1
|
Wong NHM, So CWE. Novel therapeutic strategies for MLL-rearranged leukemias. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194584. [PMID: 32534041 DOI: 10.1016/j.bbagrm.2020.194584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/18/2022]
Abstract
MLL rearrangement is one of the key drivers and generally regarded as an independent poor prognostic marker in acute leukemias. The standard of care for MLL-rearranged (MLL-r) leukemias has remained largely unchanged for the past 50 years despite unsatisfying clinical outcomes, so there is an urgent need for novel therapeutic strategies. An increasing body of evidence demonstrates that a vast number of epigenetic regulators are directly or indirectly involved in MLL-r leukemia, and they are responsible for supporting the aberrant gene expression program mediated by MLL-fusions. Unlike genetic mutations, epigenetic modifications can be reversed by pharmacologic targeting of the responsible epigenetic regulators. This leads to significant interest in developing epigenetic therapies for MLL-r leukemia. Intriguingly, many of the epigenetic enzymes also involve in DNA damage response (DDR), which can be potential targets for synthetic lethality-induced therapies. In this review, we will summarize some of the recent advances in the development of epigenetic and DDR therapeutics by targeting epigenetic regulators or protein complexes that mediate MLL-r leukemia gene expression program and key players in DDR that safeguard essential genome integrity. The rationale and molecular mechanisms underpinning the therapeutic effects will also be discussed with a focus on how these treatments can disrupt MLL-fusion mediated transcriptional programs and impair DDR, which may help overcome treatment resistance.
Collapse
Affiliation(s)
- Nok-Hei Mickey Wong
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK.
| |
Collapse
|
2
|
Battista S, Fedele M, Hoyos J, Pentimalli F, Pierantoni G, Visone R, De Martino I, Croce C, Fusco A. High-mobility-group A1 (HMGA1) proteins down-regulate the expression of the recombination activating gene 2 (RAG2). Biochem J 2005; 389:91-7. [PMID: 15713121 PMCID: PMC1184541 DOI: 10.1042/bj20041607] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HMGA1 (high-mobility-group A1) proteins are architectural transcription factors that are found overexpressed in embryogenesis and malignant tumours. We have shown previously that they have a role in lymphopoiesis, since the loss of HMGA1 expression leads to an impairment of T-cell development and to an increase in B-cell population. Since RAGs (recombination activating genes) are key regulators of lymphoid differentiation, in the present study we investigate whether RAG2 expression is dependent on HMGA1 activity. We show that RAG2 gene expression is up-regulated in Hmga1-/- ES (embryonic stem) cells and EBs (embryoid bodies) as well as in yolk sacs and fibroblasts from Hmga1-/- mice, suggesting that HMGA1 proteins control RAG2 gene expression both in vitro and in vivo. We show that the effect of HMGA1 on RAG2 expression is direct, identify the responsible region in the RAG2 promoter and demonstrate binding to the promoter in vivo using chromatin immunoprecipitation. Since RAG2 is necessary for lymphoid cell development, our results suggest a novel mechanism by which HMGA1 might regulate lymphoid differentiation.
Collapse
Affiliation(s)
- Sabrina Battista
- *Dipartimento di Biologia e Patologia Cellulare e Molecolare e/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, via Pansini, 5, 80131 Naples, Italy
| | - Monica Fedele
- *Dipartimento di Biologia e Patologia Cellulare e Molecolare e/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, via Pansini, 5, 80131 Naples, Italy
| | - Josefina Martinez Hoyos
- *Dipartimento di Biologia e Patologia Cellulare e Molecolare e/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, via Pansini, 5, 80131 Naples, Italy
| | - Francesca Pentimalli
- *Dipartimento di Biologia e Patologia Cellulare e Molecolare e/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, via Pansini, 5, 80131 Naples, Italy
| | - Giovanna Maria Pierantoni
- *Dipartimento di Biologia e Patologia Cellulare e Molecolare e/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, via Pansini, 5, 80131 Naples, Italy
| | - Rosa Visone
- *Dipartimento di Biologia e Patologia Cellulare e Molecolare e/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, via Pansini, 5, 80131 Naples, Italy
| | - Ivana De Martino
- *Dipartimento di Biologia e Patologia Cellulare e Molecolare e/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, via Pansini, 5, 80131 Naples, Italy
| | - Carlo Maria Croce
- †Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107, U.S.A
| | - Alfredo Fusco
- *Dipartimento di Biologia e Patologia Cellulare e Molecolare e/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, via Pansini, 5, 80131 Naples, Italy
- ‡NOGEC (Naples Oncogenomic Center)–CEINGE, Biotecnologie Avanzate, via Comunale Margherita 482, 80145, Naples, Italy
- To whom correspondence should be addressed, at Dipartimento di Biologia e Patologia Cellulare e Molecolare (email )
| |
Collapse
|
3
|
Zhang Q, Williams ES, Askin KF, Peng Y, Bedford JS, Liber HL, Bailey SM. Suppression of DNA-PK by RNAi has different quantitative effects on telomere dysfunction and mutagenesis in human lymphoblasts treated with gamma rays or HZE particles. Radiat Res 2005; 164:497-504. [PMID: 16187756 DOI: 10.1667/rr3366.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Basic to virtually all relevant biological effects of ionizing radiation is the underlying damage produced in DNA and the subsequent cellular processing of such damage. The damage can be qualitatively different for different kinds of radiations, and the genetics of the biological systems exposed can greatly affect damage processing and ultimate outcome--the biological effect of concern. The accurate repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and function. Incorrect repair of such lesions results in chromosomal rearrangements and mutations that can lead to cancer and heritable defects in the progeny of irradiated parents. We have focused on the consequent phenotypic effects of faulty repair by examining connections between cellular radiosensitivity phenotypes relevant for carcinogenesis after exposure to ionizing radiation, and deficiencies in various components of the non-homologous end-joining (NHEJ) system. Here we produced deficiencies of individual components of the DNA-dependent protein kinase (DNA-PK) holoenzyme (Ku86 and the catalytic subunit, DNA-PKcs), both singly and in combination, using RNA interference (RNAi) in human lymphoblastoid cell lines. Exposure of cells exhibiting reduced protein expression to either gamma rays or 1 GeV/nucleon iron particles demonstrated differential effects on telomere dysfunction and mutation frequency as well as differential effects between radiation qualities.
Collapse
Affiliation(s)
- Qinming Zhang
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Zhang Y, Wu X, Guo D, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z. Lesion bypass activities of human DNA polymerase mu. J Biol Chem 2002; 277:44582-7. [PMID: 12228225 DOI: 10.1074/jbc.m207297200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase mu (Polmu) is a newly discovered member of the polymerase X family with unknown cellular function. The understanding of Polmu function should be facilitated by an understanding of its biochemical activities. By using purified human Polmu for biochemical analyses, we discovered the lesion bypass activities of this polymerase in response to several types of DNA damage. When it encountered a template 8-oxoguanine, abasic site, or 1,N(6)-ethenoadenine, purified human Polmu efficiently bypassed the lesion. Even bulky DNA adducts such as N-2-acetylaminofluorene-adducted guanine, (+)- and (-)-trans-anti-benzo[a]pyrene-N(2)-dG were unable to block the polymerase activity of human Polmu. Bypass of these simple base damage and bulky adducts was predominantly achieved by human Polmu through a deletion mechanism. The Polmu specificity of nucleotide incorporation indicates that the deletion resulted from primer realignment before translesion synthesis. Purified human Polmu also effectively bypassed a template cis-syn TT dimer. However, this bypass was achieved in a mainly error-free manner with AA incorporation opposite the TT dimer. These results provide new insights into the biochemistry of human Polmu and show that efficient translesion synthesis activity is not strictly confined to the Y family polymerases.
