1
|
Fan X, Huang T, Wang S, Yang Z, Song W, Zeng Y, Tong Y, Cai Y, Yang D, Zeng B, Zhang M, Ni Q, Li Y, Li D, Yang M. The adaptor protein 14-3-3zeta modulates intestinal immunity and aging in Drosophila. J Biol Chem 2023; 299:105414. [PMID: 37918806 PMCID: PMC10724694 DOI: 10.1016/j.jbc.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Technology Institute of Silk and Mulberry, Chong Qing Academy of Animal Sciences, Chongqing, P. R. China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yujuan Cai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwang Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingyong Ni
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Genome-Wide Identification and Expression Analysis of the 14-3-3 (TFT) Gene Family in Tomato, and the Role of SlTFT4 in Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3491. [PMID: 36559607 PMCID: PMC9781835 DOI: 10.3390/plants11243491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The 14-3-3 proteins, which are ubiquitous and highly conserved in eukaryotic cells, play an essential role in various areas of plant growth, development, and physiological processes. The tomato is one of the most valuable vegetable crops on the planet. The main objective of the present study was to perform genome-wide identification and analysis of the tomato 14-3-3 (SlTFT) family to investigate its response to different abiotic stresses and phytohormone treatments in order to provide valuable information for variety improvement. Here, 13 SlTFTs were identified using bioinformatics methods. Characterization showed that they were categorized into ε and non-ε groups with five and eight members, accounting for 38.5% and 61.5%, respectively. All the SlTFTs were hydrophilic, and most of them did not contain transmembrane structural domains. Meanwhile, the phylogeny of the SlTFTs had a strong correlation with the gene structure, conserved domains, and motifs. The SlTFTs showed non-random chromosomal distribution, and the promoter region contained more cis-acting elements related to abiotic stress tolerance and phytohormone responses. The results of the evolutionary analysis showed that the SlTFTs underwent negative purifying selection during evolution. Transcriptional profiling and gene expression pattern analysis showed that the expression levels of the SlTFTs varied considerably in different tissues and periods, and they played a specific role under various abiotic stresses and phytohormone treatments. Meanwhile, the constructed protein-based interaction network systematically broadens our understanding of SlTFTs. Finally, the virus-induced gene silencing of SlTFT4 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced salt resistance in tomatoes.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| |
Collapse
|
3
|
Wadhawan M, Ahmad F, Yadav S, Rathaur S. Proteomic Analysis Reveals Differential Protein Expression Induced by Inhibition of Prolyl Oligopeptidase in Filarial Parasites. Protein J 2022; 41:613-624. [PMID: 36271977 DOI: 10.1007/s10930-022-10080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
Prolyl oligopeptidase (POP) plays a crucial role in the processing and degradation of neuropeptides and regulates inositol trisphosphate (IP3) signaling in mammals. We have reported that POP inhibition leads to IP3-mediated calcium efflux leading to mitochondrial-mediated apoptosis in the filarial parasite Setaria cervi. This study further elucidates the effect of altered calcium homeostasis on the proteome of filarial parasites. Adult parasites were treated with POP's specific inhibitor, Z-Pro-prolinal (ZPP), for 7 h. Cytosolic and mitochondrial proteome was analyzed using 2D gel electrophoresis coupled with MALDI-MS/MS. Phosphoproteins were also analyzed in the cytosolic fraction of the parasites. The phosphoprotein analysis revealed 7, and 9 spots in the cytosolic fraction of control and ZPP-treated parasites, respectively. The two identified protein spots in the treated set were found to be involved in G protein signaling. In cytosolic fraction, 109 and 112 protein spots were observed in control and treated parasites, respectively. Of these, 56 upregulated and 32 downregulated protein spots were observed in the treated set. On the other hand, 50 and 47 protein spots were detected in the mitochondrial fraction of control and treated parasites, respectively. Of these spots, 18 upregulated and 12 down-regulated protein spots were found in treated parasites. In silico analysis showed that the identified proteins were involved in energy metabolism, calcium signaling, stress response, and cytoskeleton organization. These findings correlate with our previous results suggesting the important regulatory role of POP in signaling and different metabolic pathways of filarial parasites.
