1
|
Ogawa T, Koyama S, Omori T, Kikuchi K, de Maleprade H, Goldstein RE, Ishikawa T. The architecture of sponge choanocyte chambers is well adapted to mechanical pumping functions. Proc Natl Acad Sci U S A 2025; 122:e2421296122. [PMID: 40117304 PMCID: PMC11962469 DOI: 10.1073/pnas.2421296122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/09/2025] [Indexed: 03/23/2025] Open
Abstract
Sponges, the basalmost members of the animal kingdom, exhibit a range of complex architectures in which microfluidic channels connect multitudes of spherical chambers lined with choanocytes, flagellated filter-feeding cells. Choanocyte chambers can possess scores or even hundreds of such cells, which drive complex flows entering through porous walls and exiting into the sponge channels. One of the mysteries of the choanocyte chamber is its spherical shape, as it seems inappropriate for inducing directional transport since many choanocyte flagella beat in opposition to such a flow. Here, we combine direct imaging of choanocyte chambers in living sponges with computational studies of many-flagella models to understand the connection between chamber architecture and directional flow. We find that those flagella that beat against the flow play a key role in raising the pressure inside the choanocyte chamber, with the result that the flow rate and mechanical pumping efficiency reach a maximum at a small outlet opening angle. Comparison between experimental observations and the results of numerical simulations reveal that the chamber diameter, flagellar wave number, and the outlet opening angle of the freshwater sponge Ephydatia muelleri, as well as several other species, are related in a manner that maximizes the mechanical pumping functions. These results indicate the subtle balances at play during morphogenesis of choanocyte chambers, and give insights into the physiology and body design of sponges.
Collapse
Affiliation(s)
- Takumi Ogawa
- Department of Finemechanics, Tohoku University, Aramaki, Aoba-ku, Sendai980-8579, Japan
| | - Shuji Koyama
- Department of Finemechanics, Tohoku University, Aramaki, Aoba-ku, Sendai980-8579, Japan
| | - Toshihiro Omori
- Department of Finemechanics, Tohoku University, Aramaki, Aoba-ku, Sendai980-8579, Japan
| | - Kenji Kikuchi
- Department of Finemechanics, Tohoku University, Aramaki, Aoba-ku, Sendai980-8579, Japan
| | - Hélène de Maleprade
- Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, ParisF-75005, France
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Takuji Ishikawa
- Department of Biomedical Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai980-8579, Japan
| |
Collapse
|
2
|
Koutsouveli V, Cárdenas P, Santodomingo N, Marina A, Morato E, Rapp HT, Riesgo A. The Molecular Machinery of Gametogenesis in Geodia Demosponges (Porifera): Evolutionary Origins of a Conserved Toolkit across Animals. Mol Biol Evol 2020; 37:3485-3506. [PMID: 32929503 PMCID: PMC7743902 DOI: 10.1093/molbev/msaa183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All animals are capable of undergoing gametogenesis. The ability of forming haploid cells from diploid cells through meiosis and recombination appeared early in eukaryotes, whereas further gamete differentiation is mostly a metazoan signature. Morphologically, the gametogenic process presents many similarities across animal taxa, but little is known about its conservation at the molecular level. Porifera are the earliest divergent animals and therefore are an ideal phylum to understand evolution of the gametogenic toolkits. Although sponge gametogenesis is well known at the histological level, the molecular toolkits for gamete production are largely unknown. Our goal was to identify the genes and their expression levels which regulate oogenesis and spermatogenesis in five gonochoristic and oviparous species of the genus Geodia, using both RNAseq and proteomic analyses. In the early stages of both female and male gametogenesis, genes involved in germ cell fate and cell-renewal were upregulated. Then, molecular signals involved in retinoic acid pathway could trigger the meiotic processes. During later stages of oogenesis, female sponges expressed genes involved in cell growth, vitellogenesis, and extracellular matrix reassembly, which are conserved elements of oocyte maturation in Metazoa. Likewise, in spermatogenesis, genes regulating the whole meiotic cycle, chromatin compaction, and flagellum axoneme formation, that are common across Metazoa were overexpressed in the sponges. Finally, molecular signals possibly related to sperm capacitation were identified during late stages of spermatogenesis for the first time in Porifera. In conclusion, the activated molecular toolkit during gametogenesis in sponges was remarkably similar to that deployed during gametogenesis in vertebrates.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Nadiezhda Santodomingo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hans Tore Rapp
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
3
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
4
|
Abstract