Collapse
Affiliation(s)
- Yanbin Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington 40536, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Assembly of TCRbeta chain variable-region genes is regulated in the context of allelic exclusion. Differential epigenetic modifications of the two TCRbeta alleles established early in embryonic development may be important for permitting allelic exclusion by ordering rearrangement of the two alleles in double-negative thymocytes. Expression of a TCRbeta chain, as part of the pre-TCR complex, activates signaling pathways that enforce allelic exclusion in double-positive thymocytes. These signaling pathways, which utilize p56(lck) and SLP-76, may be distinct from those used to promote other processes initiated by pre-TCR expression. In double-positive thymocytes allelic exclusion is enforced, in part, by changes in Vbeta gene segment accessibility promoted by cis-acting elements that may be distinct from those regulating accessibility of D/Jbeta gene segments.
Collapse
Affiliation(s)
- Bernard Khor
- Washington University School of Medicine, Department of Pathology and Immunology, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110-1093, USA.
| | | |
Collapse
|
6
|
Arosio D, Cui S, Ortega C, Chovanec M, Di Marco S, Baldini G, Falaschi A, Vindigni A. Studies on the mode of Ku interaction with DNA. J Biol Chem 2002; 277:9741-8. [PMID: 11796732 DOI: 10.1074/jbc.m111916200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ku heterodimer plays a central role in non-homologous end-joining. The binding of recombinant Ku to DNA has been investigated by dynamic light scattering, double-filter binding, fluorescence spectroscopy, and band shift assays. The hydrodynamic radius of Ku in solution is 5.2 nm and does not change when a 25-bp double-strand DNA (dsDNA) fragment (D25) is added, indicating that only one Ku molecule binds to a 25-bp fragment. The dissociation constant (k(d)) for the binding to D25 is 3.8 +/- 0.9 nm. If both ends of the substrate are closed with hairpin loops, Ku is still able to bind with little change in the k(d). The k(d) is not affected by ATP, Mg(2+), or ionic strength. However, the addition of bovine serum albumin decreases the k(d) by 2-fold. DNA substrates of 50 bp can bind two Ku molecules, whereas three molecules are bound to a 75-bp substrate. Data analysis with the Hill equation yields a value of the Hill coefficient (n) close to 1, and the k(d) values for the binding of Ku to both ends of these substrates are the same. Thus, we demonstrate that there is no cooperative interaction among the Ku heterodimers binding longer substrates.
Collapse
Affiliation(s)
- Daniele Arosio
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99, Trieste I-34012, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tillman RE, Wooley AL, Hughes MM, Wehrly TD, Swat W, Sleckman BP. Restrictions limiting the generation of DNA double strand breaks during chromosomal V(D)J recombination. J Exp Med 2002; 195:309-16. [PMID: 11828005 PMCID: PMC2193590 DOI: 10.1084/jem.20011803] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Antigen receptor loci are composed of numerous variable (V), diversity (D), and joining (J) gene segments, each flanked by recombination signal sequences (RSSs). The V(D)J recombination reaction proceeds through RSS recognition and DNA cleavage steps making it possible for multiple DNA double strand breaks (DSBs) to be introduced at a single locus. Here we use ligation-mediated PCR to analyze DNA cleavage intermediates in thymocytes from mice with targeted RSS mutations at the endogenous TCRbeta locus. We show that DNA cleavage does not occur at individual RSSs but rather must be coordinated between RSS pairs flanking gene segments that ultimately form coding joins. Coordination of the DNA cleavage step occurs over great distances in the chromosome and favors intra- over interchromosomal recombination. Furthermore, through several restrictions imposed on the generation of both nonpaired and paired DNA DSBs, this requirement promotes antigen receptor gene integrity and genomic stability in developing lymphocytes undergoing V(D)J recombination.
Collapse
Affiliation(s)
- Robert E Tillman
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
8
|
Zhang Y, Wu X, Yuan F, Xie Z, Wang Z. Highly frequent frameshift DNA synthesis by human DNA polymerase mu. Mol Cell Biol 2001; 21:7995-8006. [PMID: 11689691 PMCID: PMC99967 DOI: 10.1128/mcb.21.23.7995-8006.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase mu (Polmu) is a newly identified member of the polymerase X family. The biological function of Polmu is not known, although it has been speculated that human Polmu may be a somatic hypermutation polymerase. To help understand the in vivo function of human Polmu, we have performed in vitro biochemical analyses of the purified polymerase. Unlike any other DNA polymerases studied thus far, human Polmu catalyzed frameshift DNA synthesis with an unprecedentedly high frequency. In the sequence contexts examined, -1 deletion occurred as the predominant DNA synthesis mechanism opposite the single-nucleotide repeat sequences AA, GG, TT, and CC in the template. Thus, the fidelity of DNA synthesis by human Polmu was largely dictated by the sequence context. Human Polmu was able to efficiently extend mismatched bases mainly by a frameshift synthesis mechanism. With the primer ends, containing up to four mismatches, examined, human Polmu effectively realigned the primer to achieve annealing with a microhomology region in the template several nucleotides downstream. As a result, human Polmu promoted microhomology search and microhomology pairing between the primer and the template strands of DNA. These results show that human Polmu is much more prone to cause frameshift mutations than base substitutions. The biochemical properties of human Polmu suggest a function in nonhomologous end joining and V(D)J recombination through its microhomology searching and pairing activities but do not support a function in somatic hypermutation.
Collapse
Affiliation(s)
- Y Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
9
|
Corneo B, Moshous D, Güngör T, Wulffraat N, Philippet P, Le Deist FL, Fischer A, de Villartay JP. Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. Blood 2001; 97:2772-6. [PMID: 11313270 DOI: 10.1182/blood.v97.9.2772] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omenn syndrome (OS) is an inherited disorder characterized by an absence of circulating B cells and an infiltration of the skin and the intestine by activated oligoclonal T lymphocytes, indicating that a profound defect in the lymphoid developmental program could be accountable for this condition. Inherited mutations in either the recombination activating genes RAG1 or RAG2, resulting in partial V(D)J recombinase activity, were shown to be responsible for OS. This study reports on the characterization of new RAG1/2 gene mutations in a series of 9 patients with OS. Given the occurrence of the same mutations in patients with T-B-severe combined immune deficiency or OS on 3 separate occasions, the proposal is made that an additional factor may be required in certain circumstances for the development of the Omenn phenotype. The nature of this factor is discussed.
Collapse
Affiliation(s)
- B Corneo
- Dèveloppement Normal et pathologique du Système Immunitaire, Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang H, Zeng ZC, Bui TA, Sonoda E, Takata M, Takeda S, Iliakis G. Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene 2001; 20:2212-24. [PMID: 11402316 DOI: 10.1038/sj.onc.1204350] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Revised: 02/01/2001] [Accepted: 02/05/2001] [Indexed: 12/17/2022]
Abstract
Rejoining of ionizing radiation (IR) induced DNA DSBs usually follows biphasic kinetics with a fast (t(50): 5-30 min) component attributed to DNA-PK-dependent non-homologous endjoining (NHEJ) and a slow (t(50): 1-20 h), as of yet uncharacterized, component. To examine whether homologous recombination (HR) contributes to DNA DSB rejoining, a systematic genetic study was undertaken using the hyper-recombinogenic DT40 chicken cell line and a series of mutants defective in HR. We show that DT40 cells rejoin IR-induced DNA DSBs with half times of 13 min and 4.5 h and contributions by the fast (78%) and the slow (22%) components similar to those of other vertebrate cells with 1000-fold lower levels of HR. We also show that deletion of RAD51B, RAD52 and RAD54 leaves unchanged the rejoining half times and the contribution of the slow component, as does also a conditional knock out mutant of RAD51. A significant reduction (to 37%) in the contribution of the fast component is observed in Ku70(-/-) DT40 cells, but the slow component, operating with a half time of 18.4 h, is still able to rejoin the majority (63%) of DSBs. A double mutant Ku70(-/-)/RAD54(-/-) shows similar half times to Ku70(-/-) cells. Thus, variations in HR by several orders of magnitude leave unchanged the kinetics of rejoining of DNA DSBs, and fail to modify the contribution of the slow component in a way compatible with a dependence on HR. We propose that, in contrast to yeast, cells of vertebrates are 'hard-wired' in the utilization of NHEJ as the main pathway for rejoining of IR-induced DNA DSBs and speculate that the contribution of homologous recombination repair (HRR) is at a stage after the initial rejoining.
