1
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
2
|
Pinela E, Schnürer A, Neubeck A, Moestedt J, Westerholm M. Impact of additives on syntrophic propionate and acetate enrichments under high-ammonia conditions. Appl Microbiol Biotechnol 2024; 108:433. [PMID: 39110235 PMCID: PMC11306274 DOI: 10.1007/s00253-024-13263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
High ammonia concentrations in anaerobic degradation systems cause volatile fatty acid accumulation and reduced methane yield, which often derive from restricted activity of syntrophic acid-oxidising bacteria and hydrogenotrophic methanogens. Inclusion of additives that facilitate the electron transfer or increase cell proximity of syntrophic species by flocculation can be a suitable strategy to counteract these problems, but its actual impact on syntrophic interactions has yet to be determined. In this study, microbial cultivation and molecular and microscopic analysis were performed to evaluate the impact of conductive (graphene, iron oxide) and non-conductive (zeolite) additives on the degradation rate of acetate and propionate to methane by highly enriched ammonia-tolerant syntrophic cultures derived from a biogas process. All additives had a low impact on the lag phase but resulted in a higher rate of acetate (except graphene) and propionate degradation. The syntrophic bacteria 'Candidatus Syntrophopropionicum ammoniitolerans', Syntrophaceticus schinkii and a novel hydrogenotrophic methanogen were found in higher relative abundance and higher gene copy numbers in flocculating communities than in planktonic communities in the cultures, indicating benefits to syntrophs of living in close proximity to their cooperating partner. Microscopy and element analysis showed precipitation of phosphates and biofilm formation in all batches except on the graphene batches, possibly enhancing the rate of acetate and propionate degradation. Overall, the concordance of responses observed in both acetate- and propionate-fed cultures highlight the suitability of the addition of iron oxide or zeolites to enhance acid conversion to methane in high-ammonia biogas processes. KEY POINTS: • All additives promoted acetate (except graphene) and propionate degradation. • A preference for floc formation by ammonia-tolerant syntrophs was revealed. • Microbes colonised the surfaces of iron oxide and zeolite, but not graphene.
Collapse
Affiliation(s)
- Eduardo Pinela
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, 752 36, Uppsala, Sweden
| | - Jan Moestedt
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
- Department of Biogas R & D, Tekniska Verken I Linköping AB (Publ.), Box 1500, 581 15, Linköping, Sweden
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| |
Collapse
|
3
|
Zalewska J, Vivcharenko V, Belcarz A. Gypsum-Related Impact on Antibiotic-Loaded Composite Based on Highly Porous Hydroxyapatite-Advantages and Disadvantages. Int J Mol Sci 2023; 24:17178. [PMID: 38139007 PMCID: PMC10742761 DOI: 10.3390/ijms242417178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Highly porous hydroxyapatite is sometimes considered toxic and useless as a biomaterial for bone tissue regeneration because of the high adsorption of calcium and phosphate ions from cell culture media. This negatively affects the osteoblast's growth in such ion-deprived media and suggests "false cytotoxicity" of tested hydroxyapatite. In our recent study, we showed that a small addition of calcium sulfate dihydrate (CSD) may compensate for this adsorption without a negative effect on other properties of hydroxyapatite-based biomaterials. This study was designed to verify whether such CSD-supplemented biomaterials may serve as antibiotic carriers. FTIR, roughness, mechanical strength analysis, drug release, hemocompatibility, cytotoxicity against human osteoblasts, and antibacterial activity were evaluated to characterize tested biomaterials. The results showed that the addition of 1.75% gypsum and gentamicin caused short-term calcium ion compensation in media incubated with the composite. The combination of both additives also increased antibacterial activity against bacteria representative of bone infections without affecting osteoblast proliferation, hemocompatibility, and mechanical parameters. Thus, gypsum and antibiotic supplementation may provide advanced functionality for bone-regeneration materials based on hydroxyapatite of a high surface area and increasingly high Ca2+ sorption capacity.
Collapse
Affiliation(s)
- Justyna Zalewska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| |
Collapse
|
4
|
Agaras BC, Grossi CEM, Ulloa RM. Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3398. [PMID: 37836138 PMCID: PMC10574481 DOI: 10.3390/plants12193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The role of Calcium ions (Ca2+) is extensively documented and comprehensively understood in eukaryotic organisms. Nevertheless, emerging insights, primarily derived from studies on human pathogenic bacteria, suggest that this ion also plays a pivotal role in prokaryotes. In this review, our primary focus will be on unraveling the intricate Ca2+ toolkit within prokaryotic organisms, with particular emphasis on its implications for plant growth-promoting rhizobacteria (PGPR). We undertook an in silico exploration to pinpoint and identify some of the proteins described in the existing literature, including prokaryotic Ca2+ channels, pumps, and exchangers that are responsible for regulating intracellular Calcium concentration ([Ca2+]i), along with the Calcium-binding proteins (CaBPs) that play a pivotal role in sensing and transducing this essential cation. These investigations were conducted in four distinct PGPR strains: Pseudomonas chlororaphis subsp. aurantiaca SMMP3, P. donghuensis SVBP6, Pseudomonas sp. BP01, and Methylobacterium sp. 2A, which have been isolated and characterized within our research laboratories. We also present preliminary experimental data to evaluate the influence of exogenous Ca2+ concentrations ([Ca2+]ex) on the growth dynamics of these strains.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Cecilia Eugenia María Grossi
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rita María Ulloa
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
- Biochemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
5
|
Han R, Feng XQ, Vollmer W, Stoodley P, Chen J. Deciphering the adaption of bacterial cell wall mechanical integrity and turgor to different chemical or mechanical environments. J Colloid Interface Sci 2023; 640:510-520. [PMID: 36878069 DOI: 10.1016/j.jcis.2023.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Bacteria adapt the mechanical properties of their cell envelope, including cell wall stiffness, turgor, and cell wall tension and deformation, to grow and survive in harsh environments. However, it remains a technical challenge to simultaneously determine these mechanical properties at a single cell level. Here we combined theoretical modelling with an experimental approach to quantify the mechanical properties and turgor of Staphylococcus epidermidis. It was found that high osmolarity leads to a decrease in both cell wall stiffness and turgor. We also demonstrated that the turgor change is associated with a change in the viscosity of the bacterial cell. We predicted that the cell wall tension is much higher in deionized (DI) water and it decreases with an increase in osmolality. We also found that an external force increases the cell wall deformation to reinforce its adherence to a surface and this effect can be more significant in lower osmolarity. Overall, our work highlights how bacterial mechanics supports survival in harsh environments and uncovers the adaption of bacterial cell wall mechanical integrity and turgor to osmotic and mechanical challenges.
Collapse
Affiliation(s)
- Rui Han
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, OH 43210, United States; National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton S017 1BJ, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
6
|
Volkogon VV, Potapenko LV, Volkogon MV. Vertical migration of nutrients and water-soluble organic matter in the soil profile under pre-sowing seed treatment with plant growth promoting rhizobacteria. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1054113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Studies conducted in a stationary lysimeter experiment in the conditions of the washing water regime have shown that the use of PGPR for pre-sowing seed inoculation of agricultural crops reduces vertical migration of biogenic nutrients and water-soluble organic matter down the soil profile. The effect of seed inoculation with PGPR on the reduction of nutrient losses was not specific to the type of rhizobacteria and was similar for crops grown on different mineral fertilizers backgrounds (spring barley and winter rye seeds were inoculated with the nitrogen-fixing bacteria—Azospirillum brasilense 410 and A. brasilense 18-2, respectively, while maize seeds were inoculated with the phosphate-mobilizing Paenibacillus polymyxa KB). Seed inoculation has decreased nitrogen leaching down the soil profile by 4–9 kg/ha, phosphorus compounds—by 0.5–3.0 kg/ha, potassium—by 0.6–3.0 kg/ha, calcium—by 6–42 kg/ha, magnesium—by 3.0–6.0 kg/ha, water-soluble organic matter—by 0.8–8.0 kg/ha, subject to crop and norms of mineral fertilizers. Maize seeds inoculated with phosphorous-mobilizing P. polymyxa KB under crop cultivation on the cattle manure background did not affect the intensity of nutrient migration. On the other hand, the combination of green manure (narrow-leaved lupine as an intermediate crop) with pre-sowing seed inoculation had significantly reduced nutrient losses beyond the root zone soil layer. It is concluded that the use of PGPR in crop production on mineral and green manure backgrounds contributes to the preservation of soil fertility by limiting biogenic nutrients and water-soluble organic matter leaching with the water drainage down the soil profile. Pre-sowing seed inoculation had no significant effect on the vertical migration of nutrients in the soil on the background of cattle manure, due to the highly competitive environment created with the introduction of microorganisms from organic fertilizer, preventing the establishment of close interactions between PGPR and plants.
