2011; 2011:859415. [PMID: 21559242 PMCID: PMC3087416 DOI: 10.1155/2011/859415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/11/2011] [Indexed: 12/22/2022] Open
Abstract
The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.
Collapse
|
8
|
Schwer B, Eckersdorff M, Li Y, Silva JC, Fermin D, Kurtev MV, Giallourakis C, Comb MJ, Alt FW, Lombard DB. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009; 8:604-6. [PMID: 19594485 DOI: 10.1111/j.1474-9726.2009.00503.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calorie restriction (CR) increases lifespan in organisms ranging from budding yeast through mammals. Mitochondrial adaptation represents a key component of the response to CR. Molecular mechanisms underlying this adaptation are largely unknown. Here we show that lysine acetylation of mitochondrial proteins is altered during CR in a tissue-specific fashion. Via large-scale mass spectrometry screening, we identify 72 candidate proteins involved in a variety of metabolic pathways with altered acetylation during CR. Mitochondrial acetylation changes may play an important role in the pro-longevity CR response.
Collapse
Affiliation(s)
- Bjoern Schwer
- Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, The Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sharov AA, Falco G, Piao Y, Poosala S, Becker KG, Zonderman AB, Longo DL, Schlessinger D, Ko MS. Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary. BMC Biol 2008; 6:24. [PMID: 18522719 PMCID: PMC2426674 DOI: 10.1186/1741-7007-6-24] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/03/2008] [Indexed: 12/15/2022] Open
Abstract
Background The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on ad libitum (AL) feeding with a group on lifespan-extending 40% calorie restriction (CR). Results We found that gene expression changes occurred in aging gonads, but were generally different from those in somatic organs during aging. For example, only two functional categories of genes previously associated with aging in muscle, kidney, and brain were confirmed in ovary: genes associated with complement activation were upregulated, and genes associated with mitochondrial electron transport were downregulated. The bulk of the changes in gonads were mostly related to gonad-specific functions. Ovaries showed extensive gene expression changes with age, especially in the period when ovulation ceases (from 6 to 16 months), whereas testes showed only limited age-related changes. The same trend was seen for the effects of CR: CR-mediated reversal of age-associated gene expression changes, reported in somatic organs previously, was limited to a small number of genes in gonads. Instead, in both ovary and testis, CR caused small and mostly gonad-specific effects: suppression of ovulation in ovary and activation of testis-specific genes in testis. Conclusion Overall, the results are consistent with unique modes of aging and its modification by CR in testis and ovary.
Collapse
Affiliation(s)
- Alexei A Sharov
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lustig A, Weeraratna AT, Wood WW, Teichberg D, Bertak D, Carter A, Poosala S, Firman J, Becker KG, Zonderman AB, Longo DL, Taub DD. Transcriptome analysis of age-, gender- and diet-associated changes in murine thymus. Cell Immunol 2007; 245:42-61. [PMID: 17499630 PMCID: PMC2271048 DOI: 10.1016/j.cellimm.2007.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 03/25/2007] [Accepted: 03/27/2007] [Indexed: 01/18/2023]
Abstract
The loss of thymic function with age may be due to diminished numbers of T-cell progenitors and the loss of critical mediators within the thymic microenvironment. To assess the molecular changes associated with this loss, we examined transcriptomes of progressively aging mouse thymi, of different sexes and on caloric-restricted (CR) vs. ad libitum (AL) diets. Genes involved in various biological and molecular processes including transcriptional regulators, stress response, inflammation and immune function significantly changed during thymic aging. These differences depended on variables such as sex and diet. Interestingly, many changes associated with thymic aging are either muted or almost completely reversed in mice on caloric-restricted diets. These studies provide valuable insight into the molecular mechanisms associated with thymic aging and emphasize the need to account for biological variables such as sex and diet when elucidating the genomic correlates that influence the molecular pathways responsible for thymic involution.
Collapse
Affiliation(s)
- Ana Lustig
- Laboratory of Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Ashani T. Weeraratna
- Laboratory of Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - William W. Wood
- The Research Resources Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Diane Teichberg
- The Research Resources Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dorothy Bertak
- Laboratory of Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Arnell Carter
- Laboratory of Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Suresh Poosala
- The Research Resources Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jeffrey Firman
- The Research Resources Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin G. Becker
- The Research Resources Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alan B. Zonderman
- The Research Resources Branch, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dan L. Longo
- Laboratory of Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Dennis D. Taub
- Laboratory of Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
- Corresponding author. Fax: +1 410 558 8284. E-mail address: (D.D. Taub)
| |
Collapse
|
11
|
Englander EW. Gene expression changes reveal patterns of aging in the rat digestive tract. Ageing Res Rev 2005; 4:564-78. [PMID: 16260189 DOI: 10.1016/j.arr.2005.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 06/17/2005] [Indexed: 02/05/2023]
Abstract
Similarly to other organs, the human digestive system is adversely affected by aging presenting physiologic manifestations that include compromised absorption and secretion, decreased motility, weakened mucosal barrier and as well as a high incidence of colon cancer. As biomedical advances enable the population to live longer, our understanding of molecular events that govern aging and disease states is enhanced through methodical analyses of temporal tissue-specific gene expression profiles. Recently, DNA microarray analyses have been employed to examine age-associated transcriptional profiles in the mammalian digestive tract. Gene expression patterns revealed that the magnitude and trend of age-associated changes differ in the rat colon and duodenum. Interestingly, the expression of genes involved in energy-generating metabolic pathways was decreased in the duodenum and increased in the colon. Microarray analyses detected modulations in expression of genes associated with compromised intestinal function and propensity for colon cancer in the aged population. Furthermore, altered expression was observed for certain genes implicated in governance of aging and lifespan in other organisms suggesting intriguing commonalities across species. Thus, these studies demonstrated feasibility and usefulness of DNA microarrays for identifying pathways involved in the molecular pathophysiology of the aging process and lifespan control in complex organisms.