Genomic and transcriptomic analyses show that sponges possess a large repertoire of genes associated with neuronal processes in other animals, but what is the evidence these are used in a coordination or sensory context in sponges? The very different phylogenetic hypotheses under discussion today suggest very different scenarios for the evolution of tissues and coordination systems in early animals. The sponge genomic 'toolkit' either reflects a simple, pre-neural system used to protect the sponge filter or represents the remnants of a more complex signalling system and sponges have lost cell types, tissues and regionalization to suit their current suspension-feeding habit. Comparative transcriptome data can be informative but need to be assessed in the context of knowledge of sponge tissue structure and physiology. Here, I examine the elements of the sponge neural toolkit including sensory cells, conduction pathways, signalling molecules and the ionic basis of signalling. The elements described do not fit the scheme of a loss of sophistication, but seem rather to reflect an early specialization for suspension feeding, which fits with the presumed ecological framework in which the first animals evolved.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
5
|
Qiu C, Fu Z, Shi Y, Hong Y, Liu S, Lin J. A retinoid X receptor (RXR1) homolog from Schistosoma japonicum: Its ligand-binding domain may bind to 9-cis-retinoic acid. Mol Biochem Parasitol 2013; 188:40-50. [DOI: 10.1016/j.molbiopara.2013.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 01/28/2023]
|
6
|
Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M. Retinoic acid signaling in development: Tissue-specific functions and evolutionary origins. Genesis 2008; 46:640-56. [PMID: 19003929 DOI: 10.1002/dvg.20444] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florent Campo-Paysaa
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242-INRA 1288-ENS-UCBL, IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
7
|
Simões-Costa MS, Azambuja AP, Xavier-Neto J. The search for non-chordate retinoic acid signaling: lessons from chordates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:54-72. [PMID: 17109394 DOI: 10.1002/jez.b.21139] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Signaling by retinoic acid (RA) is an important pathway in the development and homeostasis of vertebrate and invertebrate chordates, with a critical role in mesoderm patterning. Classical studies on the distribution of nuclear receptors of animals suggested that the family of RA receptors (RARs/NR1B) was restricted to chordates, while the family of RA X receptors (RXR/NR2B) was distributed from cnidarians to chordates. However, the accumulation of data from genome projects and studies in non-model species is questioning this traditional view. Here we discuss the evidence for non-chordate RA signaling systems in the light of recent advances in our understanding of carotene (pro-Vitamin A) metabolism and of the identification of potential RARs and members of the NR1 family in echinoderms and lophotrochozoan trematodes, respectively. We conclude, as have others before (Bertrand et al., 2004. Mol Biol Evol 21(10):1923-1937), that signaling by RA is more likely an ancestral feature of bilaterians than a chordate innovation.
Collapse
Affiliation(s)
- Marcos S Simões-Costa
- Laboratório de Genética e Cardiologia Molecular InCor--HC.FMUSP São Paulo-SP, Brazil
| | | | | |
Collapse
|
8
|
Derelle R, Manuel M. Ancient connection between NKL genes and the mesoderm? Insights from Tlx expression in a ctenophore. Dev Genes Evol 2007; 217:253-61. [PMID: 17285344 DOI: 10.1007/s00427-007-0131-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 01/09/2007] [Indexed: 01/15/2023]
Abstract
In recent years, evo-devo studies on non-bilaterian metazoans have improved our understanding of the early evolution of animal body plans. In particular, works on cnidarians suggested that contrary to classical views, the mesoderm originated far before the emergence of the Bilateria. In this context, a synthesis of genomic and functional data concerning the Antennapedia (Antp) superclass of homeobox genes suggested that early in animal evolution, each of the three germ layers was under the control of one cluster of Antp genes. In particular, the patterning and differentiation of the mesoderm was under the control of the NKL cluster. The ctenophores stand as a key taxon with respect to such issues because unlike other non-bilaterian phyla, their intermediate germ layer satisfies the strict embryological definition of a mesoderm. For that reason, we investigated the only known member of the NKL group in Ctenophora, a gene previously isolated from Pleurobrachia and attributed to the Tlx family. In our analysis of the NKL group, this ctenophore gene branches as the sister-group of bilaterian Tlx genes, but without statistical support. The expression pattern of this gene was revealed by in situ hybridisation in the adult ctenophore. The expression territories of PpiTlx are predominantly ectodermal, in two distinct types of ciliated epidermal cells and in one category of gland cells. We also identified a probable endodermal site of expression. Because we failed to detect any mesodermal expression, the results do not provide support to the hypothesis of an ancient functional association between the NKL group and the mesoderm.
