1
|
Iida R, Yasuda T. Overview of M-LP/MPV17L, a novel atypical PDE and possible target for drug development. Eur J Pharmacol 2025; 996:177569. [PMID: 40180270 DOI: 10.1016/j.ejphar.2025.177569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
M-LP/Mpv17L (Mpv17-like protein) was initially identified as a novel protein during screening of age-dependently expressed genes in mouse kidney. Previous findings suggested that human Mpv17-like protein (M-LP/MPV17L) is involved in the maintenance of mitochondrial DNA (mtDNA), thus playing a role in cell defense against mitochondrial dysfunction, although its molecular mechanism of action has remained unknown. Recently, generation of M-LP/MPV17L-knockout (KO) cells using CRISPR-Cas9 technology has revealed that M-LP/MPV17L exerts cyclic nucleotide phosphodiesterase (PDE) activity despite lacking the conserved catalytic region and other structural motifs characteristic of the PDE family, and is one of the key components of pathways such as cAMP/cAMP-dependent protein kinase A (PKA) signaling. Moreover, generation of M-LP/Mpv17L-KO mice has revealed that deficiency of M-LP/Mpv17L results in development of β-cell hyperplasia and improved glucose tolerance, as well as physiological afferent cardiac hypertrophy. M-LP/MPV17L is a protein of great interest as it is a potential target for drug development. Therefore, in this review, we overview the molecular characteristics, regulation of expression, cellular functions, phenotypes detected in KO mice, and disease relevance of M-LP/MPV17L.
Collapse
Affiliation(s)
- Reiko Iida
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| | - Toshihiro Yasuda
- Organization for Life Science Advancement Programs, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
2
|
Iida R, Ueki M, Yasuda T. Knockout of M-LP/Mpv17L, a newly identified atypical PDE, induces physiological afferent cardiac hypertrophy in mice. Transgenic Res 2023; 32:575-582. [PMID: 37851308 PMCID: PMC10713670 DOI: 10.1007/s11248-023-00373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
M-LP/Mpv17L (Mpv17-like protein) is an atypical cyclic nucleotide phosphodiesterase (PDE) without the molecular structure characteristic of the PDE family. Deficiency of M-LP/Mpv17L in mice has been found to result in development of β-cell hyperplasia and improved glucose tolerance. Here, we report another phenotype observed in M-LP/Mpv17L-knockout (KO) mice: afferent cardiac hypertrophy. Although the hearts of M-LP/Mpv17L-KO mice did not differ in size from those of wild-type mice, there was marked narrowing of the left ventricular lumen and thickening of the ventricular wall. The diameter and cross-sectional area of cardiomyocytes in 8-month-old M-LP/Mpv17L-KO mice were increased 1.16-fold and 1.35-fold, respectively, relative to control mice, but showed no obvious abnormalities of cell structure, fibrosis or impaired cardiac function. In 80-day-old KO mice, the expression of hypertrophic marker genes, brain natriuretic peptide (BNF), actin alpha cardiac muscle 1 (ACTC1) and actin alpha 1 skeletal muscle (ACTA1), as well as the Wnt/β-catenin pathway target genes, lymphoid enhancer-binding factor-1 (LEF1), axis inhibition protein 2 (AXIN2) and transcription factor 7 (TCF7), was significantly up-regulated relative to control mice, whereas fibrosis-related genes such as fibronectin 1 (FN1) and connective tissue growth factor (CTGF) were down-regulated. Western blot analysis revealed increased phosphorylation of molecules downstream of the cAMP/PKA signaling pathway, such as β-catenin, ryanodine receptor 2 (RyR2), phospholamban (PLN) and troponin I (cTnI), as well as members of the MEK1-ERK1/2 signaling pathway, which is strongly involved in afferent cardiac hypertrophy. Taken together, these findings indicate that M-LP/Mpv17L is one of the PDEs actively functioning in the heart and that deficiency of M-LP/Mpv17L in mice promotes physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Reiko Iida
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| | - Misuzu Ueki
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Toshihiro Yasuda
- Organization for Life Science Advancement Programs, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
3
|
Iida R, Ueki M, Yasuda T. Deficiency of M-LP/Mpv17L leads to development of β-cell hyperplasia and improved glucose tolerance via activation of the Wnt and TGF-β pathways. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166318. [PMID: 34883249 DOI: 10.1016/j.bbadis.2021.166318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
M-LP/Mpv17L is a protein that was initially identified during screening of age-dependently expressed genes in mice. We have recently demonstrated that M-LP/Mpv17L-knockout (M-LP/Mpv17L-KO) in human hepatoma cells leads to a reduction of cellular cyclic nucleotide phosphodiesterase (PDE) activity, and that in vitro-synthesized M-LP/Mpv17L possesses PDE activity. These findings suggest that M-LP/Mpv17L functions as an atypical PDE, even though it has none of the well-conserved catalytic region or other structural motifs characteristic of the PDE family. In this study, we found that M-LP/Mpv17L-KO mice developed β-cell hyperplasia and improved glucose tolerance. Deficiency of M-LP/Mpv17L in islets from KO mice at early postnatal stages or siRNA-mediated suppression of M-LP/Mpv17L in rat insulinoma cells led to marked upregulation of lymphoid enhancer binding factor 1 (Lef1) and transcription factor 7 (Tcf7), key nuclear effectors in the Wnt signaling pathway, and some of the factors essential for the development and maintenance of β-cells. Moreover, at the protein level, increases in the levels of phosphorylated β-catenin and glycogen synthase kinase-3β (GSK-3β) were observed, indicating activation of the Wnt and TGF-β signaling pathways. Taken together, these findings suggest that protein kinase A (PKA)-dependent phosphorylations of β-catenin and GSK-3β, the key mediators of the Wnt and/or TGF-β signaling pathways, are the most upstream events triggering β-cell hyperplasia and improved glucose tolerance caused by M-LP/Mpv17L deficiency.