Collapse
Affiliation(s)
- Ella W Englander
- Department of Surgery, Shriners Hospital for Children, 815 Market Street, Galveston, TX 77555, USA.
| |
Collapse
|
12
|
Yang CL, Kurczab T, Down G, Kealey T, Langlands K. Gene expression profiling of the ageing rat vibrissa follicle. Br J Dermatol 2005; 153:22-8. [PMID: 16029322 DOI: 10.1111/j.1365-2133.2005.06550.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The application of gene expression profiling to the study of chronological ageing has the potential to illuminate the molecular mechanisms underlying a complex and active process. For example, ageing of the skin and its constituent organs has myriad phenotypic consequences, and a better understanding of the means by which these changes arise has important corollaries for intervention strategies. OBJECTIVES We used a transcriptional profiling approach to investigate changes in gene expression associated with ageing of the large vibrissa follicle of the Wistar rat. METHODS Follicle mRNA isolated from male Wistar rats at 1 and 18 months of age was hybridized to Clontech Atlas 1.2 Rat cDNA macroarrays. Confirmation of array results was provided by the use of Northern blotting and immunohistochemistry. RESULTS Seven transcripts displayed at least a 1.6-fold increase in expression with age, of which APOD (2.5-fold), GSTM2 (2.0-fold) and NPY (1.8-fold) showed the greatest increases. Decreased expression was found in 19 transcripts, most notably in ALOX12 (13.3-fold) and GAP43 (12.6-fold) expression. CONCLUSIONS Follicular ageing is characterized by transcriptional changes associated with diverse aspects of keratinocyte metabolism, proliferation and development.
Collapse
Affiliation(s)
- C-L Yang
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hill's Road, Cambridge CB2 2QR, UK
| | | | | | | | | |
Collapse
|
13
|
Abstract
Dietary restriction (DR) extends the life span and retards many age-related cellular and molecular changes in laboratory rodents. However, neither its underlying mechanism nor the limits of its action are fully understood. In this review, we assessed the effect of DR on gene expression in vertebrate and invertebrate animals using data generated by microarrays. Altered genes in DR mice reported in 15 articles published since 1999 were compared. A comparison of altered genes by DR in mice, rats, pigs, monkeys, yeast, and flies showed no common gene altered by DR among different species. It seems that individual genes altered in the expression by DR were constrained within species. When we compared the functions of altered genes across all species, we found that certain functions such as metabolism, energy metabolism, stress and immune response, cell growth, and transcription regulation were shared among species. Although individual genes seem to be affected by DR differently among species, the overall physiologic influence of DR may be similar.
Collapse
Affiliation(s)
- Eun-Soo Han
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA.
| | | |
Collapse
|
14
|
Abstract
The deterioration of the immune system with progressive aging is believed to contribute to morbidity and mortality in elderly humans due to the increased incidence of infection, autoimmunity, and cancer. Dysregulation of T-cell function is thought to play a critical part in these processes. One of the consequences of an aging immune system is the process termed thymic involution, where the thymus undergoes a progressive reduction in size due to profound changes in its anatomy associated with loss of thymic epithelial cells and a decrease in thymopoiesis. This decline in the output of newly developed T cells results in diminished numbers of circulating naive T cells and impaired cell-mediated immunity. A number of theories have been forwarded to explain this 'thymic menopause' including the possible loss of thymic progenitors or epithelial cells, a diminished capacity to rearrange T-cell receptor genes and alterations in the production of growth factors and hormones. Although to date no interventions fully restore thymic function in the aging host, systemic administration of various cytokines and hormones or bone marrow transplantation have resulted in increased thymic activity and T-cell output with age. In this review, we shall examine the current literature on thymic involution and discuss several interventional strategies currently being explored to restore thymic function in elderly subjects.
Collapse
Affiliation(s)
- Dennis D Taub
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
15
|
Abstract
We previously reported the analysis of genome-wide expression profiles and various diabetes-related traits in a segregating cross between inbred mouse strains C57BL/6J (B6) and DBA/2J (DBA). By considering transcript levels as quantitative traits, we identified several thousand expression quantitative trait loci (eQTL) with LOD score >4.3. We now experimentally address the problem of multiple comparisons by estimating the fraction of false-positive eQTL that are under cis-acting regulation. For this, we have utilized a classic cis-trans test with (B6 x DBA)F(1) mice to determine the relative levels of transcripts from the B6 and DBA alleles. The results suggest that at least 64% of cis-acting eQTL with LOD >4.3 are true positives, while the remaining 36% could not be confirmed as truly cis-acting. Moreover, we find that >96% of apparent cis-acting eQTL occur in regions that do not share SNP haplotypes. Cis-acting eQTL serve as an important new resource for the identification of positional candidates in QTL studies in mice. Also, we use the analysis of the correlation structures between genotypes, gene expression traits, and phenotypic traits to further characterize genes expressed in liver that are under cis-acting control, and highlight the advantages and disadvantages of integrating genetics and gene expression data in segregating populations.