Collapse
Affiliation(s)
- Mohit Wadhawan
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Smita Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
4
|
Xue R, Tang Q, Zhang Y, Xie M, Li C, Wang S, Yang H. Integrative Analyses of Genes Associated With Otologic Disorders in Turner Syndrome. Front Genet 2022; 13:799783. [PMID: 35273637 PMCID: PMC8902304 DOI: 10.3389/fgene.2022.799783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Loss or partial loss of one X chromosome induces Turner syndrome (TS) in females, causing major medical concerns, including otologic disorders. However, the underlying genetic pathophysiology of otologic disorders in TS is mostly unclear. Methods: Ear-related genes of TS (TSEs) were identified by analyzing differentially expressed genes (DEGs) in two Gene Expression Omnibus (GEO)-derived expression profiles and ear-genes in the Comparative Toxicogenomic Database (CTD). Subsequently, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) analyses; Gene Set Enrichment Analysis (GSEA); and Gene Set Variation Analysis (GSVA) were adopted to study biological functions. Moreover, hub genes within the TSEs were identified by assessing protein-protein interaction (PPI), gene-microRNA, and gene-transcription factor (TF) networks. Drug-Gene Interaction Database (DGIdb) analysis was performed to predict molecular drugs for TS. Furthermore, three machine-learning analysis outcomes were comprehensively compared to explore optimal biomarkers of otologic disorders in TS. Finally, immune cell infiltration was analyzed. Results: The TSEs included 30 significantly upregulated genes and 14 significantly downregulated genes. Enrichment analyses suggested that TSEs play crucial roles in inflammatory responses, phospholipid and glycerolipid metabolism, transcriptional processes, and epigenetic processes, such as histone acetylation, and their importance for inner ear development. Subsequently, we described three hub genes in the PPI network and confirmed their involvement in Wnt/β-catenin signaling pathway and immune cell regulation and roles in maintaining normal auditory function. We also constructed gene-microRNA and gene-TF networks. A novel biomarker (SLC25A6) of the pathogenesis of otologic disorders in TS was identified by comprehensive comparisons of three machine-learning analyses with the best predictive performance. Potential therapeutic agents in TS were predicted using the DGIdb. Immune cell infiltration analysis showed that TSEs are related to immune-infiltrating cells. Conclusion: Overall, our findings have deepened the understanding of the pathophysiology of otologic disorders in TS and made contributions to present a promising biomarker and treatment targets for in-depth research.
Collapse
Affiliation(s)
- Ruoyan Xue
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Tang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongli Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyao Xie
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Li
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Immune regulations by 14-3-3: A misty terrain. Immunobiology 2021; 226:152145. [PMID: 34628289 DOI: 10.1016/j.imbio.2021.152145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
The 14-3-3 proteins are known for their functions related to the cell cycle and play a prominent role in cancer-related diseases. Recent studies show that 14-3-3 proteins are also regulators of immune responses and are involved in the pathogenesis of autoimmune and infectious diseases. This focused review highlights the significant and recent studies on how 14-3-3 proteins influence innate and adaptive immune responses; specifically, their roles as immunogens and cytokine signaling regulators are discussed. These revelations have added numerous questions to the pre-existing list of challenges, including understanding the 14-3-3 proteins' mechanism of immunogenicity to dissecting the isoform-specific immune regulations.
Collapse
|
6
|
Abstract
Inflammatory arthritis (IA) is a common disease that affects millions of individuals worldwide. Proinflammatory events during IA pathogenesis are well studied; however, loss of protective immunity remains underexplored. Earlier, we reported that 14-3-3zeta (ζ) has a role in T-cell polarization and interleukin (IL)-17A signal transduction. Here, we demonstrate that 14-3-3ζ knockout (KO) rats develop early-onset severe arthritis in two independent models of IA, pristane-induced arthritis and collagen-induced arthritis. Arthritic 14-3-3ζ KO animals showed an increase in bone loss and immune cell infiltration in synovial joints. Induction of arthritis coincided with the loss of anti-14-3-3ζ antibodies; however, rescue experiments to supplement the 14-3-3ζ antibody by passive immunization did not suppress arthritis. Instead, 14-3-3ζ immunization during the presymptomatic phase resulted in significant suppression of arthritis in both wild-type and 14-3-3ζ KO animals. Mechanistically, 14-3-3ζ KO rats exhibited elevated inflammatory gene signatures at the messenger RNA and protein levels, particularly for IL-1β. Furthermore, the immunization with recombinant 14-3-3ζ protein suppressed IL-1β levels, significantly increased anti-14-3-3ζ antibody levels and collagen production, and preserved bone quality. The 14-3-3ζ protein increased collagen expression in primary rat mesenchymal cells. Together, our findings indicate that 14-3-3ζ causes immune suppression and extracellular remodeling, which lead to a previously unrecognized IA-suppressive function.