Collapse
Affiliation(s)
- Reiko Iida
- Life Science Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan.
| | - Misuzu Ueki
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshihiro Yasuda
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
4
|
Human Mpv17-like protein with a mitigating effect on mtDNA damage is involved in cAMP/PKA signaling in the mitochondrial matrix. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118792. [PMID: 32621840 DOI: 10.1016/j.bbamcr.2020.118792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
Human Mpv17-like protein (M-LPH/Mpv17L) is thought to play a role in minimizing mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage. We have recently demonstrated that, in addition to an increase of mtDNA damage, M-LPH-knockout (M-LPH-KO) in HepG2 cells causes a significant reduction of mitochondrial transcription factor A (TFAM) protein, an essential factor for mtDNA maintenance, along with an increase in its phosphorylation. These intracellular changes suggested an association of M-LPH with the cAMP/PKA signaling pathway, as selective degradation of TFAM by mitochondrial protease is driven by protein kinase A (PKA)-dependent phosphorylation. In the present study, we observed that M-LPH-KO in HepG2 cells caused an increase in the level of mitochondrial cAMP and a reduction of total cellular cyclic nucleotide phosphodiesterase (PDE) activity. In vitro-synthesized M-LPH showed PDE activity, which was inhibited by IBMX, a non-selective inhibitor of PDE. Furthermore, M-LPH-KO promoted PKA-dependent phosphorylation of some mitochondrial proteins. Taken together, the present findings suggest that M-LPH, which has structural features atypical of PDE family members, might be a novel human PDE involved in cAMP/PKA signaling in the mitochondrial matrix.
Collapse
|
5
|
Knockout of Mpv17-Like Protein (M-LPH) Gene in Human Hepatoma Cells Results in Impairment of mtDNA Integrity through Reduction of TFAM, OGG1, and LIG3 at the Protein Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6956414. [PMID: 30310528 PMCID: PMC6166373 DOI: 10.1155/2018/6956414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 08/05/2018] [Indexed: 12/05/2022]
Abstract
Human Mpv17-like protein (M-LPH) has been suggested to participate in prevention of mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage. To clarify the molecular mechanism of M-LPH function, we knocked out M-LPH in human hepatoma HepG2 using CRISPR-Cas9 technology. An increase in mtDNA damage in M-LPH-KO HepG2 cells was demonstrated by PCR-based quantitation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) measurement. Furthermore, confocal immunofluorescence analysis and Western blot analysis of mitochondrial extracts demonstrated that M-LPH-KO caused reductions in the protein levels of mitochondrial transcription factor A (TFAM), an essential factor for transcription and maintenance of mtDNA, and two DNA repair enzymes, 8-oxoguanine DNA glycosylase (OGG1) and DNA ligase 3 (LIG3), both involved in mitochondrial base excision repair (BER). Accordingly, it was suggested that the increase in mtDNA damage was due to a cumulative effect of mtDNA instability resulting from deficiencies of TFAM and diminished ability for BER arising from deficiencies in BER-related enzymes. These findings suggest that M-LPH could be involved in the maintenance of mtDNA, and therefore mitochondrial function, by protecting proteins essential for mtDNA stability and maintenance, in an integrated manner.