Collapse
Affiliation(s)
- H Wang
- Department of Radiation Oncology of Kimmel Cancer Center, Jefferson Medical College, Thompson Building Room B-1, Philadelphia, Pennsylvania, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Ku, a heterodimer of Ku70 and Ku80, plays a key role in multiple nuclear processes, e.g. DNA repair, chromosome maintenance, and transcription regulation. Heterodimerization is essential for Ku-dependent DNA repair in vivo, although its role is poorly understood. Some lines of evidence suggest that heterodimerization is required for the stabilization of Ku70 and Ku80. Here we show that the heterodimerization of these Ku subunits is important for their nuclear entry. When transfected into Ku-deficient xrs-6 cells, exogenous Ku70 and Ku80 tagged with green fluorescent protein accumulated into the nucleus, whereas each nuclear localization signal (NLS)-dysfunctional mutant was undetectable in the nucleus, supporting the idea that each Ku can translocate to the nucleus through its own NLS. On the other hand, the nuclear accumulation of each NLS-dysfunctional mutant was markedly enhanced by the presence of an exogenous wild-type counterpart. In Ku-expressing HeLa cells, each NLS-dysfunctional mutant, as well as wild-type Ku70 and Ku80, was still detectable in the nucleus, whereas the double mutant of each Ku subunit with decreased functions of both nuclear targeting and dimerization was undetectable in the nucleus. Our results indicate that each Ku subunit can translocate to the nucleus not only through its own NLS but also through heterodimerization with each other.
Collapse
Affiliation(s)
- M Koike
- Genome Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | |
Collapse
|
12
|
Nitschke L, Kestler J, Tallone T, Pelkonen S, Pelkonen J. Deletion of the DQ52 element within the Ig heavy chain locus leads to a selective reduction in VDJ recombination and altered D gene usage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2540-52. [PMID: 11160315 DOI: 10.4049/jimmunol.166.4.2540] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of V(D)J recombination that leads to the assembly of Ig gene segments is tightly controlled during B cell differentiation. Two germline transcripts, one of which (mu(0)) originates from the promoter region of DQ52, may control the accessibility of the heavy chain locus. Here, we present the analysis of a mouse line in which the DQ52 gene together with its regulatory sequences is deleted by a Cre/loxP-based strategy. In F(1) (DQ52(+/-)) mice, the use of the JH3 and JH4 elements in DJ or VDJ junctions of the DQ52(-) allele was strongly reduced in both the bone marrow pre-B and spleen cells, while the JH1 and JH2 elements were used with normal frequencies. In addition, IgM(+) B cells of bone marrow and spleen used the DQ52(-) allele less frequently. On DJ joints of the DQ52(-) allele, there was 2 times less processing of JH3 ends, which resulted in clearly increased addition of P nucleotides. Although the use of D elements in DJ joints was quite similar, an altered D repertoire was found in VDJ joints of the DQ52(-) allele. In splenic B cells of the DQ52(-/-) mouse the amino acid distribution of the CDR3 was skewed, probably to compensate for the altered processing of JH3 ends. Thus, we have shown an interesting selective effect of the DQ52 region on controlling accessibility to 3' JH elements on the Ig locus, which also seems to influence the processing of DJ joints. We propose a model in which the DQ52 promoter region enhances the induction of secondary DJ rearrangements.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acids/analysis
- Animals
- Antibody Diversity/genetics
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Base Sequence
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- DNA, Complementary/isolation & purification
- Gene Deletion
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Targeting
- Genes, Immunoglobulin
- Genetic Markers/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/biosynthesis
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Joining Region/metabolism
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Immunoglobulin mu-Chains/genetics
- Immunoglobulin mu-Chains/isolation & purification
- Lymphocyte Count
- Lymphopenia/genetics
- Lymphopenia/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Regulatory Sequences, Nucleic Acid/immunology
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- L Nitschke
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Frit P, Li RY, Arzel D, Salles B, Calsou P. Ku entry into DNA inhibits inward DNA transactions in vitro. J Biol Chem 2000; 275:35684-91. [PMID: 10945984 DOI: 10.1074/jbc.m004315200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Association of the DNA end-binding Ku70/Ku80 heterodimer with the 460-kDa serine/threonine kinase catalytic subunit forms the DNA-dependent protein kinase (DNA-PK) that is required for double-strand break repair by non-homologous recombination in mammalian cells. Recently, we have proposed a model in which the kinase activity is required for translocation of the DNA end-binding subunit Ku along the DNA helix when DNA-PK assembles on DNA ends. Here, we have questioned the consequences of Ku entry into DNA on local DNA processes by using human nuclear cell extracts incubated in the presence of linearized plasmid DNA. As two model processes, we have chosen nucleotide excision repair (NER) of UVC DNA lesions and transcription from viral promoters. We show that although NER efficiency is strongly reduced on linear DNA, it can be fully restored in the presence of DNA-PK inhibitors. Simultaneously, the amount of NER proteins bound to the UVC-damaged linear DNA is increased and the amount of Ku bound to the same DNA molecules is decreased. Similarly, the poor transcription efficiency exhibited by viral promoters on linear DNA is enhanced in the presence of DNA-PK inhibitor concentrations that prevent Ku entry into the DNA substrate molecule. The present results show that DNA-PK catalytic activity can regulate DNA transactions including transcription in the vicinity of double-strand breaks by controlling Ku entry into DNA.
Collapse
Affiliation(s)
- P Frit
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 Route de Narbonne, 31077 Toulouse and the Société Française de Recherches et d'Investissements, Berganton, 33127 Saint Jean d'Illac, France
| | | | | | | | | |
Collapse
|
14
|
Abstract
Typically, immunoglobulin VHDJH recombination is performed in two steps with D to JH rearrangement preceding VH to DJH rearrangement. Using a human immunoglobulin heavy chain transgenic minilocus, we previously demonstrated that a non-conventional human D gene segment termed DIR2 could be recombined to a VH gene segment to form VHD rearrangements. Here, we demonstrate that VHD rearrangements involve conventional D gene segments as well. VHD rearrangements are easily detected and are diverse. Similarly to DJH rearrangements, VHD rearrangements occur by deletion and inversion. They occur approximately 1000 times less frequently than DJH rearrangements. VHD rearrangements can constitute intermediates for the formation of VHDDJH rearrangements.
Collapse
Affiliation(s)
- N Tuaillon
- Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
15
|
Sleckman BP, Bassing CH, Hughes MM, Okada A, D'Auteuil M, Wehrly TD, Woodman BB, Davidson L, Chen J, Alt FW. Mechanisms that direct ordered assembly of T cell receptor beta locus V, D, and J gene segments. Proc Natl Acad Sci U S A 2000; 97:7975-80. [PMID: 10869424 PMCID: PMC16655 DOI: 10.1073/pnas.130190597] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
T cell receptor (TCR) beta variable region genes are assembled in progenitor T cells from germ-line Vbeta, Dbeta, and Jbeta segments via an ordered two-step process in which Dbeta to Jbeta rearrangements occur on both alleles before appendage of a Vbeta to a preexisting DJbeta complex. Direct joining of Vbeta segments to nonrearranged Dbeta or Jbeta segments, while compatible with known restrictions on the V(D)J recombination mechanism, are infrequent within the endogenous TCRbeta locus. We have analyzed mechanisms that mediate ordered Vbeta, Dbeta, and Jbeta assembly via an approach in which TCRbeta minilocus recombination substrates were introduced into embryonic stem cells and then analyzed for rearrangement in normal thymocytes by recombinase-activating gene 2-deficient blastocyst complementation. These analyses demonstrated that Vbeta segments are preferentially targeted for rearrangement to Dbeta as opposed to Jbeta segments. In addition, we further demonstrated that Vbeta segments can be appended to nonrearranged endogenous Dbeta segments in which we have eliminated the ability of Dbeta segments to join to Jbeta segments. Our findings are discussed in the context of the mechanisms that regulate the ordered assembly and utilization of V, D, and J segments.