Collapse
Affiliation(s)
- Sudheer Doss
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
16
|
Tsuchiya T, Higami Y, Komatsu T, Tanaka K, Honda S, Yamaza H, Chiba T, Ayabe H, Shimokawa I. Acute stress response in calorie-restricted rats to lipopolysaccharide-induced inflammation. Mech Ageing Dev 2005; 126:568-79. [PMID: 15811426 DOI: 10.1016/j.mad.2004.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2004] [Indexed: 01/05/2023]
Abstract
Calorie restriction (CR) reduces morbidity and mortality in a wide range of organisms, possibly through the stress response machinery. We analyzed the acute phase response of CR rats to lipopolysaccharide (LPS)-induced inflammatory challenge. Six-month-old male F344 rats, fed ad libitum (AL) or a 30% calorie-restricted diet from 6 weeks of age, received an intravenous LPS injection and were then sacrificed between 0 and 8 h. CR attenuated liver injury without reduction in the plasma concentrations of proinflammatory cytokines or nitric oxide (NO). Western blotting analysis of liver tissue demonstrated that CR did not affect the degradation of cytoplasmic I-kappaB and subsequent nuclear translocation of NF-kappaB, a key transcription factor after inflammatory challenge. We also analyzed the liver gene expression profiles at 0, 1 and 4 h with DNA arrays and cluster analysis. Compared with the AL group, CR upregulated the expression of several genes for inflammatory mediators or their related molecules at 0 h, but not at 1 or 4 h. CR downregulated genes for energy or xenobiotic metabolism and stress response proteins at 0 h. At 1 h, the relatively downregulated genes by CR were those for proteases and the ubiquitin-proteasome pathway. The present results suggest that CR attenuates liver injury without suppression of the proinflammatory response, and that the protective effect emerges from constitutively, rather than inductively, expressed gene products.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Pathology and Gerontology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City 852-8523, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fu C, Xi L, Wu Y, McCarter R, Richardson A, Hickey M, Han ES. Hepatic genes altered in expression by food restriction are not influenced by the low plasma glucose level in young male GLUT4 transgenic mice. J Nutr 2004; 134:2965-74. [PMID: 15514260 DOI: 10.1093/jn/134.11.2965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Because food restriction (FR) has a profound effect on most tissues, it is plausible that the modulation of aging by FR occurs through cellular processes such as gene expression. The effect of FR in lowering plasma glucose levels has been demonstrated in mice, rats, and nonhuman primates. The consistency of this finding suggests that decreased plasma glucose may be an important consequence of FR. Indeed, lowering plasma glucose in the absence of FR would be expected to change the expression of some of the same genes as seen with FR. GLUT4 transgenic (TG) mice were particularly suited to this examination because they have low plasma glucose levels like FR mice. We investigated altered gene expression by FR and the effect of low plasma glucose levels caused by genetic manipulation by measuring mRNA expression in liver tissues of 4- to 6-mo-old mice with 2.5-4.5 mo of FR using microarrays and 4 groups: GLUT4 TG (C57BL/6 background) consumed food ad libitum (AL), GLUT4 TG FR, wild-type littermates AL, and wild-type littermates FR. The 3 statistical analysis methods commonly indicated that FR altered the expression of 1277 genes; however, none of these genes was altered by additional GLUT4 expression. In fact, the low plasma glucose level in GLUT4 TG mice did not affect gene expression. Some results were confirmed by real-time quantitative RT-PCR. We conclude that a low plasma glucose level does not contribute to or coincide with the effect of FR on gene expression in the liver.
Collapse
Affiliation(s)
- Chunxiao Fu
- Department of Biological Science, University of Tulsa, 600 S. College Avenue, Tulsa, OK 74104, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Um JH, Kim SJ, Kim DW, Ha MY, Jang JH, Kim DW, Chung BS, Kang CD, Kim SH. Tissue-specific changes of DNA repair protein Ku and mtHSP70 in aging rats and their retardation by caloric restriction. Mech Ageing Dev 2004; 124:967-75. [PMID: 14499502 DOI: 10.1016/s0047-6374(03)00169-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To provide an improved understanding of the molecular basis of the aging process, it is necessary to measure biological age on a tissue-specific basis. The role of DNA damage has emerged as a significant mechanism for determination of life span, and DNA repair genes and stress-response genes are also implicated in the aging process. In the present study, we investigated the changes of DNA-PK activity, especially Ku activity, in the various tissues including kidney, lung, testis and liver during aging and its correlation with mtHSP70 expression. We showed that the modulation of Ku activity during the aging process was highly tissue-specific as shown with highly impaired Ku activity in testis and unaffected Ku activity in liver with age, and the level of Ku70 or Ku80 was differentially expressed in each aging tissue. We found also that age-associated alteration of Ku70/80 was prevented or not prevented by caloric restriction (CR) in a tissue-specific manner. Age-related decline in Ku70 during the aging process was associated with the increase of mtHSP70, which could play a role as a predictive marker for aging related to Ku regulation, and CR retarded aging-induced mtHSP70.