Collapse
|
6
|
Tashiro T, Murakami Y, Mouri A, Imamura Y, Nabeshima T, Yamamoto Y, Saito K. Kynurenine 3-monooxygenase is implicated in antidepressants-responsive depressive-like behaviors and monoaminergic dysfunctions. Behav Brain Res 2017; 317:279-285. [DOI: 10.1016/j.bbr.2016.09.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
|
7
|
Iida R, Ueki M, Yasuda T. Identification of interacting partners of Human Mpv17-like protein with a mitigating effect of mitochondrial dysfunction through mtDNA damage. Free Radic Biol Med 2015; 87:336-45. [PMID: 26165189 DOI: 10.1016/j.freeradbiomed.2015.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022]
Abstract
Human Mpv17-like protein (M-LPH) has been suggested to participate in mitochondrial function. In this study, we investigated the proteins that interact with M-LPH, and identified four: H2A histone family, member X (H2AX), ribosomal protein S14 (RPS14), ribosomal protein S3 (RPS3) and B-cell receptor-associated protein 31 (Bap31). Immunofluorescence and subcellular fractionation studies revealed that M-LPH is localized predominantly in the nucleus, to some extent in a subset of mitochondria, and marginally in the cytosol. Mitochondrial M-LPH appeared as punctate foci, and these were co-localized with a subset of mitochondrial transcription factor A (TFAM) and mtDNA, indicating that M-LPH is localized in or in close proximity to mitochondrial nucleoids. RNAi-mediated knockdown of M-LPH resulted in an increase of mtDNA damage and reduced the expression of mtDNA-encoded genes. A ROS inducer, antimycin A, caused an increase in both the number and size of the mitochondrial M-LPH foci, and these foci were co-localized with two enzymes, DNA polymerase γ (POLG) and DNA ligase III (LIG3), both involved in mtDNA repair. Furthermore, knockdown of M-LPH hampered mitochondrial localization of these enzymes. Taken together, these observations suggest that M-LPH is involved in the maintenance of mtDNA and protects cells from mitochondrial dysfunction.
Collapse
Affiliation(s)
- Reiko Iida
- Division of Life Science, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.
| | - Misuzu Ueki
- Division of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshihiro Yasuda
- Organization for Life Science Advancement Programs, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Division of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Iida R, Ueki M, Fujihara J, Takeshita H, Kimura-Kataoka K, Yasuda T. Three Nonsynonymous Single Nucleotide Polymorphisms in the RhitH Gene Cause Reduction of the Repression Activity That Leads to Upregulation of M-LPH, a Participant in Mitochondrial Function. Biores Open Access 2013; 2:440-7. [PMID: 24380054 PMCID: PMC3869441 DOI: 10.1089/biores.2013.0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human Mpv17-like protein (M-LPH) has been suggested to play a role in mitochondrial function. In this study, we identified a RhitH (human regulator of heat-induced transcription) binding site in intron 1 of the M-LPH gene. Tissue distribution analysis showed that M-LPH was specifically distributed in tissues with high mitochondrial metabolism. Functional and genetic analyses of nonsynonymous single nucleotide polymorphisms (SNPs) in the RhitH gene revealed that p.Cys461Ser, p.Thr465Ala, and p.Leu495Gln, corresponding to substitutions in the zinc fingers, cause reductions in the repression activity that lead to upregulation of M-LPH expression. The analyses also showed that the minor allele frequencies of these SNPs are extremely low in worldwide populations.
Collapse
Affiliation(s)
- Reiko Iida
- Division of Life Science, Faculty of Medical Sciences, University of Fukui , Fukui, Japan . ; Research and Education Program for Life Science, Faculty of Medical Sciences, University of Fukui , Fukui, Japan
| | - Misuzu Ueki
- Division of Medical Genetics & Biochemistry, Faculty of Medical Sciences, University of Fukui , Fukui, Japan
| | - Junko Fujihara
- Department of Legal Medicine, Center for Integrated Research in Science, Shimane University School of Medicine , Izumo, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Center for Integrated Research in Science, Shimane University School of Medicine , Izumo, Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Center for Integrated Research in Science, Shimane University School of Medicine , Izumo, Japan
| | - Toshihiro Yasuda
- Research and Education Program for Life Science, Faculty of Medical Sciences, University of Fukui , Fukui, Japan . ; Division of Medical Genetics & Biochemistry, Faculty of Medical Sciences, University of Fukui , Fukui, Japan
| |
Collapse
|
9
|
Iida R, Ueki M, Yasuda T. Identification of Rhit as a novel transcriptional repressor of human Mpv17-like protein with a mitigating effect on mitochondrial dysfunction, and its transcriptional regulation by FOXD3 and GABP. Free Radic Biol Med 2012; 52:1413-22. [PMID: 22306510 DOI: 10.1016/j.freeradbiomed.2012.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
Mpv17-like protein (M-LP) is a protein that has been suggested to be involved in the metabolism of reactive oxygen species. To elucidate the molecular basis of M-LP expression, we recently searched for regulatory elements of M-LP and identified a novel mouse KRAB-containing protein, Rhit (regulator of heat-induced transcription), as a repressor of the transcriptional regulation of M-LP. In this study, we identified zinc-finger protein 205 as a candidate human Rhit (RhitH) and subsequently confirmed its participation in transcriptional regulation of human M-LP (M-LPH). To clarify the functions of RhitH and M-LPH, we searched for cis-regulatory elements in the promoter region of RhitH and identified two transcription factors: forkhead box D3, as a negative regulatory element, and GA-binding protein, one of the key regulators of the mitochondrial electron transport system, as a positive regulatory element. Additionally, it was demonstrated that knockdown of RhitH or overexpression of M-LPH reduces the generation of intracellular H(2)O(2) and loss of mitochondrial membrane potential caused by an inhibitor of the respiratory chain, antimycin A. These results suggest that M-LPH functions to protect cells from oxidative stress and/or initiation of the mitochondrial apoptotic cascade under stressed conditions.