Collapse
Affiliation(s)
- B P Sleckman
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School and Center for Blood Research, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tuaillon N, Capra JD. Evidence that terminal deoxynucleotidyltransferase expression plays a role in Ig heavy chain gene segment utilization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6387-97. [PMID: 10843694 DOI: 10.4049/jimmunol.164.12.6387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TdT is a nuclear enzyme that catalyzes the addition of random nucleotides at Ig and TCR V(D)J junctions. In this paper we analyze human IgH rearrangements generated from transgenic minilocus mice in the presence or absence of TdT. In the absence of TdT, the pseudo-VH gene segment present in the minilocus is rearranged dramatically more frequently. Additionally, JH6 gene segment utilization is increased as well as the number of rearrangements involving only VH and JH gene segments. Thus, the recombination of IgH gene segments that are flanked by 23-nt spacer recombination signal sequences may be influenced by TdT expression. Extensive analysis indicates that these changes are independent of antigenic selection and cannot be explained by homology-mediated recombination. Thus, the role played by TdT may be more extensive than previously thought.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Base Sequence
- Cloning, Molecular
- DNA Nucleotidylexotransferase/biosynthesis
- DNA Nucleotidylexotransferase/deficiency
- DNA Nucleotidylexotransferase/genetics
- DNA Nucleotidylexotransferase/physiology
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genetic Markers/immunology
- Humans
- Immunoglobulin Heavy Chains/blood
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- N Tuaillon
- Molecualar Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
17
|
Wilson PC, Wilson K, Liu YJ, Banchereau J, Pascual V, Capra JD. Receptor revision of immunoglobulin heavy chain variable region genes in normal human B lymphocytes. J Exp Med 2000; 191:1881-94. [PMID: 10839804 PMCID: PMC2213516 DOI: 10.1084/jem.191.11.1881] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1999] [Accepted: 02/10/2000] [Indexed: 02/04/2023] Open
Abstract
Contrary to the general precepts of the clonal selection theory, several recent studies have provided evidence for the secondary rearrangement of immunoglobulin (Ig) genes in peripheral lymphoid tissues. These analyses typically used transgenic mouse models and have only detected secondary recombination of Ig light chain genes. Although Ig heavy chain variable region (V(H)) genes encode a substantial element of antibody combining site specificity, there is scant evidence for V(H) gene rearrangement in the periphery, leaving the physiological importance of peripheral recombination questionable. The extensive somatic mutations and clonality of the IgD(+)Strictly-IgM(-)CD38(+) human tonsillar B cell subpopulation have now allowed detection of the first clear examples of receptor revision of human V(H) genes. The revised VDJ genes contain "hybrid" V(H) gene segments consisting of portions from two separate germline V(H) genes, a phenomenon previously only detected due to the pressures of a transgenic system.
Collapse
Affiliation(s)
- Patrick C. Wilson
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Immunology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235
| | - Kenneth Wilson
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Yong-Jun Liu
- DNAX Research Institute, Palo Alto, California 94304-1104
| | | | - Virginia Pascual
- Baylor Institute for Immunological Research, Dallas, Texas 75204
| | - J. Donald Capra
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| |
Collapse
|
18
|
Bassing CH, Alt FW, Hughes MM, D'Auteuil M, Wehrly TD, Woodman BB, Gärtner F, White JM, Davidson L, Sleckman BP. Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature 2000; 405:583-6. [PMID: 10850719 DOI: 10.1038/35014635] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genes encoding the variable regions of lymphocyte antigen receptors are assembled from variable (V), diversity (D) and joining (J) gene segments. V(D)J recombination is initiated by the recombinase activating gene (RAG)-1 and -2 proteins, which introduce DNA double-strand breaks between the V, D and J segments and their flanking recombination signal sequences (RSSs). Generally expressed DNA repair proteins then carry out the joining reaction. The conserved heptamer and nonamer sequences of the RSSs are separated by non-conserved spacers of 12 or 23 base pairs (forming 12-RSSs and 23-RSSs). The 12/23 rule, which is mediated at the level of RAG-1/2 recognition and cutting, specifies that V(D)J recombination occurs only between a gene segment flanked by a 12-RSS and one flanked by a 23-RSS. Vbeta segments are appended to DJbeta rearrangements, with little or no direct Vbeta to Jbeta joining, despite 12/23 compatibility of Vbeta 23-RSSs and Jbeta12-RSSs. Here we use embryonic stem cells and mice with a modified T-cell receptor (TCR)beta locus containing only one Dbeta (Dbeta1) gene segment and one Jbeta (Jbeta1) gene cluster to show that the 5' Dbeta1 12-RSS, but not the Jbeta1 12-RSSs, targets rearrangement of a diverse Vbeta repertoire. This targeting is precise and position-independent. This additional restriction on V(D)J recombination has important implications for the regulation of variable region gene assembly and repertoire development.
Collapse
Affiliation(s)
- C H Bassing
- Howard Hughes Medical Institute, Children's Hospital and Department of Genetics, Harvard Medical School and The Center for Blood Research, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tuaillon N. Repertoire analysis in human immunoglobulin heavy chain minilocus transgenic, muMT/muMT mice. Mol Immunol 2000; 37:221-31. [PMID: 10930629 DOI: 10.1016/s0161-5890(00)00044-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice transgenic for the human immunoglobulin heavy chain minilocus pHCl were developed several years ago to help better understand the mechanisms of VDJ recombination and antibody response. Interestingly, these minilocus transgenic mice develop a polyclonal, extremely diverse mu human immunoglobulin heavy chain repertoire, but when immunized, they exclusively use murine immunoglobulin heavy chains. Here, the data shows that when the minilocus is transferred by cross-breeding onto the muMT background, the resulting mice (HCl-muMT/muMT mice) develop polyclonal, extremely diverse mu and gamma1 human immunoglobulin heavy chain repertoires. Our data indicates that if no antigen specific antibodies are detected in pHCl transgenic mice, it is essentially due to competition with endogenous immunoglobulin heavy chain gene segments. Moreover, the data shows that despite the presence of only one functional V(H) gene segment and despite mu and gamma1 repertoires similar to the early pre-immune human repertoire, HCl-muMT/muMT mice, can develop immune responses against proteins and haptens. Finally, the data shows that in aged HC1-muMT/muMT mice, the generation of new B-cells may be impaired and old mice may mainly rely on B-cell generated earlier in life to mount immune responses.
Collapse
Affiliation(s)
- N Tuaillon
- National Institutes of Health, National Eye Institute, Bethesda, MD 20892-1857, USA.
| |
Collapse
|
20
|
Mickelsen S, Snyder C, Trujillo K, Bogue M, Roth DB, Meek K. Modulation of Terminal Deoxynucleotidyltransferase Activity by the DNA-Dependent Protein Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Rare Ig and TCR coding joints can be isolated from mice that have a targeted deletion in the gene encoding the 86-kDa subunit of the Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). However in the coding joints isolated from Ku86−/− animals, there is an extreme paucity of N regions (the random nucleotides added during V(D)J recombination by the enzyme TdT). This finding is consistent with a decreased frequency of coding joints containing N regions isolated from C.B-17 SCID mice that express a truncated form of the catalytic subunit of the DNA-PK (DNA-PKCS). This finding suggests an unexpected role for DNA-PK in addition of N nucleotides to coding ends during V(D)J recombination. In this report, we establish that TdT forms a stable complex with DNA-PK. Furthermore, we show that DNA-PK modulates TdT activity in vitro by limiting both the length and composition of nucleotide additions.