Collapse
Affiliation(s)
- Romain Derelle
- UMR 7138 CNRS UPMC MNHN IRD, Université Pierre et Marie Curie-Paris 6, Case 05, 7 quai St Bernard, 75005 Paris, France
| | | |
Collapse
|
9
|
Richelle-Maurer E, Boury-Esnault N, Itskovich VB, Manuel M, Pomponi SA, Van de Vyver G, Borchiellini C. Conservation and Phylogeny of a Novel Family of Non-Hox Genes of the Antp Class in Demospongiae (Porifera). J Mol Evol 2006; 63:222-30. [PMID: 16786434 DOI: 10.1007/s00239-005-0294-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
A survey across the most basal animal phylum, the Porifera, for the presence of homeobox-containing genes led to the isolation of 24 partial or complete homeobox sequences from 21 sponge species distributed in 15 families and 6 orders of Demospongiae. All the new sequences shared a high identity/similarity with EmH-3 (Ephydatia muelleri), a non-Hox gene from the Antp class. The Demox sequences, EmH-3, and related homeodomains formed a well-supported clade with no true affinity with any known bilaterian family, including the Tlx/Hox11 family, suggesting that the EmH-3 family of genes, comprising 31 members, represents a novel family of non-Hox genes, called the Demox family, widespread among Demospongiae. The presence of the Tlx/Hox11 specific signature in the Demox family and common regulatory elements suggested that the Demox and Tlx/Hox11 families are closely related. In the phylogenetic analyses, freshwater Haplosclerida appeared as monophyletic, and Haplosclerida and Halichondrida as polyphyletic, with a clade comprising Agelas species and Axinella corrugata. As for their expression, high levels of Demox transcripts were found in adult tissues. Our data add to the number of published poriferan homeobox sequences and provide independent confirmation of the current Demospongiae phylogenies.
Collapse
Affiliation(s)
- Evelyn Richelle-Maurer
- Laboratoire de Physiologie moléculaire de la Cellule, Université Libre de Bruxelles, CP 300, 50 av. F. Roosevelt, 1050, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Having descended from the first multicellular animals on earth, sponges are a key group in which to seek innovations that form the basis of the metazoan body plan, but sponges themselves have a body plan that is extremely difficult to reconcile with that of other animals. Adult sponges lack overt anterior–posterior polarity and sensory organs, and whether they possess true tissues is even debated. Nevertheless, sexual reproduction occurs as in other metazoans, with the development of embryos through a structured series of cellular divisions and organized rearrangements of cellular material, using both mesenchymal and epithelial movements to form a multicellular embryo. In most cases, the embryo undergoes morphogenesis into a spatially organized larva that has several cell layers, anterior–posterior polarity, and sensory capabilities. Here we review original data on the mode of cleavage, timing of cellular differentiation, and the mechanisms involved in the organization of differentiated cells to form the highly structured sponge larva. Our ultimate goal is to develop interpretations of the phylogenetic importance of these data within the Porifera and among basal Metazoa.
Collapse
|
11
|
Kapur RP, Clarke CM, Doggett B, Taylor BE, Baldessari A, Parisi MA, Howe DG. Hox11L1 expression by precursors of enteric smooth muscle: an alternative explanation for megacecum in HOX11L1-/- mice. Pediatr Dev Pathol 2005; 8:148-61. [PMID: 15803212 DOI: 10.1007/s10024-005-1126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 01/05/2005] [Indexed: 01/17/2023]
Abstract
Previous studies have focused on expression of Hox11L1 in enteric neurons as the explanation for intestinal and urinary bladder dysmotility observed in mice that do not have the transcription factor. However, Hox11L1 is also expressed transiently in endo-, meso-, and ectodermal cells of the most caudal embryo during gastrulation. We sought to more fully characterize the fates of these cells because they might help explain the pathogenesis of lethal pseudo-obstruction in Hox11L1-null mice. The Cre recombinase cDNA was introduced into the Hox11L1 locus, and expression of the "knock-in" allele was used to activate the Rosa26R, beta-galactosidase reporter gene in cells with ongoing Hox11L1 transcription and their descendants. During gastrulation, Rosa26R activation was observed in progenitors of caudal somatic and visceral cells, including enteric smooth muscle. Expression in enteric neural precursors appeared much later. Analysis of endogenous Hox11L1 mRNA in aneuronal segments of large intestine that were grafted under the renal capsule indicated that the early activation of Hox11L1 in visceral mesoderm was transient and ceased before colonization of the large intestine by neural progenitors. Mice homozygous for the Cre allele died shortly after weaning, with cecal and proximal colonic distention but without overt anatomic defects that might represent maldevelopment of the visceral mesoderm. Our findings expand the range of possible functions of Hox11L1 to include activation of an as yet unknown developmental program in visceral smooth muscle and allow the possibility that intestinal dysmotility in Hox11L1-null animals may not be a primary neural disorder.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Pathology, Children's Hospital and Regional Medical Center, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bebenek IG, Gates RD, Morris J, Hartenstein V, Jacobs DK. sine oculis in basal Metazoa. Dev Genes Evol 2004; 214:342-51. [PMID: 15221378 DOI: 10.1007/s00427-004-0407-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