Collapse
Affiliation(s)
- Jee Hyun Um
- Department of Biochemistry, College of Medicine, Pusan National University, Pusan 602-739, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rikke BA, Yerg JE, Battaglia ME, Nagy TR, Allison DB, Johnson TE. Quantitative Trait Loci Specifying the Response of Body Temperature to Dietary Restriction. J Gerontol A Biol Sci Med Sci 2004; 59:118-25. [PMID: 14999024 DOI: 10.1093/gerona/59.2.b118] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary restriction (DR) retards aging and mortality across a variety of taxa. In homeotherms, one of the hallmarks of DR is lower mean body temperature (T(b)), which might be directly responsible for some aspects of DR-mediated life extension. We conducted a quantitative trait locus (QTL) analysis of the response of T(b) to DR in mice using a panel of 22 LSXSS recombinant inbred strains, tested in two cohorts. T(b) in response to DR had a significant genetic component, explaining approximately 35% of the phenotypic variation. We mapped a statistically significant QTL to chromosome 9 and a provisional QTL to chromosome 17, which together accounted for about two thirds of the genetic variation. Such QTLs could be used to critically test whether the response of T(b) to DR also affects the response of life extension. In addition, this study demonstrates the feasibility of trying to map QTLs that affect other physiological responses to DR, including the life extension response. Importantly, the genes underlying such QTLs would be causal factors affecting these responses and could be identified by positional cloning.
Collapse
Affiliation(s)
- Brad A Rikke
- Institute for Behavioral Genetics, University of Colorado at Boulder, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Dobson JG, Fray J, Leonard JL, Pratt RE. Molecular mechanisms of reduced beta-adrenergic signaling in the aged heart as revealed by genomic profiling. Physiol Genomics 2003; 15:142-7. [PMID: 12902548 DOI: 10.1152/physiolgenomics.00076.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myocardial aging leads to a reduction of beta-adrenergic receptor-induced metabolic and contractile responsiveness. We hypothesize that a change in the patterns of gene expression is important in these age-related events. To test this, hearts were harvested from young and aged male rats (3-4 and 20-22 mo, respectively). Total mRNA was extracted and prepared for hybridization to Affymetrix U34A GeneChips. Filtering criteria, involving fold change and a statistical significance cutoff were employed, yielding 263 probe pairs exhibiting differential signals. Of the 163 annotated genes, at least 56 (34%) were classified as signaling/cell communication. Of these 56, approximately half were directly involved in G protein-coupled receptor signaling pathways. We next determined which of these changes might be involved in anti-adrenergic activity and identified 19 potentially important gene products. Importantly, we observed a decrease in beta1-adrenergic receptor and adenylyl cyclase mRNAs, whereas the mRNA encoding beta-arrestin increased. Furthermore, the results demonstrate an increase in mRNAs encoding the adenosine A1 receptor and phospholipase D, which could increase anti-adrenergic effects. Moreover, the mRNAs encoding the muscarinic M3 receptor, nicotinic acetylcholine receptor beta3, and nicotinic acetylcholine receptor-related protein were increased as was the mRNA encoding guanylate kinase-associated protein. Interestingly, we also observed eight mRNAs whose abundance changed three- to sixfold with aging that could be considered as being compensatory. Although these results do not prove causality, they demonstrate that cardiac aging is associated with changes in the profiles of gene expression and that many of these changes may contribute to reduced adrenergic signaling.
Collapse
Affiliation(s)
- James G Dobson
- Genomic Physiology Group, Department of Physiology, University of Massachusetts Medical School, Worcester 01655, USA.
| | | | | | | |
Collapse
|
21
|
Chowers I, Liu D, Farkas RH, Gunatilaka TL, Hackam AS, Bernstein SL, Campochiaro PA, Parmigiani G, Zack DJ. Gene expression variation in the adult human retina. Hum Mol Genet 2003; 12:2881-93. [PMID: 14519682 DOI: 10.1093/hmg/ddg326] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite evidence that differences in gene expression levels contribute significantly to phenotypic variation across individuals, there has been only limited effort to study gene expression variation in human tissue. To characterize expression variation in the normal human retina, we utilized a custom retinal microarray to analyze 33 normal retinas from 19 donors, aged 29-90 years. Statistical models were designed to separate and quantify biological and technical sources of variation, including age, gender, eye laterality, gene function and age-by-gender interaction. Although the majority of the 9406 genes analyzed showed relatively stable expression levels across different donors (for an average gene the expression level value of 95 out of a 100 individuals fell within a 1.23-fold range), 2.6% of genes showed significant donor-to-donor variation, with a false discovery rate of 10%. The mean expression ratio standard deviation was 0.15+/-0.8, log2, with a range of 0.09-0.99. Genes selectively expressed in photoreceptors showed higher expression variation than other gene classes. Gender, age and other donor-specific factors contributed significantly to the expression variation of multiple genes, and groups of genes with an age- and gender-associated expression pattern were identified. Our findings show that a significant fraction of gene expression variation in the normal human retina is attributable to identifiable biological factors. The greater expression variability of many genes central to retinal function (including photoreceptor-specific genes) may be partially explained by the dynamics of the vision process, and raises the possibility that photoreceptor gene expression levels may contribute to phenotypic diversity across normal adult retinas. In addition, as such diversity may result in different levels of disease susceptibility, exploring its sources may provide insights into the pathogenesis of retinal disease.