Collapse
Affiliation(s)
- Reiko Iida
- Division of Life Science, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.
| | | | | |
Collapse
|
10
|
The role of microglial mtDNA damage in age-dependent prolonged LPS-induced sickness behavior. ACTA ACUST UNITED AC 2011; 7:17-23. [PMID: 22032249 DOI: 10.1017/s1740925x1100010x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microglia are the main cellular source of oxidation products and inflammatory molecules in the brain during aging. The accumulation of mitochondrial DNA (mtDNA) oxidative damage in microglia during aging results in the increased production of reactive oxygen species (ROS). The increased intracellular ROS, in turn, activates a redox-sensitive nuclear factor-κB (NF-κB) to provoke excessive neuroinflammation, resulting in memory deficits and the prolonged behavioral consequence of infection. Besides its role in regulating the gene copy number, mitochondrial transcription factor A (TFAM) is closely associated with the stabilization of mtDNA structures. Lipopolysaccharide (LPS) induces the generation of ROS from the actively respirating mitochondria as well as NADPH oxidase, and leads to the subsequent activation of the NF-κB-dependent inflammatory pathway in aging microglia. The overexpression of human TFAM improves the age-dependent prolonged LPS-induced sickness behaviors by ameliorating the mtDNA damage and reducing the resultant redox-regulated inflammatory responses. Therefore, 'microglia-aging' plays important roles in the age-dependent enhanced behavioral consequences of infection.
Collapse
|
11
|
A novel transcriptional repressor, Rhit, is involved in heat-inducible and age-dependent expression of Mpv17-like protein, a participant in reactive oxygen species metabolism. Mol Cell Biol 2010; 30:2306-15. [PMID: 20231359 DOI: 10.1128/mcb.01025-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mpv17-like protein (M-LP) is a protein that has been suggested to be involved in the metabolism of reactive oxygen species. The two M-LP isoforms in mouse, M-LP(S) and M-LP(L), are generated by the alternative usage of promoters. M-LP(S) is expressed exclusively in kidneys after the age of 6 weeks, whereas M-LP(L) is expressed ubiquitously. To elucidate the molecular basis of M-LP(S) expression, we searched for cis-regulatory elements in the promoter region of M-LP(S) and identified heat shock element half-sites as positive elements and a Tramtrack 69K (Ttk 69K) binding site as a negative element. Furthermore, we isolated a novel transcription repressor, Rhit (regulator of heat-induced transcription), that binds to the Ttk 69K binding site within the M-LP(S) promoter by DNA affinity chromatography and confirmed its participation in the transcriptional regulation of M-LP(S) by RNA interference (RNAi). Sequence analysis revealed that Rhit contains a KRAB (Krüppel-associated box) domain and a DNA-binding domain composed of eight C(2)H(2)-type zinc fingers. Interestingly, exposure to heat shock stress resulted in the upregulation of M-LP(S) expression concurrent with the downregulation of Rhit expression. Moreover, the age-dependent expression of M-LP(S) was inversely correlated with that of Rhit. These observations strongly suggest that Rhit acts as a repressor in the heat-induced and age-dependent transcriptional regulation of M-LP(S).
Collapse
|
12
|
Magoulas C, Jasim A, Lopez de Heredia L. Prediction of novel isoforms of the mouse Mpv17l protein. Genome 2010; 52:968-74. [PMID: 19935920 DOI: 10.1139/g09-061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Mpv17l protein has two isoforms, M-LPL and M-LPS, which both regulate the production of reactive oxygen species (ROS) and protect against mitochondrial oxidative stress and apoptosis. M-LPL is ubiquitously expressed, while M-LPS is expressed mostly in the kidney of aged animals. We identified a variety of transcripts of the Mpv17l gene that could encode novel isoforms by mapping expressed sequence tags on the mouse M-LP genomic locus. We analysed the expression and evolutionary conservation of a novel Mpv17l transcript (mpv17l-002) that is predicted to encode a new protein, termed M-LP2. The isoform M-LP2 has the full length of M-LPS plus six amino acids at the end of its amino terminus, which could be encoded by an alternative 5'-flanking sequence. We show that the mRNA of M-LP2 has a different pattern of expression than the mRNA of M-LPS, and sequences of both transcripts are conserved in the rodent genome; however, neither of these isoforms is detected in the human genome. These observations suggest that the functions of certain M-LP isoforms are tissue- and species-specific, implying that their potential involvement in ROS metabolism may be redundant or may be complemented by other members of the Mpv17 family.