Collapse
|
7
|
Boradia V, Frando A, Grundner C. The Mycobacterium tuberculosis PE15/PPE20 complex transports calcium across the outer membrane. PLoS Biol 2022; 20:e3001906. [PMID: 36441815 PMCID: PMC9731449 DOI: 10.1371/journal.pbio.3001906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanisms by which nutrients traverse the Mycobacterium tuberculosis (Mtb) outer membrane remain mostly unknown and, in the absence of classical porins, likely involve specialized transport systems. Calcium ions (Ca2+) are an important nutrient and serve as a second messenger in eukaryotes, but whether bacteria have similar Ca2+ signaling systems is not well understood. To understand the basis for Ca2+ transport and signaling in Mtb, we determined Mtb's transcriptional response to Ca2+. Overall, only few genes changed expression, suggesting a limited role of Ca2+ as a transcriptional regulator. However, 2 of the most strongly down-regulated genes were the pe15 and ppe20 genes that code for members of a large family of proteins that localize to the outer membrane and comprise many intrinsically disordered proteins. PE15 and PPE20 formed a complex and PPE20 directly bound Ca2+. Ca2+-associated phenotypes such as increased ATP consumption and biofilm formation were reversed in a pe15/ppe20 knockout (KO) strain, suggesting a direct role in Ca2+ homeostasis. To test whether the PE15/PPE20 complex has a role in Ca2+ transport across the outer membrane, we created a fluorescence resonance energy transfer (FRET)-based Ca2+ reporter strain. A pe15/ppe20 KO in the FRET background showed a specific and selective loss of Ca2+ influx that was dependent on the presence of an intact outer cell wall. These data show that PE15/PPE20 form a Ca2+-binding protein complex that selectively imports Ca2+, show a distinct transport function for an intrinsically disordered protein, and support the emerging idea of a general family-wide role of PE/PPE proteins as idiosyncratic transporters across the outer membrane.
Collapse
Affiliation(s)
- Vishant Boradia
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Andrew Frando
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
8
|
Outer membrane protein of OmpF contributes to swimming motility, biofilm formation, osmotic response as well as the transcription of maltose metabolic genes in Citrobacter werkmanii. World J Microbiol Biotechnol 2022; 39:15. [PMID: 36401137 DOI: 10.1007/s11274-022-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022]
Abstract
Bacterial outer membrane proteins (Omps) are essential for environmental sensing, stress responses, and substance transport. Our previous study discovered that OmpA contributes to planktonic growth, biocide resistance, biofilm formation, and swimming motility in Citrobacter werkmanii, whereas the molecular functions of OmpF in this strain are largely unknown. Thus, in this study, the ompF gene was firstly knocked out from the genome of C. werkmanii using a homologous recombination method, and its phenotypical alternations of ∆ompF were then thoroughly characterized using biochemical and molecular approaches with the parental wild type (WT) and complementary (∆ompF-com) strains. The results demonstrated that the swimming ability of ∆ompF on semi-solid plates was reduced compared to WT due to the down-regulation of flgC, flgH, fliK, and fliF. Meanwhile, ompF deletion reduces biofilm formation on both glass and polystyrene surfaces due to decreased cell aggregation. Furthermore, ompF inactivation induced different osmotic stress (carbon sources and metal ions) responses in its biofilms when compared to WT and ∆ompF-com. Finally, a total of 6 maltose metabolic genes of lamB, malE, malK, malG, malM, and malF were all up-regulated in ∆ompF. The gene knockout and HPLC results revealed that the MalEFGK2 cluster was primarily responsible for maltose transport in C. werkmanii. Furthermore, we discovered for the first time that the upstream promoter of OmpF and its transcription can be combined with and negatively regulated by MalT. Overall, OmpF plays a role in a variety of biochemical processes and molecular functions in C. werkmanii, and it may even act as a targeted site to inhibit biofilm formation.
Collapse
|
9
|
ompX contribute to biofilm formation, osmotic response and swimming motility in Citrobacter werkmanii. Gene X 2022; 851:147019. [DOI: 10.1016/j.gene.2022.147019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022] Open
|
10
|
Tang MX, Pei TT, Xiang Q, Wang ZH, Luo H, Wang XY, Fu Y, Dong T. Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in Vibrio cholerae. THE ISME JOURNAL 2022; 16:1765-1775. [PMID: 35354946 PMCID: PMC9213406 DOI: 10.1038/s41396-022-01228-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 05/06/2023]
Abstract
Vibrio cholerae, the etiological pathogen of cholera, employs its type VI secretion system (T6SS) as an effective weapon to survive in highly competitive communities. Antibacterial and anti-eukaryotic functions of the T6SS depend on its secreted effectors that target multiple cellular processes. However, the mechanisms that account for effector diversity and different effectiveness during interspecies competition remain elusive. Here we report that environmental cations and temperature play a key role in dictating cellular response and effector effectiveness during interspecies competition mediated by the T6SS of V. cholerae. We found that V. cholerae could employ its cell-wall-targeting effector TseH to outcompete the otherwise resistant Escherichia coli and the V. cholerae immunity deletion mutant ∆tsiH when Mg2+ or Ca2+ was supplemented. Transcriptome and genetic analyses demonstrate that the metal-sensing PhoPQ two-component system is important for Mg2+-dependent sensitivity. Competition analysis in infant mice shows that TseH was active under in vivo conditions. Using a panel of V. cholerae single-effector active mutants, we further show that E. coli also exhibited variable susceptibilities to other T6SS effectors depending on cations and temperatures, respectively. Lastly, V. cholerae effector VasX could sensitize Pseudomonas aeruginosa to its intrinsically resistant antibiotic irgasan in a temperature-dependent manner. Collectively, these findings suggest that abiotic factors, that V. cholerae frequently encounters in natural and host environments, could modulate cellular responses and dictate the competitive fitness conferred by the T6SS effectors in complex multispecies communities.
Collapse
Affiliation(s)
- Ming-Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Yu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Liu Z, Liu J, Sun T, Zeng D, Yang C, Wang H, Yang C, Guo J, Wu Q, Chen HJ, Xie X. Integrated Multiplex Sensing Bandage for In Situ Monitoring of Early Infected Wounds. ACS Sens 2021; 6:3112-3124. [PMID: 34347450 DOI: 10.1021/acssensors.1c01279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infection, the most common complication of chronic wounds, has placed tremendous burden on patients and society. Existing care strategies could hardly reflect in situ wound status, resulting in overly aggressive or conservative therapeutic options. Multiplexed tracking of wound markers to obtain diagnostic information in a more accurate way is highly promising and in great demand for the emerging development of personalized medicine. Here, an integrated multiplex sensing bandage (MSB) system, including a multiplex sensor array (MSA), a corresponding flexible circuit, and a mobile application, was developed for real-time monitoring of sodium, potassium, calcium, pH, uric acid, and temperature indicators in the wound site to provide a quantitative diagnostic basis. The MSB was optimized for wound-oriented management applications, which exhibits a broad linear response, excellent selectivity, temporal stability, mechanical stability, reproducibility, and reliable signal transmission performance on the aforementioned physiological indicators. The results of in vivo experiments demonstrate that the MSA is capable of real-time monitoring of actual wounds as well as early prediction of infection. The results ultimately point to the potential clinical applicability of the MSB, which might benefit the quantifications of the complexity and diversity of the wound healing process. This work provides a unique strategy that holds promise for broad application in optimizing wound management and even coping with other diseases.