Collapse
Affiliation(s)
- Itay Chowers
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gromov P, Skovgaard GL, Palsdottir H, Gromova I, Østergaard M, Celis JE. Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon-gamma-induced polypeptides that includes manganese-superoxide dismutase and the p85beta subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics 2003; 2:70-84. [PMID: 12644569 DOI: 10.1074/mcp.m200051-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging of the human skin is a complex process that consists of chronological and extrinsic aging, the latter caused mainly by exposure to ultraviolet radiation (photoaging). Here we present studies in which we have used proteomic profiling technologies and two-dimensional (2D) PAGE database resources to identify proteins whose expression is deregulated in the epidermis of the elderly. Fresh punch biopsies from the forearm of 20 pairs of young and old donors (21-30 and 75-92 years old, respectively) were dissected to yield an epidermal fraction that consisted mainly of differentiated cells. One- to two-mm3 epidermal pieces were labeled with [35S]methionine for 18 h, lysed, and subjected to 2D PAGE (isoelectric focusing and non-equilibrium pH gradient electrophoresis) and phosphorimage autoradiography. Proteins were identified by matching the gels with the master 2D gel image of human keratinocytes (proteomics.cancer.dk). In selected cases 2D PAGE immunoblotting and/or mass spectrometry confirmed the identity. Quantitative analysis of 172 well focused and abundant polypeptides showed that the level of most proteins (148) remains unaffected by the aging process. Twenty-two proteins were consistently deregulated by a factor of 1.5 or more across the 20 sample pairs. Among these we identified a group of six polypeptides (Mx-A, manganese-superoxide dismutase, tryptophanyl-tRNA synthetase, the p85beta subunit of phosphatidylinositol 3-kinase, and proteasomal proteins PA28-alpha and SSP 0107) that is induced by interferon-gamma in primary human keratinocytes and that represents a specific protein signature for the effect of this cytokine. Changes in the expression of the eukaryotic initiation factor 5A, NM23 H2, cyclophilin A, HSP60, annexin I, and plasminogen activator inhibitor 2 were also observed. Two proteins exhibited irregular behavior from individual to individual. Besides arguing for a role of interferon-gamma in the aging process, the biological activities associated with the deregulated proteins support the contention that aging is linked with increased oxidative stress that could lead to apoptosis in vivo.
Collapse
Affiliation(s)
- Pavel Gromov
- Department of Medical Biochemistry and Danish Centre for Molecular Gerontology, The University of Aarhus, Ole Worms Allé, build. 170, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The metabolic characteristics of a yeast cell determine its life span. Depending on conditions, stress resistance can have either a salutary or a deleterious effect on longevity. Gene dysregulation increases with age, and countering it increases life span. These three determinants of yeast longevity may be interrelated, and they are joined by a potential fourth, genetic stability. These factors can also operate in phylogenetically diverse species. Adult longevity seems to borrow features from the genetic programs of dormancy to provide the metabolic and stress resistance resources necessary for extended survival. Both compensatory and preventive mechanisms determine life span, while epigenetic factors and the element of chance contribute to the role that genes and environment play in aging.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans 70112, USA.
| |
Collapse
|
24
|
Kirschner M, Pujol G, Radu A. Oligonucleotide microarray data mining: search for age-dependent gene expression. Biochem Biophys Res Commun 2002; 298:772-8. [PMID: 12419321 DOI: 10.1016/s0006-291x(02)02563-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information on gene expression in colon tumors versus normal human colon was recently generated by an oligonucleotide microarray study. We used the associated database to search for genes that display age-dependent variations in expression. Statistically significant evidence was obtained that such genes are present in both the tumor and normal tissue databases. Besides the analysis of all genes included in the database, three subsets of genes were analyzed separately: genes controlled by p53, and genes coding for ribosomal proteins and for nuclear-encoded mitochondrial proteins. Among the genes controlled by p53 some show an age-dependent change in expression in tumor tissues, in the sense compatible with an activation of p53 at higher age. A decreased expression of some ribosomal genes at advanced age was detected both in tumor and normal tissues. No significant age-dependent expression could be detected for genes encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Marc Kirschner
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
25
|
Wada Y, Kayo T, Koizumi A. Characterization of gene expression profile associated with energy restriction-induced cold tolerance of heart. Microsc Res Tech 2002; 59:313-6. [PMID: 12424794 DOI: 10.1002/jemt.10210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypothermia is known to be a common feature of energy restriction (ER) and essential for a life-prolonging effect of ER. The heart is sensitive to hypothermia, but the heart in ER mice acquires some adaptation to hypothermia. The aim of the present study was to characterize the gene expression profile associated with ER-induced cold resistance of heart. We analyzed the expression of heart mRNA from ER (200 kJ/week) or control (400 kJ/week) B6 11-month-old male mice using cDNA array membranes including 588 genes. Eighty-eight out of 588 genes were expressed in the heart. mRNAs increased by ER were glutathion S-transferase Mu1, transcriptional factor 1 for heat shock gene (HSF1), and fetal myosin alkali light chain genes. mRNA decreased by ER were seven genes in four categories: (1). cell cycle or apoptosis-related proteins (cyclin G and nucleoside diphosphate kinase B); (2). stress response proteins (oxidative stress-induced protein); (3). DNA repair proteins (protein involved in DNA double-strand break repair, Rad23 UV excision repair protein homologue and ubiquitin-conjugating enzyme); and (4). cell-surface antigens (lamimin receptor 1). These data suggest that the heart of ER mice adapts to hypothermia involving heat shock proteins and their transcriptional factors and by changing structure and property of myofibrils. It is also suggested that ER induces protection against oxidative stress and inhibits cell proliferation of "nonmuscle cells" in the heart. Gene expression analysis using cDNA array was useful for screening genes associated with ER-induced cold adaptation.