Collapse
Affiliation(s)
- Charalambos Magoulas
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, Whitechapel, London E1 2AT, United Kingdom.
| | | | | |
Collapse
|
13
|
Tsubota E, Yasuda T, Iida R. Identification of age-dependently expressed genes in mouse liver by differential display-PCR analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 3:91-5. [PMID: 20483210 DOI: 10.1016/j.cbd.2007.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/23/2007] [Accepted: 10/23/2007] [Indexed: 12/01/2022]
Abstract
The aim of this study was to identify genes expressed in an age-dependent manner in mouse (Mus musculus) liver. To search for age-dependently expressed genes, we used a fluorescence differential display-PCR (FDD-PCR) technique on total RNA extracted from mouse livers collected at seven different developmental stages. All differentially expressed cDNAs detected by FDD-PCR were reamplified, subcloned and sequenced, and six genes were confirmed to show age-dependent expression by quantitative real-time PCR analysis. Nucleotide sequence analyses showed that four of them had high homology with known genes (mitochondrial DNA, cytosolic aldehyde dehydrogenase, cell division cycle 2-like 5 and complement component 8 alpha polypeptide), and two with expressed sequence tags of unknown genes. The FDD-PCR technique was effective for detecting novel age-dependently expressed genes, and also for newly characterizing individual expression patterns of known genes. The age-dependent expression patterns of known genes revealed in this study may provide an opportunity to investigate the unknown physiological roles of the proteins they encode.
Collapse
Affiliation(s)
- Etsuko Tsubota
- Division of Forensic Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | | | | |
Collapse
|
14
|
Affiliation(s)
- Fred G Silva
- The United States and Canadian Academy of Pathology and the Medical College of Georgia, Emory University, 3643 Walton Way Extension, Building 6, Augusta, GA 30909, USA.
| |
Collapse
|
15
|
Loilome W, Yongvanit P, Wongkham C, Tepsiri N, Sripa B, Sithithaworn P, Hanai S, Miwa M. Altered gene expression in Opisthorchis viverrini-associated cholangiocarcinoma in hamster model. Mol Carcinog 2006; 45:279-87. [PMID: 16550611 DOI: 10.1002/mc.20094] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholangiocarcinoma (CCA) induced by liver fluke (Opisthorchis viverrini, Ov) infection is one of the most common and serious disease in northeast Thailand. To elucidate the molecular mechanism of cholangiocarcinogenesis induced by Ov infection, we employed a hamster model of CCA induced by Ov and N-nitrosodimethylamine and analyzed candidate genes involved in CCA using fluorescence differential display-PCR. Of 149 differentially amplified bands we identified, the upregulation of 23 transcripts and downregulation of 1 transcript related to CCA hamsters were confirmed by a reverse northern macroarray blot. The upregulated genes include signal transduction protein kinase A regulatory subunit Ialpha (Prkar1a), myristoylated alanine-rich protein kinase C substrate, transcriptional factor LIM-4-only domain, oxysterol-binding protein involved in lipid metabolism, splicing regulatory protein 9, ubiquitin conjugating enzyme involved in protein degradation, beta tubulin, beta actin, and collagen type VI. Quantitative real-time PCR confirmed that the expression of Prkar1a was significantly higher in CCA and its precursor lesion when compared with normal liver and normal gall bladder epithelia (P<0.05). Prkar1a expression tended to increase along with the progression of biliary transformation from hyperplasia and precancerous lesions to carcinoma. These findings contribute to our understanding of the processes involved in the molecular carcinogenesis of CCA in order to provide a unique perspective on the development of new chemotherapeutics in future.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Iida R, Yasuda T, Tsubota E, Takatsuka H, Matsuki T, Kishi K. Human Mpv17-like protein is localized in peroxisomes and regulates expression of antioxidant enzymes. Biochem Biophys Res Commun 2006; 344:948-54. [PMID: 16631601 DOI: 10.1016/j.bbrc.2006.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Accepted: 04/01/2006] [Indexed: 11/28/2022]
Abstract