Collapse
Affiliation(s)
- Ziqi Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junqing Liu
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tiancheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deke Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cheng Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Vershinina ZR, Chubukova OV, Nikonorov YM, Khakimova LR, Lavina AM, Karimova LR, Baymiev AK, Baymiev AK. Effect of rosR Gene Overexpression on Biofilm Formation by Rhizobium leguminosarum. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Beg MA, Hejazi II, Thakur SC, Athar F. Domain-wise differentiation of Mycobacterium tuberculosis H 37 Rv hypothetical proteins: A roadmap to discover bacterial survival potentials. Biotechnol Appl Biochem 2021; 69:296-312. [PMID: 33469971 DOI: 10.1002/bab.2109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023]
Abstract
Proteomic information revealed approximately 3,923 proteins in Mycobacterium tuberculosis H37 Rv genome of which around ∼25% of proteins are hypothetical proteins (HPs). The present work comprises computational approaches to identify and characterize the HPs of M. tuberculosis that symbolize the putative target for rationale development of a drug or antituberculosis strategy. Proteins were primarily classified based on motif and domain information, which were further analyzed for the presence of virulence factors (VFs), determination of localization, and signal peptide/enzymatic cleavage sites. 863 HPs were found, and 599 HPs were finalized based on motifs, that is, GTP (525), Trx (47), SAM (14), PE-PGRS (5), and CBD (8). 80 HPs contain virulence factor (VF), 24 HPs localized in membrane region, and 4 HPs contain signal peptide/enzymatic cleavage sites. The overall parametric study finalizes four HPs Rv0679c, Rv0906, Rv3627c, and Rv3811 that also comprise GTPase domain. Structure prediction, structure-based function prediction, molecular docking and mutation analysis of selected proteins were done. Docking studies revealed that GTP and GTPase inhibitor (mac0182344) were docked with all four proteins with high affinities. In silico point mutation studies showed that substitution of aspartate with glycine within a GTPase motif showed the largest decrease in stability and pH differentiation also affects protein's stability. This analysis thus fixes a roadmap in the direction of finding potential target of this bacterium for drug development and enlightens the efficacy of GTP as a major regulator of Mycobacterial cellular pathways.
Collapse
Affiliation(s)
- Md Amjad Beg
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Iram Iqbal Hejazi
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
14
|
Harirchi S, Etemadifar Z, Mahboubi A, Yazdian F, Taherzadeh MJ. The Effect of Calcium/Magnesium Ratio on the Biomass Production of a Novel Thermoalkaliphilic Aeribacillus pallidus Strain with Highly Heat-Resistant Spores. Curr Microbiol 2020; 77:2565-2574. [PMID: 32361845 DOI: 10.1007/s00284-020-02010-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
Hot springs are fascinating extreme environments for the isolation of polyextremophilic microorganisms with extraordinary characteristics. Since polyextremophilic bacterial growth are not as high as routine bacteria, the objective of this study was to investigate the effect of some environmental factors on biomass and metabolites productions in the newly isolated strain, from Larijan hot spring in Iran. The strain was identified as Aeribacillus pallidus Lhs-10 and deposited as CCUG 72355 and IBRC-M 11202 in Sweden and Iran, respectively. This thermoalkaliphilic strain can grow best at 50 °C, pH 8 and in the presence of 25 g/l NaCl. The physiological characterization of this strain show that [Ca/Mg] ratio affect its growth and biomass production with the best results obtained at the ratio of 2.5. Moreover, lactic and acetic acids production by this strain was affected by pH, aeration, and temperature, where a metabolic shift was detected from lactate to acetate production when the culture was aerated. Besides, its spores could tolerate heating at 80, 85, 90, 95 and 98 °C for 30 min without any reduction in the initial spore population, whereas D-value was defined 50 min at 98 °C. This newly lactic acid-producing strain of A. pallidus can be a promising strain that can be used in the harsh conditions in industrial processes.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 8174673441, Isfahan, Iran
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 8174673441, Isfahan, Iran.
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | |
Collapse
|
15
|
Tu Y, Liu H, Shi G, Zhang F, Su T, Wu Y, Sun J, Zhang L, Zhang S, Fang H. Selectivity mechanism of magnesium and calcium in cation-binding pocket structures of phosphotyrosine. Phys Rev E 2020; 101:022410. [PMID: 32168574 DOI: 10.1103/physreve.101.022410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/27/2020] [Indexed: 11/07/2022]
Abstract
Magnesium (Mg^{2+}) and calcium (Ca^{2+}) are of essential importance in biological activity, but the molecular understanding of their selectivity is still lacking. Here, based on density functional theory calculations and ab initio molecular dynamics simulations, we show that Mg^{2+} binds more tightly to phosphotyrosine (pTyr) and stabilizes the conformation of pTyr, while Ca^{2+} binds more flexibly to pTyr with less structural stability. The key for the selectivity is attributed to the cation-π interactions between the hydrated cations and the aromatic ring together with the synergic interaction between the cations and the side groups in pTyr to form a cation-binding pocket structure, which we refer as side-group-synergetic hydrated cation-π interaction. The existence and relative strength of the cation-π interactions in the pocket structures as well as their structural stability have been demonstrated experimentally with ultraviolet (UV) absorption spectra and ^{1}H NMR spectra. The findings offer insight into understanding the selectivity of Mg^{2+} and Ca^{2+} in a variety of biochemical and physiological essential processes.
Collapse
Affiliation(s)
- Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, College of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Fengmin Zhang
- Testing Center, Yangzhou University, Jiangsu 225009, China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanyan Wu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jiajia Sun
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,School of Science, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Schrecker M, Wunnicke D, Hänelt I. How RCK domains regulate gating of K+ channels. Biol Chem 2020; 400:1303-1322. [PMID: 31361596 DOI: 10.1515/hsz-2019-0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/02/2019] [Indexed: 11/15/2022]
Abstract
Potassium channels play a crucial role in the physiology of all living organisms. They maintain the membrane potential and are involved in electrical signaling, pH homeostasis, cell-cell communication and survival under osmotic stress. Many prokaryotic potassium channels and members of the eukaryotic Slo channels are regulated by tethered cytoplasmic domains or associated soluble proteins, which belong to the family of regulator of potassium conductance (RCK). RCK domains and subunits form octameric rings, which control ion gating. For years, a common regulatory mechanism was suggested: ligand-induced conformational changes in the octameric ring would pull open a gate in the pore via flexible linkers. Consistently, ligand-dependent conformational changes were described for various RCK gating rings. Yet, recent structural and functional data of complete ion channels uncovered that the following signal transduction to the pore domains is divers. The different RCK-regulated ion channels show remarkably heterogeneous mechanisms with neither the connection from the RCK domain to the pore nor the gate being conserved. Some channels even lack the flexible linkers, while in others the gate cannot easily be assigned. In this review we compare available structures of RCK-gated potassium channels, highlight the similarities and differences of channel gating, and delineate existing inconsistencies.