Collapse
Affiliation(s)
- Yasuhiko Wada
- Department of Hygiene, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan.
| | | | | |
Collapse
|
26
|
Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A. Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 2002; 16:2657-66. [PMID: 12403853 DOI: 10.1210/me.2002-0142] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To gain insight into the pathways by which caloric restriction (CR) slows aging, gene expression levels were assessed for each of 2,352 genes in the livers of 9-month-old CR and control mice. A total of 352 genes were found to be significantly increased or decreased by CR. The distribution of affected genes among functional classes was similar to the distribution of genes within the test set. Surprisingly, a disruption or knockout of the gene for the GH receptor (GHR-KO), which also produces life extension, had a much smaller effect on gene expression, with no more than 10 genes meeting the selection criterion. There was, however, an interaction between the GHR-KO mutation and the CR diet: the effects of CR on gene expression were significantly lower in GHR-KO mice than in control mice. Of the 352 genes altered significantly by CR, 29 had shown a significant and parallel alteration in expression in a previous study of liver gene expression that compared mice of the long-lived Snell dwarf stock (dw/dw) to controls. These 29 genes, altered both by CR and in dwarf mice, provide a list of biochemical features common to both models of delayed aging, and thus merit confirmation and more detailed study.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Smith JR, Price MC, Richardson A. The Sam and Ann Barshop Center for Longevity and Aging Studies: the University of Texas Health Science Center at San Antonio. Exp Gerontol 2002; 37:957-62. [PMID: 12213546 DOI: 10.1016/s0531-5565(02)00086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Sam and Ann Barshop Center for Longevity and Aging Studies is a focal point for advanced research designed exclusively to study the genes involved in aging and the diseases of aging. The research performed at the Barshop Center is based on a solid foundation of nearly twenty-five years of aging research at The University of Texas Health Science Center at San Antonio. Internationally recognized scientists in aging are now leading innovative research programs using state-of-the-art technologies in molecular and cellular biology to explore aging processes at the gene level in the four major programs that comprise the research at the Barshop Center: the Cellular Aging Program, the Invertebrate Aging Program, the Rodent Models of Aging Program, and the Human Genetics of Aging Program. The researchers involved in these programs share a common purpose in an atmosphere of collaboration to gain the scientific insights necessary to understand the molecular basis of aging. Their long-term goal is to gain the knowledge that will give rise to the development of interventions that retard or arrest the debilitating conditions associated with aging. February or March 2003 marks the groundbreaking for the first building of Barshop Center's new stand-alone facility. This is the initial step toward a $70 million, world-class research complex dedicated to the study of aging and healthy longevity.
Collapse
Affiliation(s)
- James R Smith
- Department of Pathology, MSC 7750, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
28
|
Jiang JC, Wawryn J, Shantha Kumara HMC, Jazwinski SM. Distinct roles of processes modulated by histone deacetylases Rpd3p, Hda1p, and Sir2p in life extension by caloric restriction in yeast. Exp Gerontol 2002; 37:1023-30. [PMID: 12213553 DOI: 10.1016/s0531-5565(02)00064-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Caloric restriction has been demonstrated to extend life span and postpone aging in a variety of species. The recent extension of the caloric restriction paradigm to yeast places the emphasis of the search for the longevity effectors at the cellular level. To narrow the range of potential effectors of the caloric restriction response, we have examined the effects of the histone deacetylases Rpd3p, Hda1p, and Sir2p, which have distinguishable but partially overlapping influences on global patterns of gene expression, on the life extension afforded by caloric restriction. Deletion of the RPD3 gene extended life span, and there was no additive effect of caloric restriction. Deletion of HDA1 had no effect of its own on longevity but acted synergistically with caloric restriction to increase life span. SIR2 deletion shortened life span but did not prevent extension of life span by caloric restriction. The results suggest that Rpd3p affects both processes that play an obligate and those that play a synergistic role in life extension by caloric restriction, while Hda1p and Sir2p affect processes that are not the obligate longevity effectors of caloric restriction but instead synergize with them, although in opposite directions. From the known patterns of gene expression elicited by rpd3delta, hda1delta, and sir2delta, we propose that the major longevity effectors of caloric restriction in yeast involve carbohydrate/energy metabolism and mitochondrial function.
Collapse
Affiliation(s)
- J C Jiang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Box P7-2, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Advances in biotechnology have led to methods for quantifying the relative concentrations of thousands of mRNAs in parallel. While these are powerful methods that can be used for both hypothesis testing and hypothesis generation, gene transcript profiling has some limitations as a tool to study aging. These include the difficulty in separating effects of aging from analytical and biological variability, statistical problems associated with simultaneous determination of so many different gene transcripts, and uncertainty about the functional significance of changes in mRNA concentrations. In this review, these issues are discussed with a focus on two methods for profiling mRNAs--serial analysis of gene expression (SAGE) and DNA arrays.
Collapse
|
30
|
Teillet L, Ribière P, Gouraud S, Bakala H, Corman B. Cellular signaling, AGE accumulation and gene expression in hepatocytes of lean aging rats fed ad libitum or food-restricted. Mech Ageing Dev 2002; 123:427-39. [PMID: 11744052 DOI: 10.1016/s0047-6374(01)00400-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effects of food restriction on liver glucagon and vasopressin V1a receptors, on AGE accumulation and on gene expression were investigated in 10- and 30-month-old WAG/Rij female rats fed ad libitum or chronically food-restricted by 30%. The age-related increase in glucagon and vasopressin V1a receptor density, as well as the rise in glucagon-induced cAMP generation was prevented by the restriction. AGE accumulation, characteristic of the aging process, was normalized in food-restricted animals. Gene expression determined with rat Atlas cDNA Expression Arrays containing 1176 cDNA indicates that a few genes exhibited a greater than twofold change in mRNA ratios with age. Most down-regulated genes were related to oxidative metabolism of lipids, and most of the up-regulated genes were concerned with the cell cycle and transcription factors. Chronic food restriction partially prevents these changes in gene expression and induces up- and down-regulation of several mRNAs which are not modified with age in ad libitum fed rats.