Collapse
Affiliation(s)
- Scott Mickelsen
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Carolyn Snyder
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Kelly Trujillo
- †Department of Molecular Medicine, Institute for Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245; and
| | - Molly Bogue
- ‡Department of Microbiology and Immunology and
| | - David B. Roth
- ‡Department of Microbiology and Immunology and
- §Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | - Katheryn Meek
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
21
|
Calsou P, Frit P, Humbert O, Muller C, Chen DJ, Salles B. The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA. J Biol Chem 1999; 274:7848-56. [PMID: 10075677 DOI: 10.1074/jbc.274.12.7848] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is required for double-strand break repair in mammalian cells. DNA-PK contains the heterodimer Ku and a 460-kDa serine/threonine kinase catalytic subunit (p460). Ku binds in vitro to DNA termini or other discontinuities in the DNA helix and is able to enter the DNA molecule by an ATP-independent process. It is clear from in vitro experiments that Ku stimulates the recruitment to DNA of p460 and activates the kinase activity toward DNA-binding protein substrates in the vicinity. Here, we have examined in human nuclear cell extracts the influence of the kinase catalytic activity on Ku binding to DNA. We demonstrate that, although Ku can enter DNA from free ends in the absence of p460 subunit, the kinase activity is required for Ku translocation along the DNA helix when the whole Ku/p460 assembles on DNA termini. When the kinase activity is impaired, DNA-PK including Ku and p460 is blocked at DNA ends and prevents their processing by either DNA polymerization, degradation, or ligation. The control of Ku entry into DNA by DNA-PK catalytic activity potentially represents an important regulation of DNA transactions at DNA termini.
Collapse
Affiliation(s)
- P Calsou
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 route de Narbonne, F-31077 Toulouse Cedex, France.
| | | | | | | | | | | |
Collapse
|
22
|
Zhang P, Hammer F, Bair S, Wang J, Reeves WH, Mellon SH. Ku autoimmune antigen is involved in placental regulation of rat P450c17 gene transcription. DNA Cell Biol 1999; 18:197-208. [PMID: 10098601 DOI: 10.1089/104454999315411] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The steroidogenic enzyme P450c17 (17alpha hydroxylase/C17,20 lyase) regulates a key branchpoint in steroidogenesis, as its activity directs the steroid biosynthetic pathways toward glucocorticoid or sex hormone synthesis. Expression of the P450c17 gene is transcriptionally regulated in steroidogenic tissues by cAMP. We showed that DNA between -84 and -55 in the rat P450c17 gene was bound uniquely by steroidogenic factor-1 (SF-1), which regulated both basal and cAMP-stimulated transcription in mouse adrenocortical and Leydig cells. SF-1 gene ablation experiments in mice indicate that SF-1 is not mandatory for placental steroidogenesis. We studied P450c17 gene regulation in the placenta using human placental JEG-3 trophoblast cells. Transfection of reporter luciferase gene constructs containing serial deletions of the 5' flanking region of the rat P450c17 gene showed that DNA between -98 and +13 mediated basal and cAMP-regulated transcription in placental JEG-3 cells, as it did in adrenal and Leydig cells. DNase footprints further identified a region between -88 and the TATA box that was bound by protein. Transfection of luciferase reporter constructs containing -84 to -55 of the rat P450c17 DNA ligated to the minimal promoter of the thymidine kinase gene showed that this DNA increased both basal and cAMP-simulated luciferase activity. Gel mobility shift assays identified two DNA-protein complexes with JEG-3 cell nuclear extracts that were different from complexes formed with MA-10 cell extracts and did not involve SF-1. Mutational analysis of the -84/-55 DNA showed that JEG-3 nuclear proteins bound to a site containing, but not identical to, the SF-1 sequence. One complex involved Ku autoimmune antigen, which bound to DNA sequence specifically. Overexpression of Ku antigen in MA-10 cells stimulated rat P450c17 gene transcription, thus demonstrating a biologic effect of Ku. Ku also bound to a similar region of the human P450c17 gene, and the DNA region to which Ku bound was transcriptionally active in JEG-3 cells. Ku was also found in extracts from rat placenta and bound to the -84/-55 rat P450c17 DNA. These data demonstrate a role of Ku in regulating P450c17 gene expression. These data further indicate that although human P450c17 is not normally expressed in the placenta, factors that could activate this gene are indeed present.
Collapse
Affiliation(s)
- P Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, the Reproductive Endocrinology Center, University of California, San Francisco 94143-0556, USA
| | | | | | | | | | | |
Collapse
|
23
|
Thompson LH, Schild D. The contribution of homologous recombination in preserving genome integrity in mammalian cells. Biochimie 1999; 81:87-105. [PMID: 10214914 DOI: 10.1016/s0300-9084(99)80042-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Although it is clear that mammalian somatic cells possess the enzymatic machinery to perform homologous recombination of DNA molecules, the importance of this process in mitigating DNA damage has been uncertain. An initial genetic framework for studying homologous recombinational repair (HRR) has come from identifying relevant genes by homology or by their ability to correct mutants whose phenotypes are suggestive of recombinational defects. While yeast has been an invaluable guide, higher eukaryotes diverge in the details and complexity of HRR. For eliminating DSBs, HRR and end-joining pathways share the burden, with HRR contributing critically during S and G2 phases. It is likely that the removal of interstrand cross-links is absolutely dependent on efficient HRR, as suggested by the extraordinary sensitivity of the ercc1, xpf/ercc4, xrcc2, and xrcc3 mutants to cross-linking chemicals. Similarly, chromosome stability in untreated cells requires intact HRR, which may eliminate DSBs arising during DNA replication and thereby prevent chromosome aberrations. Complex regulation of HRR by cell cycle checkpoint and surveillance functions is suggested not only by direct interactions between human Rad51 and p53, c-Abl, and BRCA2, but also by very high recombination rates in p53-deficient cells.
Collapse
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
| | | |
Collapse
|
24
|
Zdzienicka MZ. Mammalian X-ray-sensitive mutants which are defective in non-homologous (illegitimate) DNA double-strand break repair. Biochimie 1999; 81:107-16. [PMID: 10214915 DOI: 10.1016/s0300-9084(99)80043-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In all organisms multiple pathways to repair DNA double-strand breaks (DSB) have been identified. In mammalian cells DSB are repaired by two distinct pathways, homologous and non-homologous (illegitimate) recombination. X-ray-sensitive mutants have provided a tool for the identification and understanding of the illegitimate recombination pathway in mammalian cells. Two (sub-)pathways can be distinguished, the first mediated by DNA-PK-dependent protein kinase (DNA-PK), and the second directed by the hMre11/hRad50 complex. A variety of mutants impaired in DSB repair by illegitimate recombination, with mutations in Ku, DNA-PKcs, XRCC4 or nibrin, have been described. Herein, the characterization of these mutants with respect to the impaired cellular function and the molecular defect is provided. Further studies on these mutants, as well as on new mutants impaired in as-of-yet unidentified pathways, should be helpful to a better understanding of DSB repair and of the processes leading to genome instability and cancer.