Collapse
Affiliation(s)
- Marina Schrecker
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| |
Collapse
|
17
|
Mannaa M, Seo YS, Park I. Effect of Seafood (Gizzard Shad) Supplementation on the Chemical Composition and Microbial Dynamics of Radish Kimchi during Fermentation. Sci Rep 2019; 9:17693. [PMID: 31776439 PMCID: PMC6881437 DOI: 10.1038/s41598-019-54318-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/10/2019] [Indexed: 12/22/2022] Open
Abstract
This study investigated the impact of supplementing radish kimchi with slices of gizzard shad, Konosirus punctatus (boneless - BLGS, or whole - WGS) on the kimchi's chemical and microbial composition for different fermentation durations. Higher levels of amino nitrogen (N), calcium (Ca) and phosphorus (P) were observed in the supplemented kimchi groups compared to those in the control and further, Ca and P levels were highest in the WGS kimchi group. Microbial composition analysis revealed noticeable differences between the three groups at different fermentation durations. The predominant species changed from Leuconostoc rapi to Lactobacillus sakei at the optimal- and over-ripening stages in the control kimchi group. The predominant species in the BLGS kimchi group was L. rapi at all stages of fermentation, whereas the predominant species in the WGS kimchi group was L. rapi at the optimal-ripening stage, and both L. sakei and L. rapi at the over-ripening stage. Significant correlations were observed by analysis of the Spearman's rank between and within the chemical and microbial composition over fermentation durations. Altogether, gizzard shad supplementation may be used to optimize the desired microbial population to obtain the preferable fresh kimchi flavour by the release of certain inorganic elements and amino N.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Korea.,Department of Plant Pathology, Cairo University, Giza, 12613, Egypt
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Korea.
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan, 48015, Korea.
| |
Collapse
|
18
|
Fan C, Li Y, Liu P, Mu F, Xie Z, Lu R, Qi Y, Wang B, Jin C. Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:834-845. [PMID: 30978545 DOI: 10.1016/j.scitotenv.2019.03.412] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 05/23/2023]
Abstract
Bacteria are ubiquitous throughout the earth's lower atmosphere. Bacteria, especially pathogenic bacteria, play an important role in human health. The diversity, composition, and dynamics of airborne bacteria has been widely studied; however, the characteristics of pathogenic bacteria remain poorly understood. In this study, a high throughput sequencing method was used to explore the airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. An aggregated boosted tree (ABT) was developed to determine the relative influence of environmental factors on the proportions of opportunistic pathogenic bacteria. Results showed that significantly more opportunistic pathogenic bacteria were found in winter than in autumn, and more opportunistic pathogenic bacteria were found in fine particulate matters (<2.5 μm) than in PM10 (<10 μm). However, the composition of opportunistic pathogenic bacteria varied in autumn and winter. PM was the main factor affecting the proportions of opportunistic pathogenic bacteria, and air contaminants (PM, sulfur dioxide, nitrogen oxide, carbon monoxide, and ozone) influenced the proportion of opportunistic pathogenic bacteria more than meteorological factors (relative humidity, temperature, and wind speed). Different factors may be responsible for the variances in opportunistic pathogenic bacterial communities in different seasons. This study may provide a reference to support the control of pathogenic bacteria in urban environments during haze events.
Collapse
Affiliation(s)
- Chunlan Fan
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Yanpeng Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Xi'an 710054, PR China.
| | - Pengxia Liu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Feifei Mu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Zhengsheng Xie
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Rui Lu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Yuzhen Qi
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Beibei Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Cheng Jin
- School of Architecture, Chang'an University, Xi'an 710054, China
| |
Collapse
|
19
|
A Novel Calcium Uptake Transporter of Uncharacterized P-Type ATPase Family Supplies Calcium for Cell Surface Integrity in Mycobacterium smegmatis. mBio 2017; 8:mBio.01388-17. [PMID: 28951477 PMCID: PMC5615198 DOI: 10.1128/mbio.01388-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ca2+ plays an important role in the physiology of bacteria. Intracellular Ca2+ concentrations are tightly maintained in the nanomolar range. Molecular mechanisms of Ca2+ uptake in bacteria remain elusive. Here we show that CtpE is responsible for Ca2+ uptake in Mycobacterium smegmatis. It represents a previously uncharacterized P-type ATPase family in bacteria. Disruption of ctpE in M. smegmatis resulted in a mutant with impaired growth under Ca2+-deficient conditions. The growth defect of the mutant could be rescued by Ca2+ or by ectopic expression of ctpE from M. smegmatis or the orthologous gene (Rv0908) from Mycobacterium tuberculosis H37Rv. Radioactive transport assays revealed that CtpE is a Ca2+-specific transporter. Ca2+ deficiency increased expression of ctpE, resulting in increased 45Ca2+ accumulation in cells. ctpE is a gene that is part of an operon, which is negatively regulated by Ca2+. The ctpE mutant also showed hypersensitivity to polymyxin B, increased biofilm formation, and higher cell aggregation, indicating cell envelope defects. Our work establishes, for the first time, the presence of Ca2+ uptake pumps of the energy-dependent P-type ATPase superfamily in bacteria and also implicates that intracellular Ca2+ is essential for growth and cell envelope integrity in M. smegmatis. Ca2+ is essential for gene regulation, enzymatic activity, and maintenance of structural integrity of cell walls in bacteria. Bacteria maintain intracellular calcium concentrations in a narrow range, creating a gradient with low cytoplasmic calcium concentration and high extracellular calcium concentration. Due to this steep gradient, active pumps belonging to family 2 of P-type ATPases and antiporters are used for Ca2+ efflux, whereas Ca2+ uptake is usually carried out by channels. Molecular mechanisms of Ca2+ uptake in bacteria are still elusive and are mainly limited to a nonproteinaceous channel in Escherichia coli and a pH-dependent channel protein from Bacillus subtilis. Energy-dependent active transporters are not reported for Ca2+ uptake from any organism. Here we show that CtpE belonging to a family of previously uncharacterized bacterial P-type ATPases is involved in specific uptake of Ca2+ into Mycobacterium smegmatis. We also demonstrate that intracellular Ca2+ obtained through CtpE is essential for growth and maintenance of cell surface properties under Ca2+-deficient conditions.
Collapse
|
20
|
Bacon K, Boyer R, Denbow C, O'Keefe S, Neilson A, Williams R. Antibacterial activity of jalapeño pepper ( Capsicum annuum var. annuum) extract fractions against select foodborne pathogens. Food Sci Nutr 2017; 5:730-738. [PMID: 28572963 PMCID: PMC5448347 DOI: 10.1002/fsn3.453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/12/2022] Open
Abstract
Capsicum annuum fruits have been investigated for antimicrobial activity in a number of studies. Capsaicin or other cinnamic acid pathway intermediates are often suggested to be the antimicrobial component, however there are conflicting results. No research has specifically fractionated jalapeño pepper (Capsicum annuum var. annuum) extract to isolate and identify compound(s) responsible for inhibition. In this study, fractions were collected from jalapeño pepper extracts using reverse‐phase HPLC and tested for antibacterial activity using the disk diffusion method. Following initial fractionation, two fractions (E and F) displayed antibacterial activity against all three pathogens (p > .05). Commercial standards were screened to determine when they elude and it was found that capsaicin elutes at the same time as fraction E. Fractions E and F were subject to further HPLC fractionation and antibacterial analysis using two methods. The only fraction to display clear inhibition using both was fraction E1, inhibiting the growth of L. monocytogenes. Fraction E1 was analyzed using HPLC‐MS. The resulting mass spectra revealed fraction E1 contained compounds belonging to a group of C. annuum‐specific compounds known as capsianosides. Limited research is available on antibacterial activity of capsianosides, and a pure commercial standard is not available. In order to confirm the potential antimicrobial activity of the compound(s) isolated, methods need to be developed to isolate and purify capsianosides specifically from jalapeño peppers.