Collapse
Affiliation(s)
- L Teillet
- Hôpital Sainte-Périne, Assistance Publique-Hôpitaux de Paris (AP-HP), 75016, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Bartke A, Coschigano K, Kopchick J, Chandrashekar V, Mattison J, Kinney B, Hauck S. Genes that prolong life: relationships of growth hormone and growth to aging and life span. J Gerontol A Biol Sci Med Sci 2001; 56:B340-9. [PMID: 11487592 DOI: 10.1093/gerona/56.8.b340] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutant mice with a combined deficiency of growth hormone (GH), prolactin, and thyrotropin, and knockout mice with GH resistance, live longer than their normal siblings. The extension of life span in these animals is very large (up to 65%), reproducible, and not limited to any particular genetic background or husbandry conditions. In addition to demonstrating that genes control aging in mammals, these findings suggest that GH actions, growth, and body size may have important roles in the determination of life span. We describe the key phenotypic characteristics of long-living mutant and knockout mice, with an emphasis on those characteristics that may be related to delayed aging in these animals. We also address the broader topic of the relationship between GH, growth, maturation, body size, and aging, and we attempt to reconcile the well-publicized antiaging action of GH with the evidence that suppression of GH release or action can prolong life.
Collapse
Affiliation(s)
- A Bartke
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901-6512, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Recent advances in experimental genomics, coupled with the wealth of sequence information available for a variety of organisms, have the potential to transform the way pharmacological research is performed. At present, high-density DNA microarrays allow researchers to quickly and accurately quantify gene-expression changes in a massively parallel manner. Although now well established in other biomedical fields, such as cancer and genetics research, DNA microarrays have only recently begun to make significant inroads into pharmacology. To date, the major focus in this field has been on the general application of DNA microarrays to toxicology and drug discovery and design. This review summarizes the major microarray findings of relevance to neuropsychopharmacology, as a prelude to the design and analysis of future basic and clinical microarray experiments. The ability of DNA microarrays to monitor gene expression simultaneously in a large-scale format is helping to usher in a post-genomic age, where simple constructs about the role of nature versus nurture are being replaced by a functional understanding of gene expression in living organisms.
Collapse
Affiliation(s)
- E R Marcotte
- Douglas Hospital Research Centre, Dept of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H4H 1R3
| | | | | |
Collapse
|
33
|
Moreno-Aliaga MJ, Marti A, García-Foncillas J, Alfredo Martínez J. DNA hybridization arrays: a powerful technology for nutritional and obesity research. Br J Nutr 2001; 86:119-22. [PMID: 11519524 DOI: 10.1079/bjn2001410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M J Moreno-Aliaga
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
34
|
Abstract
With recent sequencing of the genome and development of high-density array technology, it is now possible to assess global gene expression in cells/tissues by a technique that is sensitive, quantitative, and rapid. Gene expression array technology is extremely useful in studying a complex, multigenetic process, such as aging, where one needs to understand the interaction of a large number of genes. Although the technology holds great promise, it is novel and not yet well-established and there are no widely-accepted standards to guide investigators in the analysis and interpretation of the data obtained. Gene expression array analysis requires strong biostatistical support to minimize false-positives and maximize true-positives in candidate gene identification. It also requires independent validation of the array measurements using other detection methods. Confirmation that differentially expressed (transcribed) genes are reflected by differential expression at the protein level will ultimately be an important measurement. In this review, we focus on the three steps necessary for aging studies when using the gene expression array technology: (1) array hybridization; (2) biostatistical analysis; and (3) array result confirmation. Genes identified by several investigators for their age-associated change using the gene expression array systems are also discussed.
Collapse
Affiliation(s)
- E Han
- Department of Physiology, MSC 7756, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
35
|
Abstract
DNA array technology is a high throughput application of nucleic acid hybridization. Arrays currently used include spotted cDNA arrays at various densities and oligonucleotide arrays, where the highest densities can be obtained by synthesizing oligonucleotides directly on the solid support. While cDNA arrays can only determine the presence of a specific sequence in a sample, oligonucleotide arrays additionally allow detection of mutations and polymorphisms, including single nucleotide polymorphisms. Microarray technology can be expected to further our understanding of the aging process and to soon influence medical decision-making in age-related diseases, as well as lifestyle decisions of consequence to the aging process.
Collapse
Affiliation(s)
- A Helmberg
- Institute of General and Experimental Pathology, University of Innsbruck, Fritz-Pregl-Str. 3, A 6020 Innsbruck, Austria.
| |
Collapse
|
36
|
Lee HM, Greeley GH, Englander EW. Age-associated changes in gene expression patterns in the duodenum and colon of rats. Mech Ageing Dev 2001; 122:355-71. [PMID: 11240159 DOI: 10.1016/s0047-6374(00)00254-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In humans, decreased intestinal motility, compromised nutritional status and increased risk of colon cancer are commonly associated with aging. Here, we used the cDNA microarray analysis to detect age-associated changes in duodenal and colonic gene expression in male Fischer 344 rats. The primary finding of this study is that the magnitude and direction of age-associated changes in gene expression differs in the colon and duodenum. In the colon, 56 genes showed altered expression, whereas expression of only 25 genes was altered in the duodenum. The magnitude of change was greater in the colon than in the duodenum. The direction of change also differed; in the aged colon, expression of 51 genes increased and only five genes decreased. In contrast, in the aged duodenum, only seven genes increased, whereas 18 genes decreased in expression. In the duodenum of aged rats, expression of genes involved in ATP-generating pathways is decreased. In contrast, in the colon of aged rats, expression of genes involved in energy generating pathways and in lipid oxidation is increased. In addition, in the aging colon, an increased expression of genes that show an aberrant regulation in colon cancer, including CD44, ras, and maspin is observed. Collectively, these findings provide clues to molecular events that may be related to compromised intestinal function and the high incidence of colon cancer in the aged population.