Collapse
Affiliation(s)
- M Z Zdzienicka
- MGC, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University-LUMC, The Netherlands
| |
Collapse
|
25
|
Wang J, Dong X, Reeves WH. A model for Ku heterodimer assembly and interaction with DNA. Implications for the function of Ku antigen. J Biol Chem 1998; 273:31068-74. [PMID: 9813006 DOI: 10.1074/jbc.273.47.31068] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ku autoantigen, a heterodimer of 70- and 80-kDa subunits, is a DNA end-binding factor critical for DNA repair. Two domains of p70 mediate DNA binding, one on the C-terminal and one on the N-terminal portion. The latter must dimerize with p80 in order to bind DNA, whereas the former is p80-independent. Both must be intact for end binding activity in gel shift assays. To evaluate the role of p80 in DNA binding, deletion mutants were co-expressed with full-length p70 using recombinant baculoviruses. We show by several criteria that amino acids 371-510 of p80 interact with p70. Both of the p70 dimerization domains bind to the same region of p80, but apparently to separate sites within that region. In DNA immunoprecipitation assays, amino acids 179-510 of p80 were required for p80-dependent DNA binding of p70, whereas in gel shift assays, amino acids 179-732 were necessary. Interestingly, both the p80-dependent and the p80-independent DNA binding sites preferentially bound to DNA ends, suggesting a model in which a single Ku heterodimer may juxtapose two broken DNA ends physically, facilitating their rejoining by DNA ligases.
Collapse
Affiliation(s)
- J Wang
- Departments of Medicine, Microbiology and Immunology, Thurston Arthritis Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7280, USA
| | | | | |
Collapse
|
26
|
Kirch SA, Rathbun GA, Oettinger MA. Dual role of RAG2 in V(D)J recombination: catalysis and regulation of ordered Ig gene assembly. EMBO J 1998; 17:4881-6. [PMID: 9707447 PMCID: PMC1170817 DOI: 10.1093/emboj/17.16.4881] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Immunoglobulin genes are assembled during lymphoid development by a series of site-specific rearrangements that are tightly regulated to ensure that functional antibodies are generated in B (but not T) cells and that a unique receptor is present on each cell. Because a common V(D)J recombinase comprising RAG1 and RAG2 proteins is used for both B- and T-cell antigen receptor assembly, lineage-specific rearrangement must be modulated through differential access to sites of recombination. We show here that the C-terminus of the RAG2 protein, although dispensable for the basic recombination reaction and for Ig heavy chain DH to JH joining, is essential for efficient VH to DJH rearrangement at the IgH locus. Thus, the RAG2 protein plays a dual role in V(D)J recombination, acting both in catalysis of the reaction and in governing access to particular loci.
Collapse
Affiliation(s)
- S A Kirch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
27
|
Hempel WM, Leduc I, Mathieu N, Tripathi RK, Ferrier P. Accessibility control of V(D)J recombination: lessons from gene targeting. Adv Immunol 1998; 69:309-52. [PMID: 9646847 DOI: 10.1016/s0065-2776(08)60610-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W M Hempel
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
28
|
Hale MA, Garrard WT. A targeted kappa immunoglobulin gene containing a deletion of the nuclear matrix association region exhibits spontaneous hyper-recombination in pre-B cells. Mol Immunol 1998; 35:609-20. [PMID: 9823759 DOI: 10.1016/s0161-5890(98)00060-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies employing ectopic integration of reporter genes have shown that the nuclear matrix association region (MAR) adjacent to the intronic enhancer of the mouse kappa immunoglobulin (Ig) gene is required for high level transcription of rearranged genes, demethylation, reduction of position effects and maximal somatic hypermutation in B cells. To test for the function of this MAR in its natural chromosomal environment, we pursued the 'HIT-and-RUN' procedure with the mouse pre-B cell line 103 to create a targeted MAR deletion. We observed a 'HIT' targeting frequency of 1/684 but 0/2100 'RUN' clones maintained the MAR-deleted germline locus because of an unexpected hyper-recombination for Vkappa-Jkappa joining, specifically to the MAR-deleted allele, and primarily at Jkappa4 and Jkappa5. This hyper-recombination was correlated with undermethylation of the Jkappa-Ckappa region but not with the level of local transcription. These results are consistent with the possibility that the MAR and/or DNA methylation negatively regulate(s) Vkappa-Jkappa joining during the pre-B cell stage of development.
Collapse
Affiliation(s)
- M A Hale
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235-9140, USA
| | | |
Collapse
|
29
|
Abstract
Assembly of immunoglobulin and T cell receptor genes from separate gene segments [V(D)J recombination] begins with DNA double-strand breakage by the RAG1 and RAG2 proteins, acting at a pair of recombination signal sequences (RSSs). Here, the RAG proteins are shown to reverse the cleavage reaction by joining an RSS to a broken coding sequence end. These "hybrid joints" have also been found in lymphoid cells, even when the normal pathway of DNA double-strand break repair is inactive, and can now be explained by this activity of the RAG proteins.
Collapse
Affiliation(s)
- M Melek
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | | | | |
Collapse
|
30
|
Leber R, Wise TW, Mizuta R, Meek K. The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J Biol Chem 1998; 273:1794-801. [PMID: 9430729 DOI: 10.1074/jbc.273.3.1794] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene product of XRCC4 has been implicated in both V(D)J recombination and the more general process of double strand break repair (DSBR). To date its role in these processes is unknown. Here, we describe biochemical characteristics of the murine XRCC4 protein. XRCC4 expressed in insect cells exists primarily as a disulfide-linked homodimer, although it can also form large multimers. Recombinant XRCC4 is phosphorylated during expression in insect cells. XRCC4 phosphorylation in Sf9 cells occurs on serine, threonine, and tyrosine residues. We also investigated whether XRCC4 interacts with the other factor known to be requisite for both V(D)J recombination and DSBR, the DNA-dependent protein kinase. We report that XRCC4 is an efficient in vitro substrate of DNA-PK and another unidentified serine/ threonine protein kinase(s). Both DNA-PK dependent and independent phosphorylation of XRCC4 in vitro occurs only on serine and threonine residues within the COOH-terminal 130 amino acids, a region of the molecule that is not absolutely required for XRCC4's DSBR function. Finally, recombinant XRCC4 facilitates Ku binding to DNA, promoting assembly of DNA-PK and complexing with DNA-PK bound to DNA. These data are consistent with the hypothesis that XRCC4 functions as an alignment factor in the DNA-PK complex.
Collapse
Affiliation(s)
- R Leber
- Harold C. Simmons Arthritis Research Center, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
31
|
Wang J, Dong X, Myung K, Hendrickson EA, Reeves WH. Identification of two domains of the p70 Ku protein mediating dimerization with p80 and DNA binding. J Biol Chem 1998; 273:842-8. [PMID: 9422740 DOI: 10.1074/jbc.273.2.842] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ku autoantigen is a heterodimer of 70 (p70) and approximately 80 kDa (p80) subunits that is the DNA-binding component of the DNA-dependent protein kinase (DNA-PK) complex involved in DNA repair and V(D)J recombination. Binding to DNA ends is critical to the function of DNA-PK, but how Ku interacts with DNA is not completely understood. To define the role of p70 and p80 and their dimerization in DNA binding, heterodimers were assembled by co-expressing the subunits using recombinant baculoviruses. Two p70 dimerization sites, amino acids 1-115 and 430-482, respectively, were identified. Binding of p70 to linear double-stranded DNA could be demonstrated by an immunoprecipitation assay, and required the C-terminal portion (amino acids 430-609), but not interaction with p80. The p70 mutants 1-600, 1-542, 1-115, and 430-600 did not bind DNA efficiently. However, DNA binding of 1-600, 1-542, and 1-115, but not 430-600, was restored by dimerization with p80, indicating that p70 has two DNA binding sites, each partially overlapping one of the dimerization sites. The C-terminal domain can bind DNA by itself, but the N-terminal domain requires dimerization with p80. These observations could be relevant to the multiple functional activities of Ku and explain controversies regarding the role of dimerization in DNA binding.