Collapse
Affiliation(s)
- Karleigh Bacon
- Department of Food Science and Technology Human Agriculture Biosciences Building Blacksburg VA USA
| | - Renee Boyer
- Department of Food Science and Technology Human Agriculture Biosciences Building Blacksburg VA USA
| | - Cynthia Denbow
- Department of Plant Pathology, Physiology, and Weed Science Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Sean O'Keefe
- Department of Food Science and Technology Human Agriculture Biosciences Building Blacksburg VA USA
| | - Andrew Neilson
- Department of Food Science and Technology 1013 Integrated Life Sciences Building 1 Blacksburg VA USA
| | - Robert Williams
- Department of Food Science and Technology Human Agriculture Biosciences Building Blacksburg VA USA
| |
Collapse
|
21
|
Zhou G, Shi QS, Huang XM, Xie XB. Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride. J Proteomics 2016; 133:134-143. [DOI: 10.1016/j.jprot.2015.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 11/27/2022]
|
22
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
23
|
|
24
|
Singh S, Mishra AK. Regulation of calcium ion and its effect on growth and developmental behavior in wild type and ntcA mutant of Anabaena sp. PCC 7120 under varied levels of CaCl2. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171403014x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Mishra A, Krishnan B, Srivastava SS, Sharma Y. Microbial βγ-crystallins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:42-51. [PMID: 24594023 DOI: 10.1016/j.pbiomolbio.2014.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/24/2023]
Abstract
βγ-Crystallins have emerged as a superfamily of structurally homologous proteins with representatives across the domains of life. A major portion of this superfamily is constituted by members from microorganisms. This superfamily has also been recognized as a novel group of Ca(2+)-binding proteins with huge diversity. The βγ domain shows variable properties in Ca(2+) binding, stability and association with other domains. The various members present a series of evolutionary adaptations culminating in great diversity in properties and functions. Most of the predicted βγ-crystallins are yet to be characterized experimentally. In this review, we outline the distinctive features of microbial βγ-crystallins and their position in the βγ-crystallin superfamily.
Collapse
Affiliation(s)
- Amita Mishra
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Bal Krishnan
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | | | - Yogendra Sharma
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
26
|
Effect of calcium on Staphylococcus aureus biofilm architecture: A confocal laser scanning microscopic study. Colloids Surf B Biointerfaces 2013; 103:448-54. [DOI: 10.1016/j.colsurfb.2012.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 01/29/2023]
|
27
|
Involvement of minerals in adherence of Legionella pneumophila to surfaces. Curr Microbiol 2013; 66:437-42. [PMID: 23292133 DOI: 10.1007/s00284-012-0295-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/07/2012] [Indexed: 02/05/2023]
Abstract
Legionella pneumophila is the causative agent of 90 % of Legionnaires' disease cases. This bacterium lives naturally in fresh water and can colonize biofilms, which play an important role in the protection of Legionella against environmental stress factors. Relationship between the presence of minerals in water and Legionella adherence to surfaces is not well-known. In this study, we studied influence of minerals on bacterial adherence. For the first time, to our knowledge, this report shows that calcium and magnesium in a less extent, enhances the adherence of Legionella to surfaces compared to the bacteria behavior in distilled water. Treatment with proteinase K of live cells showed that surface proteins do not seem to play a crucial role in bacteria adherence to surfaces. Our results represent a first step in understanding effect of ions on Legionella adherence to surfaces. Such field of research could be helpful to better understand biofilm colonization by this bacterium to improve Legionella risk management in water networks.
Collapse
|
28
|
Use of proteomic analysis to elucidate the role of calcium in acetone-butanol-ethanol fermentation by Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 2012; 79:282-93. [PMID: 23104411 DOI: 10.1128/aem.02969-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calcium carbonate increases growth, substrate utilization, and acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii NCIMB 8052. Toward an understanding of the basis for these pleiotropic effects, we profiled changes in the C. beijerinckii NCIMB 8052 proteome that occur in response to the addition of CaCO(3). We observed increases in the levels of different heat shock proteins (GrpE and DnaK), sugar transporters, and proteins involved in DNA synthesis, repair, recombination, and replication. We also noted significant decreases in the levels of proteins involved in metabolism, nucleic acid stabilization, sporulation, oxidative and antibiotic stress responses, and signal transduction. We determined that CaCO(3) enhances ABE fermentation due to both its buffering effects and its ability to influence key cellular processes, such as sugar transport, butanol tolerance, and solventogenesis. Moreover, activity assays in vitro for select solventogenic enzymes revealed that part of the underpinning for the CaCO(3)-mediated increase in the level of ABE fermentation stems from the enhanced activity of these catalysts in the presence of Ca(2+). Collectively, these proteomic and biochemical studies provide new insights into the multifactorial basis for the stimulation of ABE fermentation and butanol tolerance in the presence of CaCO(3).
Collapse
|
29
|
Torres LL, Ferreras ER, Cantero A, Hidalgo A, Berenguer J. Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli. Microb Cell Fact 2012; 11:105. [PMID: 22876915 PMCID: PMC3461476 DOI: 10.1186/1475-2859-11-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/03/2012] [Indexed: 12/23/2022] Open
Abstract
Background Penicillin acylases (PACs) are enzymes of industrial relevance in the manufacture of β-lactam antibiotics. Development of a PAC with a longer half-life under the reaction conditions used is essential for the improvement of the operational stability of the process. A gene encoding a homologue to Escherichia coli PAC was found in the genome of the thermophilic bacterium Thermus thermophilus (Tth) HB27. Because of the nature of this PAC and its complex maturation that is crucial to reach its functional heterodimeric final conformation, the overexpression of this enzyme in a heterologous mesophilic host was a challenge. Here we describe the purification and characterization of the PAC protein from Tth HB27 overexpressed in Escherichia coli. Results Fusions to a superfolder green fluorescent protein and differential membrane solubilization assays indicated that the native enzyme remains attached through its amino-terminal end to the outer side of the cytoplasmic membrane of Tth cells. In order to overexpress this PAC in E. coli cells, a variant of the protein devoid of its membrane anchoring segment was constructed. The effect of the co-expression of chaperones and calcium supplementation of the culture medium was investigated. The total production of PAC was enhanced by the presence of DnaK/J and GrpE and even more by trigger factor and GroEL/ES. In addition, 10 mM calcium markedly improved both PAC specific and volumetric activities. Recombinant PAC was affinity-purified and proper maturation of the protein was confirmed by SDS-PAGE and MALDI-TOF analysis of the subunits. The recombinant protein was tested for activity towards several penicillins, cephalosporins and homoserine lactones. Hydrophobic acyl-chain penicillins were preferred over the rest of the substrates. Penicillin K (octanoyl penicillin) was the best substrate, with the highest specificity constant value (16.12 mM-1.seg-1). The optimum pH was aprox. 4 and the optimum temperature was 75 °C. The half-life of the enzyme at this temperature was 9.2 h. Conclusions This is the first report concerning the heterologous expression of a pac gene from a thermophilic microorganism in the mesophilic host E. coli. The recombinant protein was identified as a penicillin K-deacylating thermozyme.
Collapse
Affiliation(s)
- Leticia L Torres
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Morino M, Ito M. Functional expression of the multi-subunit type calcium/proton antiporter from Thermomicrobium roseum. FEMS Microbiol Lett 2012; 335:26-30. [PMID: 22774932 DOI: 10.1111/j.1574-6968.2012.02634.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) antiporters are widely distributed in various prokaryotes and have been reported to function as a hetero-oligomeric monovalent cation/proton antiporter, which exchanges a cytoplasmic monovalent cation (Na(+), Li(+), and/or K(+)) with extracellular H(+). In many organisms, they are essential for survival in alkaline or saline environments. Here, we report that the Mrp antiporter from the thermophilic gram-negative bacterium, Thermomicrobium roseum, does not catalyze monovalent cation/proton antiport like the Mrp antiporters studied to date, but catalyzes Ca(2+)/H(+) antiport in Escherichia coli membrane vesicles.