Collapse
Affiliation(s)
- H M Lee
- Department of Surgery, Shriners Hospitals for Children and The University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
| | | | | |
Collapse
|
37
|
Abstract
Support for research in basic gerontology in the United States of America is briefly described. The support mechanisms, how to apply for a grant, and priority areas of research are outlined, and recent progress in a few of these priority areas is discussed. In general, government support for biogerontology research has been generous, and as a result considerable progress has been made in understanding the molecular mechanisms of aging in animal model systems. Translation of these findings to humans, and development of interventions to promote healthy aging in humans remain an unfulfilled priority, but new knowledge and development of better technologies and model systems suggest an optimistic future.
Collapse
Affiliation(s)
- H R Warner
- Biology of Aging Program, National Institute on Aging, Suite 2C231, 7201 Wisconsin Avenue, Gateway Building, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Shakhov AN, Nedospasov SA. Expression profiling in knockout mice: lymphotoxin versus tumor necrosis factor in the maintenance of splenic microarchitecture. Cytokine Growth Factor Rev 2001; 12:107-19. [PMID: 11312122 DOI: 10.1016/s1359-6101(01)00004-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression profiling provides a powerful approach to define the underlying molecular mechanisms in disease. Several techniques referred collectively to as gene profiling may be also helpful in the analysis of the phenotype of mice with targeted mutations, especially if applied to distinct histological compartments, to specific cell types or to evaluate the effect of specific challenges, such as infection. Here we review several of the existing techniques applicable to genetic knockout studies, and share our experience from the study of mice with tumor necrosis factor (TNF) and lymphotoxin (LT) deficiencies, with specific emphasis on the distinction between TNF- and LT-mediated signalling pathways in vivo. Gene expression profiling analysis of TNF/LT-deficient mice supports the notion that TNF and LT, originally discovered as distinct biological activities, manifest both distinct and redundant functions in vivo.
Collapse
Affiliation(s)
- A N Shakhov
- Intramural Research Support Program, SAIC Frederick, Division of Basic Sciences, Building 560, Room 31-33, NCI-FCRDC, PO Box B, Frederick, MD 21702, USA.
| | | |
Collapse
|
39
|
Dozmorov I, Bartke A, Miller RA. Array-based expression analysis of mouse liver genes: effect of age and of the longevity mutant Prop1df. J Gerontol A Biol Sci Med Sci 2001; 56:B72-80. [PMID: 11213270 DOI: 10.1093/gerona/56.2.b72] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ames dwarf mice, homozygous for the df allele at the Prop1 locus, live 40% to 70% longer than nonmutant siblings and represent the first single-gene mutant that extends life span in a mammal. To gain insight into the basis for the longevity of the Ames dwarf mouse, we measured liver mRNA levels for 265 genes in a group of 11 df/df mice, (three to four mice per age group), at ages 5, 13, and 22 months, and in 13 age- and sex-matched control mice. The analysis showed seven genes where the effects of age reach p < .01 in normal mice and six others with possible age effects in dwarf mice, but none of these met Bonferroni-adjusted significance thresholds. Thirteen genes showed possible effects of the df/df genotype at p < .01. One of these, insulin-like growth factor 1 (IGF-1), was statistically significant even after adjustment for multiple comparisons; and genes for two IGF-binding proteins, a cyclin, a heat shock protein, p38 mitogen-activated protein kinase, and an inducible cytochrome P450 were among those implicated by the survey. In young control mice, half of the expressed genes showed SDs that were more than 58% of the mean, and a simulation study showed that genes with this degree of interanimal variation would often produce false-positive findings when conclusions were based on ratio calculations alone (i.e., without formal significance testing). Many genes in our data set showed apparent young-to-old or normal-to-dwarf ratios above 2, but the large majority of these proved to be genes where high interanimal variation could create high ratios by chance alone, and only a few of the genes with large ratios achieved p < .05. The proportion of genes showing relatively large changes between 5 and 13 months, or from 13 to 22 months of age, was not diminished by the df/df genotype, providing no support for the idea that the dwarf mutation leads to global delay or deceleration of the pace of age-dependent changes in gene expression. These survey data provide the foundation for replication studies that should provide convincing proof for age- and genotype-specific effects on gene expression and thus reveal key similarities among the growing number of mouse models of decelerated aging.
Collapse
Affiliation(s)
- I Dozmorov
- Department of Pathology, Institute of Gerontology, and Geriatrics Center, University of Michigan, Ann Arbor 48109-0940, USA
| | | | | |
Collapse
|
40
|
Abstract
Model organisms such as yeast have proved exceptionally valuable for revealing new information about the molecular pathways involved in the aging of cells. In her Perspective, Campisi comments on new work showing that caloric restriction increases longevity in yeast by activating the SIR2 gene, which alters the compactness of chromatin and thus regulates gene expression (Lin et al.).
Collapse
Affiliation(s)
- J Campisi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|