Collapse
Affiliation(s)
- J Wang
- Department of Medicine, Thurston Arthritis Research Center, UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7280, USA
| | | | | | | | | |
Collapse
|
32
|
Osipovich O, Durum SK, Muegge K. Defining the minimal domain of Ku80 for interaction with Ku70. J Biol Chem 1997; 272:27259-65. [PMID: 9341172 DOI: 10.1074/jbc.272.43.27259] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ku protein has a critical function in the repair of double-strand DNA breaks induced for example by ionizing radiation or during VDJ recombination. Ku serves as the DNA-binding subunit of the DNA-dependent kinase and is a heterodimeric protein composed of 80- and 70-kDa subunits. We used the two-hybrid system to analyze the interaction domains of the Ku subunits and to identify possible additional partners for Ku. Screening a human cDNA library with the Ku heterodimer did not reveal any novel partners. Screening with the individual subunits, we detected only Ku70 clones interacting with Ku80 and only Ku80 clones interacting with Ku70, indicating that these are the primary partners for one another. Ku80 and Ku70 formed only heterodimers and did not homodimerize. Ku80 was restricted to interacting with just one Ku70 molecule at a time. The minimal functional interaction domain of Ku80 that interacted with Ku70 was defined. It consisted of a 28-amino acid region extending from amino acid 449 to 477. This region was crucial for interaction with Ku70, since mutation within this critical site at amino acids 453 and 454 abrogated the ability to interact with Ku70. We furthermore verified that the same region is crucial for interaction with Ku70 using in vitro co-translation of both subunits followed by an immunoprecipitation with anti-Ku70 antibodies. This interaction domain of Ku80 does not contain any motif previously recognized in protein-protein interactions.
Collapse
Affiliation(s)
- O Osipovich
- Laboratory of Molecular Immunoregulation, NCI, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
33
|
Candéias SM, Durum SK, Muegge K. p53-dependent apoptosis and transcription of p21waf/cip1/sdi1 in SCID mice following gamma-irradiation. Biochimie 1997; 79:607-12. [PMID: 9466699 DOI: 10.1016/s0300-9084(97)82010-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recruitment and activation of DNA-repair mechanisms at the sites of DNA-damage after exposure of cells to genotoxic stress are poorly understood. The DNA-dependent kinase (DNA-PK) was considered to be a likely candidate for initiating these events because of the conditions required for its activation, its phosphorylation of p53 in vitro and the extreme radiosensitivity induced by its inactivation in vivo. We analyzed irradiation-induced p53-activation in SCID mice, which lack DNA-PK activity, and found that p53-dependent apoptosis and p21waf/cip1/sdi1 transcription in these animals are at least as efficient as in wild-type mice. Thus, our results show that DNA-PK is not the main sensor for genotoxic stress and is not required for p53 activation. In fact, they rather suggest that DNA-PK may play a role in p53 down-regulation.
Collapse
Affiliation(s)
- S M Candéias
- Intramural Research Support Program, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | |
Collapse
|
34
|
Villey I, Quartier P, Selz F, de Villartay JP. Germ-line transcription and methylation status of the TCR-J alpha locus in its accessible configuration. Eur J Immunol 1997; 27:1619-25. [PMID: 9247569 DOI: 10.1002/eji.1830270705] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have generated two in vivo mouse models to study the regulation of DNA accessibility to the V(D)J recombinase machinery in the T cell receptor (TCR)-J alpha locus. In recombination activating gene (RAG)-deficient mice, both injection of a TCR-beta chain transgene (RTB mice) or anti-CD3-epsilon treatment in vivo (RT3 mice) lead to the same phenotype with homogeneous thymocyte populations blocked at the CD4+ CD8+ double positive (DP) stage. At this developmental stage, the TCR-alpha rearrangements are about to start, and the TCR-J alpha locus is frozen in an accessible but yet unrearranged configuration in these mice. We show high level of TCR-alpha germ-line transcription in thymocytes from RTB and RT3 mice. Transcripts are skewed towards the 5' end of the TCR-J alpha locus, and the T early alpha (TEA) sterile transcript is predominant and therefore provides a useful marker for the TCR-J alpha locus opening. Analysis of the DNA methylation status reveals a global surmethylation of the TCR-J alpha locus in the thymus in comparison with non-lymphoid cells in these mice. We propose that hypermethylation of the locus could precede a progressive demethylation, providing a specific protective and regulatory role in the rearrangement events.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- CD3 Complex/immunology
- DNA Methylation
- Gene Rearrangement, T-Lymphocyte/immunology
- Germ Cells/immunology
- Germ Cells/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Promoter Regions, Genetic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sequence Deletion
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- I Villey
- INSERM U429, Hôpital Necker-enfants malades, Paris, France
| | | | | | | |
Collapse
|
35
|
Candéias S, Muegge K, Durum SK. IL-7 receptor and VDJ recombination: trophic versus mechanistic actions. Immunity 1997; 6:501-8. [PMID: 9175828 DOI: 10.1016/s1074-7613(00)80338-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S Candéias
- SAIC, Frederick Cancer Research and Development Center, National Cancer Institute, Maryland 21702, USA
| | | | | |
Collapse
|
36
|
Bailey SN, Rosenberg N. Assessing the pathogenic potential of the V(D)J recombinase by interlocus immunoglobulin light-chain gene rearrangement. Mol Cell Biol 1997; 17:887-94. [PMID: 9001243 PMCID: PMC231815 DOI: 10.1128/mcb.17.2.887] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chromosomal translocations involving antigen receptor genes and oncogenes have been observed in several forms of lymphoid malignancy. Observations of their lymphocyte-restricted occurrence and a molecular analysis of some translocation breakpoints have suggested that some of these rearrangements are generated by V(D)J recombinase activity. However, a direct correlation between this activity and the generation of such rearrangements has never been established. In addition, because these aberrant rearrangements are usually detected only after a tumor has been formed, the frequency with which the recombinase machinery generates translocations has never been assessed directly. To approach these issues, immunoglobulin light-chain gene rearrangements were induced in pre-B cells transformed by temperature-sensitive mutants of Abelson murine leukemia virus and PCR was used to identify interlocus recombinants. Vlambda Jkappa and Vkappa Jlambda rearrangements as well as signal joints resulting from the recombination of Vlambda and Jkappa coding elements were recovered and were found to be similar in structure to conventional intrachromosomal joints. Because these products were detected only when the cells were undergoing active intralocus rearrangement, they provide direct evidence that translocations can be generated by the V(D)J recombinase machinery. Dilution analyses revealed that interlocus rearrangements occur about 1,000 times less frequently than conventional intralocus rearrangements. Considering the large numbers of lymphocytes generated throughout life, aberrant rearrangements generated by the V(D)J recombinase may be relatively common.
Collapse
Affiliation(s)
- S N Bailey
- Department of Pathology and Graduate Program in Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
37
|
Villey I, Caillol D, Selz F, Ferrier P, de Villartay JP. Defect in rearrangement of the most 5' TCR-J alpha following targeted deletion of T early alpha (TEA): implications for TCR alpha locus accessibility. Immunity 1996; 5:331-42. [PMID: 8885866 DOI: 10.1016/s1074-7613(00)80259-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To address the role of the TEA germline transcription, which initiates upstream of the TCR-J alpha S, in the regulation of TCR-J alpha locus accessibility, we created a mouse in which this region has been removed by homologous recombination. Normal development of T alpha beta cells and the expression of other TCR alpha germline transcripts in TEA-/- mice ruled out an exclusive role for TEA in the overall accessibility of the J alpha cluster. However, the rearrangement of the most 5' J alpha (J alpha 61 to J alpha 53) was severely impaired, indicating that TEA may control the DNA accessibility of a particular J alpha window. Moreover, the relative usage of every J alpha segment was affected. These results are consistent with TEA acting as a "rearrangement-focusing" element, targeting the primary waves of V alpha-J alpha recombination to the most 5' J alpha S in an ongoing TCR-J alpha rearrangement model.