Collapse
Affiliation(s)
- Masato Morino
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | | |
Collapse
|
31
|
Santamaría-Hernando S, Krell T, Ramos-González MI. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins. PLoS One 2012; 7:e40698. [PMID: 22808235 PMCID: PMC3396595 DOI: 10.1371/journal.pone.0040698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33–79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca2+ binding with a KD of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.
Collapse
Affiliation(s)
- Saray Santamaría-Hernando
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María-Isabel Ramos-González
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| |
Collapse
|
32
|
LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease. J Bacteriol 2012; 194:4406-14. [PMID: 22707708 DOI: 10.1128/jb.00642-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biofilm formation by Pseudomonas fluorescens Pf0-1 requires the cell surface adhesin LapA. We previously reported that LapG, a periplasmic cysteine protease of P. fluorescens, cleaves the N terminus of LapA, thus releasing this adhesin from the cell surface and resulting in loss of the ability to make a biofilm. The activity of LapG is regulated by the inner membrane-localized cyclic-di-GMP receptor LapD via direct protein-protein interactions. Here we present chelation and metal add-back studies demonstrating that calcium availability regulates biofilm formation by P. fluorescens Pf0-1. The determination that LapG is a calcium-dependent protease, based on in vivo and in vitro studies, explains the basis of this calcium-dependent regulation. Based on the crystal structure of LapG of Legionella pneumophila in the accompanying report by Chatterjee and colleagues (D. Chatterjee et al., J. Bacteriol. 194:4415-4425, 2012), we show that the calcium-binding residues of LapG, D134 and E136, which are near the critical C135 active-site residue, are required for LapG activity of P. fluorescens in vivo and in vitro. Furthermore, we show that mutations in D134 and E136 result in LapG proteins no longer able to interact with LapD, indicating that calcium binding results in LapG adopting a conformation competent for interaction with the protein that regulates its activity. Finally, we show that citrate, an environmentally relevant calcium chelator, can impact LapG activity and thus biofilm formation, suggesting that a physiologically relevant chelator of calcium can impact biofilm formation by this organism.
Collapse
|
33
|
Clementi EA, Marks LR, Duffey ME, Hakansson AP. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death. J Biol Chem 2012; 287:27168-82. [PMID: 22700972 DOI: 10.1074/jbc.m112.371070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.
Collapse
Affiliation(s)
- Emily A Clementi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
34
|
Extra EF Hand Unit (DX) Mediated Stabilization and Calcium Independency of α-Amylase. Mol Biotechnol 2012; 53:270-7. [DOI: 10.1007/s12033-012-9523-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Esson D, Wood SA, Packer MA. Harnessing the self-harvesting capability of benthic cyanobacteria for use in benthic photobioreactors. AMB Express 2011; 1:19. [PMID: 21906375 PMCID: PMC3222309 DOI: 10.1186/2191-0855-1-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
Benthic species of algae and cyanobacteria (i.e., those that grow on surfaces), may provide potential advantages over planktonic species for some commercial-scale biotechnological applications. A multitude of different designs of photobioreactor (PBR) are available for growing planktonic species but to date there has been little research on PBR for benthic algae or cyanobacteria. One notable advantage of some benthic cyanobacterial species is that during their growth cycle they become positively buoyant, detach from the growth surface and form floating mats. This 'self-harvesting' capability could be advantageous in commercial PBRs as it would greatly reduce dewatering costs. In this study we compared the growth rates and efficiency of 'self-harvesting' among three species of benthic cyanobacteria; Phormidium autumnale; Phormidium murrayi and Planktothrix sp.. Phormidium autumnale produced the greatest biomass and formed cohesive mats once detached. Using this strain and an optimised MLA media, a variety of geometries of benthic PBRs (bPBRs) were trialed. The geometry and composition of growth surface had a marked effect on cyanobacterial growth. The highest biomass was achieved in a bPBR comprising of a vertical polyethylene bag with loops of silicone tubing to provide additional growth surfaces. The productivity achieved in this bPBR was a similar order of magnitude as planktonic species, with the additional advantage that towards the end of the exponential phase the bulk of the biomass detached forming a dense mat at the surface of the medium.
Collapse
Affiliation(s)
- Diane Esson
- Cawthron Institute, Private Bag 2, Nelson, 7001, New Zealand
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson, 7001, New Zealand
| | | |
Collapse
|
36
|
Rigden DJ, Woodhead DD, Wong PWH, Galperin MY. New structural and functional contexts of the Dx[DN]xDG linear motif: insights into evolution of calcium-binding proteins. PLoS One 2011; 6:e21507. [PMID: 21720552 PMCID: PMC3123361 DOI: 10.1371/journal.pone.0021507] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 06/02/2011] [Indexed: 11/18/2022] Open
Abstract
Binding of calcium ions (Ca2+) to proteins can have profound effects on their structure and function. Common roles of calcium binding include structure stabilization and regulation of activity. It is known that diverse families – EF-hands being one of at least twelve – use a Dx[DN]xDG linear motif to bind calcium in near-identical fashion. Here, four novel structural contexts for the motif are described. Existing experimental data for one of them, a thermophilic archaeal subtilisin, demonstrate for the first time a role for Dx[DN]xDG-bound calcium in protein folding. An integrin-like embedding of the motif in the blade of a β-propeller fold – here named the calcium blade – is discovered in structures of bacterial and fungal proteins. Furthermore, sensitive database searches suggest a common origin for the calcium blade in β-propeller structures of different sizes and a pan-kingdom distribution of these proteins. Factors favouring the multiple convergent evolution of the motif appear to include its general Asp-richness, the regular spacing of the Asp residues and the fact that change of Asp into Gly and vice versa can occur though a single nucleotide change. Among the known structural contexts for the Dx[DN]xDG motif, only the calcium blade and the EF-hand are currently found intracellularly in large numbers, perhaps because the higher extracellular concentration of Ca2+ allows for easier fixing of newly evolved motifs that have acquired useful functions. The analysis presented here will inform ongoing efforts toward prediction of similar calcium-binding motifs from sequence information alone.
Collapse
Affiliation(s)
- Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Mutation of a broadly conserved operon (RL3499-RL3502) from Rhizobium leguminosarum biovar viciae causes defects in cell morphology and envelope integrity. J Bacteriol 2011; 193:2684-94. [PMID: 21357485 DOI: 10.1128/jb.01456-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterial cell envelope is of critical importance to the function and survival of the cell; it acts as a barrier against harmful toxins while allowing the flow of nutrients into the cell. It also serves as a point of physical contact between a bacterial cell and its host. Hence, the cell envelope of Rhizobium leguminosarum is critical to cell survival under both free-living and symbiotic conditions. Transposon mutagenesis of R. leguminosarum strain 3841 followed by a screen to isolate mutants with defective cell envelopes led to the identification of a novel conserved operon (RL3499-RL3502) consisting of a putative moxR-like AAA(+) ATPase, a hypothetical protein with a domain of unknown function (designated domain of unknown function 58), and two hypothetical transmembrane proteins. Mutation of genes within this operon resulted in increased sensitivity to membrane-disruptive agents such as detergents, hydrophobic antibiotics, and alkaline pH. On minimal media, the mutants retain their rod shape but are roughly 3 times larger than the wild type. On media containing glycine or peptides such as yeast extract, the mutants form large, distorted spheres and are incapable of sustained growth under these culture conditions. Expression of the operon is maximal during the stationary phase of growth and is reduced in a chvG mutant, indicating a role for this sensor kinase in regulation of the operon. Our findings provide the first functional insight into these genes of unknown function, suggesting a possible role in cell envelope development in Rhizobium leguminosarum. Given the broad conservation of these genes among the Alphaproteobacteria, the results of this study may also provide insight into the physiological role of these genes in other Alphaproteobacteria, including the animal pathogen Brucella.