We report the recovery of homologs of Six1/2/sine oculis (so), a homeodomain-containing member of the Six-gene family, from a diverse set of basal Metazoa, including representatives of the poriferan classes Demospongia, Calcarea and Hexactinellida, the cnidarian classes Hydrozoa, Scyphozoa and Anthozoa, as well as a ctenophore. so sequences were also recovered from a platyhelminth, an echiurid and two bivalve molluscs, members of the super-phyletic group Lophotrochozoa. In the case of the platyhelminth, multiple distinct so sequences were recovered, as well as a member of the related group Six4/5/D-Six4. Extended sequences of the so gene were recovered from the demosponge, Haliclona sp., and the scyphozoan Aurelia aurita via PCR, and 3' RACE. The affinities of all recovered sequences were assessed using a parsimony analysis based on both nucleic and amino acid sequence and using successive character weighting. Our results indicate that so is highly conserved across the animal kingdom. Preliminary expression data for Aurelia reveal that transcripts of the so homolog are present in the manubrium as well as in the rhopalia, which contain the statocyst and eyes, in the free-swimming ephyra and juvenile stages of these jellyfish.
Collapse
Affiliation(s)
- Ilona G Bebenek
- Department of Organismic Biology Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
13
|
Wiens M, Batel R, Korzhev M, Müller WEG. Retinoid X receptor and retinoic acid response in the marine sponge Suberites domuncula. J Exp Biol 2003; 206:3261-71. [PMID: 12909707 DOI: 10.1242/jeb.00541] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date no nuclear receptors have been identified or cloned from the phylogenetically oldest metazoan phylum, the Porifera (sponges). We show that retinoic acid causes tissue regression in intact individuals of the demosponge Suberites domuncula and in primmorphs, special three-dimensional cell aggregates. Primmorphs were cultivated on a galectin/poly-L-lysine matrix in order to induce canal formation. In the presence of 1 or 50 micromol l(-1) retinoic acid these canals undergo regression, a process that is reversible. We also cloned the cDNA from S. domuncula encoding the retinoid X receptor (RXR), which displays the two motifs of nuclear hormone receptors, the ligand-binding and the DNA-binding domains, and performed phylogenetic analyses of this receptor. RXR expression undergoes strong upregulation in response to treatment with retinoic acid, whereas the expression of the sponge caspase is not increased. The gene encoding the LIM homeodomain protein was found to be strongly upregulated in response to retinoic acid treatment. These data indicate that the RXR and its ligand retinoic acid play a role in the control of morphogenetic events in sponges.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | |
Collapse
|
14
|
Coutinho CC, Fonseca RN, Mansure JJC, Borojevic R. Early steps in the evolution of multicellularity: deep structural and functional homologies among homeobox genes in sponges and higher metazoans. Mech Dev 2003; 120:429-40. [PMID: 12676321 DOI: 10.1016/s0925-4773(03)00007-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sponge homeobox gene EmH-3 had not been attributed to any homeobox family. Comparative promoter and homeodomain sequence analyses suggest that it is related to the Hox11 gene, which belongs to the Tlx homeobox family. Hox11 is highly expressed in proliferating progenitor cells, but expression is downregulated during cell differentiation. Using reporter gene methodology, we monitored function of the sponge EmH-3 promoter transfected into human erythroleukemia K562 cells. These cells express the Tlx/Hox11 gene constitutively, and downregulate its expression upon differentiation. The same pattern of expression and downregulation was observed for the sponge reporter construct. We propose that Tlx/Hox11 genes have structural and functional homologies conserved in phylogenetically distant groups, that represent a deep homology in the regulation of cell proliferation, commitment and differentiation.
Collapse
Affiliation(s)
- Cristiano C Coutinho
- Laboratory of Molecular Biology of Embryonic Development, Federal University of Rio de Janeiro, 21941-970 Ilha do Fundão, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|