Collapse
Affiliation(s)
- I Villey
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | |
Collapse
|
38
|
Gorab E, Botella LM, Quinn JP, Amabis JM, Díez JL. Ku-related antigens are associated with transcriptionally active loci in Chironomus polytene chromosomes. Chromosoma 1996; 105:150-7. [PMID: 8781183 DOI: 10.1007/bf02509496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antigens of Chironomus reactive with human sera containing anti-Ku antibodies and also with specific antibodies to each Ku subunit were characterized by immunoblot analysis. Three main antigen species were identified in nuclear-enriched extracts from salivary gland cells of Chironomus thummi, ranging in Mr from 55000 to 67000. The nuclear localization of Ku-related antigens in the dipteran Chironomus was studied by immunofluorescent labeling in polytene chromosomes of the salivary glands. Balbiani rings, loci highly active in transcription, were found to be strongly labeled by anti-Ku antibodies. Sugar-induced changes in the activity of the Balbiani ring genes were accompanied by the redistribution of Ku-related antigens as visualized by their absence in regressed Balbiani ring loci, and continued presence only in those that were transcriptionally active. A drastic change in the distribution of Ku-related antigens was also observed when C. thummi larvae underwent heat treatment as the immunofluorescent staining was restricted to previously described heat shock puffs. Anti-Ku sera reacted in addition with several chromosomal bands in which the presence of RNA polymerase II was also immunologically detected. The results show that Chironomus antigens reactive with anti-Ku antibodies are related to transcription in polytene chromosomes.
Collapse
Affiliation(s)
- E Gorab
- Centro de Investigaciones Biológicas (CSIC), Velázquez 144, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Jarvis CD, Geiman T, Vila-Storm MP, Osipovich O, Akella U, Candeias S, Nathan I, Durum SK, Muegge K. A novel putative helicase produced in early murine lymphocytes. Gene 1996; 169:203-7. [PMID: 8647447 DOI: 10.1016/0378-1119(95)00843-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA helicases (Hel) play a role in a number of processes involving DNA strand separation, including replication, repair, recombination and transcription. Rearrangement of receptor genes, which occurs in immature lymphocytes, could also be mediated by Hel. We report here the cloning from murine fetal thymus tissue of a novel putative Hel containing seven conserved Hel domains and belonging to the DEGH subclass of DNA Hel. We term the encoding gene lsh (lymphoid-specific Hel), since the gene is expressed in early thymocytes, but not in heart, liver, lung, muscle, brain or kidney, as judged by Northern analysis. Spleen cells expressed lsh following activation. T- and B-cell lines, at both the immature and mature stage, expressed lsh. To examine the earliest stages of lymphopoiesis, mouse embryonic tissues were examined; lsh was not detected in the yolk sac of day 12 of gestation, but was expressed in fetal liver and at high levels in fetal thymus at day 15 of gestation.
Collapse
Affiliation(s)
- C D Jarvis
- LMI, Biological Response Modifiers Program, NCI, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Steen SB, Zhu C, Roth DB. Double-strand breaks, DNA hairpins, and the mechanism of V(D)J recombination. Curr Top Microbiol Immunol 1996; 217:61-77. [PMID: 8787618 DOI: 10.1007/978-3-642-50140-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S B Steen
- Cell and Molecular Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
41
|
Kabotyanski EB, Zhu C, Kallick DA, Roth DB. Hairpin opening by single-strand-specific nucleases. Nucleic Acids Res 1995; 23:3872-81. [PMID: 7479030 PMCID: PMC307304 DOI: 10.1093/nar/23.19.3872] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA molecules with covalently sealed (hairpin) ends are probable intermediates in V(D)J recombination. According to current models hairpin ends are opened to produce short single-stranded extensions that are thought to be precursors of a particular type of extra nucleotides, termed P nucleotides, which are frequently present at recombination junctions. Nothing is known about the activities responsible for hairpin opening. We have used two single-strand-specific nucleases to explore the effects of loop sequence on the hairpin opening reaction. Here we show that a variety of hairpin ends are opened by P1 nuclease and mung bean nuclease (MBN) to leave short, 1-2 nt single-stranded extensions. Analysis of 22 different hairpin sequences demonstrates that the terminal 4 nt of the hairpin loop strongly influence the sites of cleavage. Correlation of the nuclease digestion patterns with structural (NMR) data for some of the hairpin loops studied here provides new insights into the structural features recognized by these enzymes.
Collapse
Affiliation(s)
- E B Kabotyanski
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
42
|
Boubnov NV, Weaver DT. scid cells are deficient in Ku and replication protein A phosphorylation by the DNA-dependent protein kinase. Mol Cell Biol 1995; 15:5700-6. [PMID: 7565721 PMCID: PMC230820 DOI: 10.1128/mcb.15.10.5700] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell mutants of the Ku nuclear DNA-binding complex are ionizing radiation sensitive and show V(D)J recombination defects. Ku binds and activates a catalytic subunit of DNA-dependent protein kinase (DNA-PK), although the substrates for DNA-PK are unknown. We found that scid cell extracts were deficient in Ku phosphorylation by DNA-PK. Human chromosome 8-complemented scid cells, containing the human DNA-PK catalytic subunit, restored Ku phosphorylation. Likewise, radiation-induced RPA hyperphosphorylation was not completed in scid cells compared with control or chromosome 8-reconstituted cells. Thus, the inactivity of DNA-PK is likely responsible for the repair and recombination defects in scid cells.
Collapse
Affiliation(s)
- N V Boubnov
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Weaver D, Boubnov N, Wills Z, Hall K, Staunton J. V(D)J recombination: double-strand break repair gene products used in the joining mechanism. Ann N Y Acad Sci 1995; 764:99-111. [PMID: 7486596 DOI: 10.1111/j.1749-6632.1995.tb55811.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- D Weaver
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
44
|
Boubnov NV, Wills ZP, Weaver DT. Coding sequence composition flanking either signal element alters V(D)J recombination efficiency. Nucleic Acids Res 1995; 23:1060-7. [PMID: 7731794 PMCID: PMC306805 DOI: 10.1093/nar/23.6.1060] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lymphoid V(D)J rearrangement is targeted by recombination signal sequences (RSS) bordering V, D or J exons. We demonstrate that the DNA composition of flanking coding positions, particularly poly(A) or poly(T) stretches at one or both RSS, diminishes V(D)J recombination up to 100-fold. Positionally correct cleavages occur in the inhibited reactions, since the junctions formed show the same frequency of precision as uninhibited reactions. Open/shut cleavage/rejoining is not increased at a normal RSS in substrates containing inhibitory A/T homopolymers versus random sequence at a second RSS. Thus recombinase action at both cleavage sites is severely disrupted by modified coding sequences.
Collapse
Affiliation(s)
- N V Boubnov
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Boubnov NV, Hall KT, Wills Z, Lee SE, He DM, Benjamin DM, Pulaski CR, Band H, Reeves W, Hendrickson EA. Complementation of the ionizing radiation sensitivity, DNA end binding, and V(D)J recombination defects of double-strand break repair mutants by the p86 Ku autoantigen. Proc Natl Acad Sci U S A 1995; 92:890-4. [PMID: 7846073 PMCID: PMC42726 DOI: 10.1073/pnas.92.3.890] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two ionizing radiation-sensitive (IRs) and DNA double-strand break (DSB) mutants, sxi-3 and sxi-2, were shown to be severely deficient in a DNA end binding activity, similar to a previously described activity of the Ku autoantigen, correlating with the xrs (XRCC5) mutations. Cell fusions with xrs-6, another IRs, DSB repair-deficient cell line, defined these sxi mutants in the XRCC5 group. sxi-3 cells have low expression levels of the p86Ku mRNA. Introduction of the Ku p86 gene, but not the p70 Ku gene, complemented the IRs, DNA end binding, and variable (diversity) joining [V(D)J] recombination signal and coding junction deficiencies of sxi-3. Thus, the p86 Ku gene product is essential for DSB repair and V(D)J recombination.
Collapse
Affiliation(s)
- N V Boubnov
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | |
Collapse
|