Collapse
|
38
|
Molecular basis of bacterial calcium carbonate precipitation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:113-39. [PMID: 21877265 DOI: 10.1007/978-3-642-21230-7_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calcium carbonate precipitation is a widespread process, occurring in different bacterial taxonomic groups and in different environments, at a scale ranging from the microscopic one of cells to that of geological formations. It has relevant implications in natural processes and has great potentiality in numerous applications. For these reasons, bacterial precipitation has been investigated extensively both in natural environments and under laboratory conditions. Different mechanisms of bacterial involvement in precipitation have been proposed. There is an agreement that the phenomenon can be influenced by the environmental physicochemical conditions and it is correlated both to the metabolic activity and the cell surface structures of microorganisms. Nevertheless, the role played by bacteria in calcium mineralization remains a matter of debate. This chapter reviews the main mechanisms of the process with particular focus on what is known on molecular aspects, and discusses the significance of the precipitation event also from an evolutionary point of view.
Collapse
|
39
|
Ding R, Li Z, Chen S, Wu D, Wu J, Chen J. Enhanced secretion of recombinant α-cyclodextrin glucosyltransferase from E. coli by medium additives. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Li ZF, Li B, Liu ZG, Wang M, Gu ZB, Du GC, Wu J, Chen J. Calcium leads to further increase in glycine-enhanced extracellular secretion of recombinant alpha-cyclodextrin glycosyltransferase in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6231-6237. [PMID: 19548680 DOI: 10.1021/jf901239k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Overexpression of recombinant genes in Escherichia coli and targeting recombinant proteins to the culture medium are highly desirable for the production of industrial enzymes. However, a major barrier is inadequate secretion of recombinant protein across the two membranes of E. coli cells. In the present study, we have attempted to circumvent this secretion problem of the recombinant alpha-cyclodextrin glycosyltransferase (alpha-CGTase) from Paenibacillus macerans strain JFB05-01. It was found that glycine, as a medium supplement, could enhance the extracellular secretion of recombinant alpha-CGTase in E. coli. In the culture with glycine at the optimal concentration of 150 mM, the alpha-CGTase activity in the culture medium reached 23.5 U/mL at 40 h of culture, which was 11-fold higher than that of the culture in regular TB medium. A 2.3-fold increase in the maximum extracellular productivity of recombinant alpha-CGTase was also observed. However, further analysis indicated that glycine supplementation exerted impaired cell growth as demonstrated by reduced cell number and viability, increased cell lysis, and damaged cell morphology, which prevented further improvement in overall enzyme productivity. Significantly, Ca(2+) could remedy cell growth inhibition induced by glycine, thereby leading to further increase in the glycine-enhanced extracellular secretion of recombinant alpha-CGTase. In the culture with 150 mM glycine and 20 mM Ca(2+), both extracellular activity and maximum productivity of recombinant enzyme were 1.5-fold higher than those in the culture with glycine alone. To the best of our knowledge, this is the first article about the synergistic promoting effects of glycine and Ca(2+) on the extracellular secretion of a recombinant protein in E. coli.
Collapse
Affiliation(s)
- Zhao-Feng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hauk P, Guzzo CR, Ramos HR, Ho PL, Farah CS. Structure and Calcium-Binding Activity of LipL32, the Major Surface Antigen of Pathogenic Leptospira sp. J Mol Biol 2009; 390:722-36. [DOI: 10.1016/j.jmb.2009.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
|
42
|
Fujisawa M, Wada Y, Tsuchiya T, Ito M. Characterization of Bacillus subtilis YfkE (ChaA): a calcium-specific Ca2+/H+ antiporter of the CaCA family. Arch Microbiol 2009; 191:649-57. [PMID: 19543710 DOI: 10.1007/s00203-009-0494-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 11/29/2022]
Abstract
YfkE, a protein from Bacillus subtilis, exhibits homology to the Ca(2+):Cation Antiporter (CaCA) Family. In a fluorescence-based assay of everted membrane vesicles prepared from Na(+)(Ca(2+))/H(+) antiporter-defective mutant Escherichia coli KNabc, YfkE exhibited robust Ca(2+)/H(+) antiport activity, with a K (m) for Ca(2+) estimated at 12.5 muM at pH 8.5 and 113 muM at pH 7.5. Neither Na(+) nor K(+) served as a substrate. Mg(2+) also did not serve as a substrate, but inhibited the Ca(2+)/H(+) antiporter activity. The Ca(2+) transport capability of YfkE was also observed directly by transport assays in everted membrane vesicles using radiolabeled (45)Ca(2+). Transcriptional analysis from the putative yfkED operon using beta-garactosidase activity as a reporter revealed that both of the yfkE and yfkD genes are regulated by forespore-specific sigma factor, SigG, and the general stress response regulator, SigB. These results suggest that YfkE may be needed for Ca(2+) signaling in the sporulation or germination process in B. subtilis. ChaA is proposed as the designation for YfkE of B. subtilis.
Collapse
Affiliation(s)
- Makoto Fujisawa
- Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | | | | | | |
Collapse
|
43
|
Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, Harms H, Müller S. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4',6'-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol 2009; 75:2111-21. [PMID: 19181836 PMCID: PMC2663203 DOI: 10.1128/aem.01540-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 01/15/2009] [Indexed: 11/20/2022] Open
Abstract
Wastewater treatment plants with enhanced biological phosphorus removal represent a state-of-the-art technology. Nevertheless, the process of phosphate removal is prone to occasional failure. One reason is the lack of knowledge about the structure and function of the bacterial communities involved. Most of the bacteria are still not cultivable, and their functions during the wastewater treatment process are therefore unknown or subject of speculation. Here, flow cytometry was used to identify bacteria capable of polyphosphate accumulation within highly diverse communities. A novel fluorescent staining technique for the quantitative detection of polyphosphate granules on the cellular level was developed. It uses the bright green fluorescence of the antibiotic tetracycline when it complexes the divalent cations acting as a countercharge in polyphosphate granules. The dynamics of cellular DNA contents and cell sizes as growth indicators were determined in parallel to detect the most active polyphosphate-accumulating individuals/subcommunities and to determine their phylogenetic affiliation upon cell sorting. Phylotypes known as polyphosphate-accumulating organisms, such as a "Candidatus Accumulibacter"-like phylotype, were found, as well as members of the genera Pseudomonas and Tetrasphaera. The new method allows fast and convenient monitoring of the growth and polyphosphate accumulation dynamics of not-yet-cultivated bacteria in wastewater bacterial communities.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/isolation & purification
- Bacteria/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Flow Cytometry/methods
- Genes, rRNA
- Indoles/metabolism
- Molecular Sequence Data
- Phylogeny
- Polyphosphates/metabolism
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Staining and Labeling
- Tetracycline/metabolism
- Water Microbiology
- Water Purification
Collapse
Affiliation(s)
- S Günther
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Koç C. The effects of the environment and ecology projects on lake management and water quality. ENVIRONMENTAL MONITORING AND ASSESSMENT 2008; 146:397-409. [PMID: 18604633 DOI: 10.1007/s10661-008-0446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/11/2008] [Indexed: 05/26/2023]
Abstract
In this study, the characteristics, benefits, and effects of the environment and ecology project, which has been implemented in Turkey for the first time to restore the natural life that has been spoilt and the ecological balance of Lake Bafa located in Great Meander Basin, are searched. Moreover, the water samples taken from the stations that were spotted in the lake have been analyzed for the physical and chemical changes taking place in water quality before and after the project. The water cycle occurring as a result of giving water that was raised in Great Meander River by the Rubber regulator, which is the most important element of the project, through the Serçin inlet and feeder channel; and draining the saline and low-quality water to the river bed of the Great Meander, will improve the water quality, the natural life, and the ecological balance of the lake in time. Thanks to the water given to the lake within the scope of project, the salinity of the lake water decreased from 25,500 to 22,500 mmhos cm( - 1). The electrical conductivity, Na+, Mg+2, Ca+2, Cl(-), CO3(-2), HCO3(-), and the amount of the organic substances were found as over the appropriate values for fishery. Besides, the decreases in the amounts of NO3(-), HN3(-) and PO4(-3) affect the living beings in the lake negatively. In addition, the measures to take are specified, so that the natural life of the Lake and the ecological balance can renew themselves within a short time.