M-LP (Mpv17-like protein) is a protein that was initially identified in mouse tissues and shows high sequence homology with Mpv17 protein, a peroxisomal membrane protein involved in the development of early-onset glomerulosclerosis [R. Iida, T. Yasuda, E. Tsubota, H. Takatsuka, M. Masuyama, T. Matsuki, K. Kishi, M-LP, Mpv17-like protein, has a peroxisomal membrane targeting signal comprising a transmembrane domain and a positively charged loop and up-regulates expression of the manganese superoxide dismutase gene, J. Biol. Chem. 278 (2003) 6301-6306]. Here we report the identification and characterization of a human homolog of the M-LP (M-LPH) gene. The M-LPH gene is composed of four exons, extends over 14kb on chromosome 16p13.1, and is expressed as two alternatively spliced variants comprising four and three exons, respectively, which include open-reading frames encoding two distinct isoforms composed of 196 (M-LPH1) and 147 (M-LPH2) amino acids, respectively. These two variants were expressed ubiquitously in human tissues, however only M-LPH1 was detected at the protein level. Dual-color confocal analysis of COS-7 cells transfected with a green fluorescent protein-tagged M-LPH1 demonstrated that M-LPH1 is localized in peroxisomes. In order to elucidate the function of M-LPH1, we examined the mRNA levels of several enzymes involved in the metabolism of reactive oxygen species in COS-7 cells and found that transfection with M-LPH1 down-regulates expression of the plasma glutathione peroxidase and catalase genes. These results show the existence of the human homolog of M-LP and its participation in reactive oxygen species metabolism.
Collapse
Affiliation(s)
- Reiko Iida
- Division of Forensic Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Masuyama M, Iida R, Takatsuka H, Yasuda T, Matsuki T. Quantitative change in mitochondrial DNA content in various mouse tissues during aging. Biochim Biophys Acta Gen Subj 2005; 1723:302-8. [PMID: 15820144 DOI: 10.1016/j.bbagen.2005.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/24/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
In order to systematically characterize age-related changes in the mtDNA content of various tissues during aging, we analyzed the mtDNA content of eight tissues from mice at five different ages from young to senescent by quantitative real-time PCR analysis. Obvious variations of mtDNA content among the tissues were detected: There was a 20-fold range in 2-week-old mice and a 50-fold range in 15-month-old mice. The mtDNA contents of the heart, lung, kidney, spleen and skeletal muscle increased gradually with age, whereas those of bone marrow and brain showed no age-related pattern. The expression patterns of mitochondrial transcription factor A (mtTFA) and mitochondrial single-strand DNA binding protein (mtSSB), possible regulatory factors of the mtDNA copy number, were not necessarily linked with the age-related pattern of the mtDNA content, suggesting the existence of other factors that affect the mtDNA content. The Western blot analysis of mtDNA-encoded cytochrome c oxidase subunit III (MTCO3) demonstrated that the expression levels of this protein in the heart and skeletal muscle increase with age in parallel with the mtDNA content. These findings confirm that the mtDNA content of tissues changes during aging.
Collapse
Affiliation(s)
- Mika Masuyama
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-cho, Fukui 910-1193, Japan
| | | | | | | | | |
Collapse
|
18
|
Iida R, Yasuda T, Tsubota E, Takatsuka H, Masuyama M, Matsuki T, Kishi K. A novel alternative spliced Mpv17-like protein isoform localizes in cytosol and is expressed in a kidney- and adult-specific manner. Exp Cell Res 2005; 302:22-30. [PMID: 15541722 DOI: 10.1016/j.yexcr.2004.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 08/17/2004] [Indexed: 01/22/2023]
Abstract
Mpv17-like protein (M-LP) has been identified as a new protein that shows high sequence homology with Mpv17 protein, a peroxisomal membrane protein involved in the development of early onset glomerulosclerosis. We previously showed that the originally identified M-LP isoform, designated M-LPL, is, like Mpv17, localized in peroxisomes, and that transfection with M-LPL up-regulates expression of the manganese superoxide dismutase (SOD2) gene [R. Iida, T. Yasuda, E. Tsubota, H. Takatsuka, M. Masuyama, T. Matsuki, K. Kishi, M-LP, Mpv17-like protein, has a peroxisomal membrane targeting signal comprising a transmembrane domain and a positively charged loop and up-regulates expression of the manganese superoxide dismutase gene. J. Biol. Chem. 278 (2003) 6301-6306.]. We report here the identification of a novel alternative splicing product of the M-LP gene, designated M-LPS. A comparison of the genomic sequence with the cDNA sequences and an analysis of 5'-flanking regions revealed that the two isoforms are generated by alternative usage of two promoters. M-LPS consists of the C-terminal half of M-LPL (90 amino acids) and therefore lacks the peroxisome targeting signal of membrane protein that exists near the N-terminus of M-LPL. Expression of green fluorescent protein-tagged M-LPS in COS-7 cells demonstrated that M-LPS localizes in the cytosol. In mice, M-LPS is expressed exclusively in kidneys after the age of 6 weeks. Moreover, quantitative real-time PCR analysis revealed that transfection with M-LPS up-regulates expression of the SOD2 gene and down-regulates expression of the cellular glutathione peroxidase (Gpx1) and plasma glutathione peroxidase (Gpx3) genes. Taken together, these results suggest different functional attributes of the two M-LP isoforms during aging and development.