Collapse
Affiliation(s)
- Cengiz Koç
- State Hydraulic Works (DSI), XXIst Regional Directorate, 09020, Aydin, Turkey.
| |
Collapse
|
45
|
pH and monovalent cations regulate cytosolic free Ca2+ in E. coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1415-22. [DOI: 10.1016/j.bbamem.2008.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/28/2008] [Accepted: 02/12/2008] [Indexed: 11/24/2022]
|
46
|
CabC, an EF-hand calcium-binding protein, is involved in Ca2+-mediated regulation of spore germination and aerial hypha formation in Streptomyces coelicolor. J Bacteriol 2008; 190:4061-8. [PMID: 18375559 DOI: 10.1128/jb.01954-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ca(2+) was reported to regulate spore germination and aerial hypha formation in streptomycetes; the underlying mechanism of this regulation is not known. cabC, a gene encoding an EF-hand calcium-binding protein, was disrupted or overexpressed in Streptomyces coelicolor M145. On R5- agar, the disruption of cabC resulted in denser aerial hyphae with more short branches, swollen hyphal tips, and early-germinating spores on the spore chain, while cabC overexpression significantly delayed development. Manipulation of the Ca(2+) concentration in R5- agar could reverse the phenotypes of cabC disruption or overexpression mutants and mimic mutant phenotypes with M145, suggesting that the mutant phenotypes were due to changes in the intracellular Ca(2+) concentration. CabC expression was strongly activated in aerial hyphae, as determined by Western blotting against CabC and confocal laser scanning microscopy detection of CabC::enhanced green fluorescent protein (EGFP). CabC::EGFP fusion proteins were evenly distributed in substrate mycelia, aerial mycelia, and spores. Taken together, these results demonstrate that CabC is involved in Ca(2+)-mediated regulation of spore germination and aerial hypha formation in S. coelicolor. CabC most likely acts as a Ca(2+) buffer and exerts its regulatory effects by controlling the intracellular Ca(2+) concentration.
Collapse
|
47
|
Campbell AK, Naseem R, Holland IB, Matthews SB, Wann KT. Methylglyoxal and other carbohydrate metabolites induce lanthanum-sensitive Ca2+ transients and inhibit growth in E. coli. Arch Biochem Biophys 2007; 468:107-13. [DOI: 10.1016/j.abb.2007.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/07/2007] [Accepted: 09/09/2007] [Indexed: 01/10/2023]
|
48
|
Naseem R, Davies SR, Jones H, Wann KT, Holland IB, Campbell AK. Cytosolic Ca2+ regulates protein expression in E. coli through release from inclusion bodies. Biochem Biophys Res Commun 2007; 360:33-9. [PMID: 17583677 DOI: 10.1016/j.bbrc.2007.05.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 05/25/2007] [Indexed: 11/28/2022]
Abstract
The results here are the first clear demonstration of a physiological role for cytosolic Ca(2+) in Escherichia coli by releasing a Ca(2+) binding protein, apoaequorin, from inclusion bodies. In growth medium LB the cytosolic free Ca(2+) was 0.1-0.3 microM. Addition of EGTA reduced this to <0.1 microM, whereas addition of Ca(2+) (10mM) resulted in a cytosolic free Ca(2+) of 1-2 microM for at least 2h. Ca(2+) caused a 1.5- to 2-fold increase in the level of apoaequorin induced by IPTG. Whereas EGTA induced a 50% decrease. The effect of a Ca(2+) was explained by release of protein from the inclusion bodies, together with a stabilisation of apoaequorin against degradation. Ca(2+) also reduced the generation time by 4-5 min. These results have important implications for unravelling the physiological role of cytosolic Ca(2+) in bacteria, particularly where several species are competing for the same nutrients, such as in the gut.
Collapse
Affiliation(s)
- Riffat Naseem
- Department of Medical Biochemistry and Immunology, Tenovus building, Cardiff University, Heath Park, Cardiff CF14 XN, UK
| | | | | | | | | | | |
Collapse
|
49
|
Campbell AK, Naseem R, Wann K, Holland IB, Matthews SB. Fermentation product butane 2,3-diol induces Ca2+ transients in E. coli through activation of lanthanum-sensitive Ca2+ channels. Cell Calcium 2007; 41:97-106. [PMID: 16842848 DOI: 10.1016/j.ceca.2006.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/11/2006] [Accepted: 05/14/2006] [Indexed: 12/17/2022]
Abstract
The results here are the first demonstration of a physiological agonist opening Ca2+ channels in bacteria. Bacteria in the gut ferment glucose and other substrates, producing alcohols, diols, ketones and acids, that play a key role in lactose intolerance, through the activation of Ca2+ and other ion channels in host cells and neighbouring bacteria. Here we show butane 2,3-diol (5-200mM; half maximum 25mM) activates Ca2+ transients in E. coli, monitored by aequorin. Ca2+-transient magnitude depended on external Ca2+ (0.1-10mM). meso-Butane 2,3-diol was approximately twice as potent as 2R,3R (-) and 2S,3S (+) butane 2,3-diol. There were no detectable effects on cytosolic free Ca2+ of butane 1,3-diol, butane 1,4-diol and ethylene glycol. The glycerol fermentation product propane 1,3-diol only induced significant Ca2+ transients in 10mM external Ca2. Ca2+ butane 2,3-diol Ca2+ transients were due to activation of Ca2+ influx, followed by activation of Ca2+ efflux. The effect of butane 2,3-diol was abolished by La3+, and markedly reduced as a function of growth phase. These results were consistent with butane 2,3-diol activating a novel La3+-sensitive Ca2+ channel. They have important implications for the role of butane 2,3-diol and Ca2+ in bacterial-host cell signalling.
Collapse
Affiliation(s)
- Anthony K Campbell
- Department of Medical Biochemistry and Immunology, School of Medicine, Tenovus Building, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
50
|
Barton LL, Goulhen F, Bruschi M, Woodards NA, Plunkett RM, Rietmeijer FJM. The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. Biometals 2007; 20:291-302. [PMID: 17216357 DOI: 10.1007/s10534-006-9059-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
In bacteria, the intracellular metal content or metallome reflects the metabolic requirements of the cell. When comparing the composition of metals in phytoplankton and bacteria that make up the macronutrients and the trace elements, we have determined that the content of trace elements in both of these microorganisms is markedly similar. The trace metals consisting of transition metals plus zinc are present in a stoichometric molar formula that we have calculated to be as follows: Fe(1)Mn(0.3)Zn(0.26)Cu(0.03)Co(0.03)Mo(0.03). Under conditions of routine cultivation, trace metal homeostasis may be maintained by a series of transporter systems that are energized by the cell. In specific environments where heavy metals are present at toxic levels, some bacteria have developed a detoxification strategy where the metallic ion is reduced outside of the cell. The result of this extracellular metabolism is that the bacterial metallome specific for trace metals is not disrupted. One of the microorganisms that reduces toxic metals outside of the cell is the sulfate-reducing bacterium Desulfovibrio desulfuricans. While D. desulfuricans reduces metals by enzymatic processes involving polyhemic cytochromes c3 and hydrogenases, which are all present inside the cell; we report the presence of chain B cytochrome c nitrite reductase, NrfA, in the outer membrane fraction of D. desulfuricans ATCC 27774 and discuss its activity as a metal reductase.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, Laboratory of Microbial Chemistry, University of New Mexico, MSC03 2020, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | | | |
Collapse
|