Collapse
Affiliation(s)
- Reiko Iida
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Iida R, Yasuda T, Tsubota E, Takatsuka H, Masuyama M, Matsuki T, Kishi K. M-LP, Mpv17-like protein, has a peroxisomal membrane targeting signal comprising a transmembrane domain and a positively charged loop and up-regulates expression of the manganese superoxide dismutase gene. J Biol Chem 2003; 278:6301-6. [PMID: 12471025 DOI: 10.1074/jbc.m210886200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
M-LP (Mpv17-like protein) has been identified as a new protein that has high sequence homology with Mpv17 protein, a peroxisomal membrane protein involved in the development of early onset glomerulosclerosis. In this study, we verified the peroxisomal localization of M-LP by performing dual-color confocal analysis of COS-7 cells cotransfected with green fluorescent protein-tagged M-LP and DsRED2-PTS1, a red fluorescent peroxisomal marker. To characterize the peroxisomal membrane targeting signal, we examined the intracellular localizations of several green fluorescent protein-tagged deletion mutants and demonstrated that, of the three transmembrane segments predicted, the first near the NH(2) terminus and NH(2)-terminal half of the following loop region, which is abundant in positively charged amino acids, were necessary and sufficient for peroxisomal targeting. To elucidate the function of M-LP, we examined the activities of several enzymes involved in reactive oxygen species metabolism in COS-7 cells and found that transfection with M-LP increased the superoxide dismutase activity significantly. Quantitative real-time PCR analysis revealed that the manganese SOD (SOD2) mRNA level of COS-7 cells transfected with M-LP was elevated. These results indicate that M-LP participates in reactive oxygen species metabolism.
Collapse
Affiliation(s)
- Reiko Iida
- Department of Forensic Medicine, Fukui Medical School, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Iida R, Yasuda T, Tsubota E, Takatsuka H, Masuyama M, Matsuki T, Kishi K. Five age-dependently expressed genes in mouse brain revealed by the fluorescence differential display-PCR technique. Exp Gerontol 2002; 37:1121-6. [PMID: 12213562 DOI: 10.1016/s0531-5565(02)00066-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We used a fluorescence differential display-PCR (FDD-PCR) technique to analyze the genes expressed in mouse brains collected at nine different developmental stages ranging from 3 days to 15 months after birth, and 5 age-dependently expressed genes were found. Age-dependent expression of each of these 5 genes was confirmed by quantitative real-time PCR analysis. Of the 5 genes, 4 (B1-B4) had high homology with the nucleotide sequences of cDNA clones of known mouse genes (myelin proteolipid protein, transferrin, embryo cDNA from the RIKEN full-length enriched library, and protein tyrosine phosphatase), and the rest (B5) with expressed sequence tags of an unknown gene. Sequencing analysis of the full-length cDNA constructed based on the B5 sequence demonstrated that the gene product of B5 was identical to G-substrate, a specific substrate for cGMP-dependent protein kinase. The expression patterns of known genes obtained in our study may provide a further opportunity to investigate the biological and physiological roles of the proteins they encode.
Collapse
Affiliation(s)
- R Iida
- Department of Forensic Medicine, Fukui Medical University, Matsuoka-cho, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Iyengar SK, Schelling JR, Sedor JR. Approaches to understanding susceptibility to nephropathy: from genetics to genomics. Kidney Int 2002; 61:S61-7. [PMID: 11841615 DOI: 10.1046/j.1523-1755.2002.0610s1061.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The incidence of end-stage renal disease (ESRD) is increasing worldwide despite efforts to slow the progression of chronic renal failure (CRF) by controlling blood pressure and hyperglycemia. Two available therapies for ESRD, dialysis and transplantation, are expensive and are at best palliative. Recently, data from several laboratories have demonstrated that ESRD is under substantial genetic control, and efforts to identify these genetic determinants are underway. Identifying genes for ESRD pathogenesis has several goals. First, understanding the genetic basis of ESRD offers a means to clarify the mechanisms that result in kidney pathobiology. Second, better and new treatments for prevention of progression of CRF to ESRD may be developed. Third, individuals at risk could be identified early in their course and targeted for intensive therapy. Finally, the products of genes causing disease become target molecules for gene therapy. In this article, we discuss data from our laboratories, which employ two different molecular genetic strategies for identifying ESRD pathogenesis genes. In contrast to traditional experimental design, both approaches are hypothesis generating, identifying candidate molecules for further study, rather than hypothesis driven and may provide novel insights into mechanisms of renal disease progression.
Collapse
Affiliation(s)
- Sudha K Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, and Rammelkamp Center for Research and Education, MetroHealth Medical Center, Cleveland, Ohio 44109-4945, USA.
| | | | | |
Collapse
|
22
|
Iida R, Yasuda T, Tsubota E, Matsuki T, Kishi K. Cloning, mapping, genomic organization, and expression of mouse M-LP, a new member of the peroxisomal membrane protein Mpv17 domain family. Biochem Biophys Res Commun 2001; 283:292-6. [PMID: 11327696 DOI: 10.1006/bbrc.2001.4769] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a mouse full-length cDNA and gene encoding a novel protein (M-LP), based on an expressed sequence tag (EST) sequence (GenBank Accession No. AI482564) obtained by differential display screening of age-dependently expressed genes in mouse kidney. The ML-P gene is composed of three exons, ranges over 5 kb on mouse chromosome 16B1-B2 and is expressed as two transcripts (1455 and 3058 bp), both of which include the same open-reading frame encoding 194 amino acids. M-LP is expressed mainly in kidney and spleen and shows age-dependent expression. M-LP has sequence homologies and membrane topologies very similar to the Mpv17 protein, a peroxisomal protein involved in the development of early-onset glomerulosclerosis. Search of the protein domain family database (ProDom) revealed that M-LP is a new member of the Mpv17 domain family (PD008400).
Collapse
Affiliation(s)
- R Iida
- Department of Forensic Medicine, Fukui Medical University, Matsuoka-cho, Fukui, 910-1193, Japan.
| | | | | | | | | |
Collapse
|
23
|
Benoit GR, Tong JH, Balajthy Z, Lanotte M. Exploring (novel) gene expression during retinoid-induced maturation and cell death of acute promyelocytic leukemia. Semin Hematol 2001; 38:71-85. [PMID: 11172541 DOI: 10.1016/s0037-1963(01)90007-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During recent years, reports have shown that biological responses of acute promyelocytic leukemia (APL) cells to retinoids are more complex than initially envisioned. PML-RARalpha chimeric protein disturbs various biological processes such as cell proliferation, differentiation, and apoptosis. The distinct biological programs that regulate these processes stem from specific transcriptional activation of distinct (but overlapping) sets of genes. These programs are sometimes mutually exclusive and depend on whether the signals are delivered by RAR or RXR agonists. Furthermore, evidence that retinoid nuclear signaling by retinoid, on its own, is not enough to trigger these cellular responses is rapidly accumulating. Indeed, work with NB4 cells show that the fate of APL cells treated by retinoid depends on complex signaling cross-talk. Elucidation of the sequence of events and cascades of transcriptional regulation necessary for APL cell maturation will be an additional tool with which to further improve therapy by retinoids. In this task, the classical techniques used to analyze gene expression have proved time consuming, and their yield has been limited. Global analyses of the APL cell transcriptome are needed. We review the technical approaches currently available (differential display, complementary DNA microarrays), to identify novel genes involved in the determination of cell fate.
Collapse
Affiliation(s)
- G R Benoit
- INSERM U-496, Institut Universitaire d'Hématologie, H pital Saint-Louis, Paris, France
| | | | | | | |
Collapse
|
24
|
Andreopoulos S, Papapetropoulos A. Molecular aspects of soluble guanylyl cyclase regulation. GENERAL PHARMACOLOGY 2000; 34:147-57. [PMID: 11120376 DOI: 10.1016/s0306-3623(00)00062-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme (comprised of alpha and beta subunits) that generates the intracellular second messenger cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). cGMP is subsequently important for the regulation of protein kinases, ion channels, and phosphodiesterases. Since recent evidence has demonstrated that heterodimerization of the alpha/beta subunits is essential for basal and stimulated enzymatic activity, the existence of several types of isoforms for each of the two subunits, along with their varying degrees of expression in different tissues, implies that multiple regulatory mechanisms exist for sGC. Yet, progress in studying and clarifying the regulatory processes that can alter sGC expression and activity has only slowly started being elucidated. In the following paper, we elaborate on sGC structure, function, and distribution along with recently described signaling pathways that modulate sGC gene expression.
Collapse
Affiliation(s)
- S Andreopoulos
- "George P. Livanos" Laboratory, Department of Critical Care and Pulmonary Services, Levangelismos Hospital, University of Athens, Ploutarchou 3, 5th Floor, 10675, Athens, Greece
| | | |
Collapse
|