Collapse
|
7
|
Zhen J, Jiao K, Yang K, Wu M, Zhou Q, Yang B, Xiao W, Hu C, Zhou M, Li Z. The 14-3-3η/GSK-3β/β-catenin complex regulates EndMT induced by 27-hydroxycholesterol in HUVECs and promotes the migration of breast cancer cells. Cell Biol Toxicol 2020; 37:515-529. [PMID: 33131013 DOI: 10.1007/s10565-020-09564-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
Endothelial-mesenchymal transition (EndMT) is the transformation of endothelial cell morphology to mesenchymal cell morphology, accompanied by decline of endothelial function and enhancement of mesenchymal function, which promotes tumor progression and tumor cell invasion and metastasis. 27-Hydroxycholesterol (27-HC) is a cholesterol metabolite, which has a high content in human blood. 27-HC promotes breast cancer cell proliferation, invasion, and migration. We previously showed that 27-HC promotes EndMT; however, the underlying mechanism still needs to be further explored. We studied the role of the 14-3-3η/GSK-3β/β-catenin complex in EndMT. Our results show that 27-HC induces oxidative stress in HUVECs and activates the p38 signaling pathway, thereby inhibiting the binding of 14-3-3η/GSK-3β/β-catenin, promoting the increase of free β-catenin and nuclear translocation, and finally inducing EndMT. Treatment with N-acetylcysteine (NAC) blocked 27-HC-induced ROS generation and p38 signaling pathway activation, prevented β-catenin from release from binding, and inhibited EndMT. Blocking ROS production or p38 signaling or knocking down 14-3-3η inhibited 27-HC-induced EndMT and inhibited breast cancer cell metastasis. These findings indicate 14-3-3η is necessary for interactions between the p38 kinase and the GSK-3β/β-catenin complex and serves as an adaptor to transmit the upstream kinase signal to the downstream signal, thereby promoting EndMT and breast cancer cell migration.
Collapse
Affiliation(s)
- Jing Zhen
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Kailin Jiao
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Keke Yang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Maoxuan Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bingmo Yang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Xiao
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
McGowan J, Peter C, Kim J, Popli S, Veerman B, Saul-McBeth J, Conti H, Pruett-Miller SM, Chattopadhyay S, Chakravarti R. 14-3-3ζ-TRAF5 axis governs interleukin-17A signaling. Proc Natl Acad Sci U S A 2020; 117:25008-25017. [PMID: 32968020 PMCID: PMC7547158 DOI: 10.1073/pnas.2008214117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IL-17A is a therapeutic target in many autoimmune diseases. Most nonhematopoietic cells express IL-17A receptors and respond to extracellular IL-17A by inducing proinflammatory cytokines. The IL-17A signal transduction triggers two broad, TRAF6- and TRAF5-dependent, intracellular signaling pathways to produce representative cytokines (IL-6) and chemokines (CXCL-1), respectively. Our limited understanding of the cross-talk between these two branches has generated a crucial gap of knowledge, leading to therapeutics indiscriminately blocking IL-17A and global inhibition of its target genes. In previous work, we discovered an elevated expression of 14-3-3 proteins in inflammatory aortic disease, a rare human autoimmune disorder with increased levels of IL-17A. Here we report that 14-3-3ζ is essential for IL-17 signaling by differentially regulating the signal-induced IL-6 and CXCL-1. Using genetically manipulated human and mouse cells, and ex vivo and in vivo rat models, we uncovered a function of 14-3-3ζ. As a part of the molecular mechanism, we show that 14-3-3ζ interacts with several TRAF proteins; in particular, its interaction with TRAF5 and TRAF6 is increased in the presence of IL-17A. In contrast to TRAF6, we found TRAF5 to be an endogenous suppressor of IL-17A-induced IL-6 production, an effect countered by 14-3-3ζ. Furthermore, we observed that 14-3-3ζ interaction with TRAF proteins is required for the IL-17A-induced IL-6 levels. Together, our results show that 14-3-3ζ is an essential component of IL-17A signaling and IL-6 production, an effect that is suppressed by TRAF5. To the best of our knowledge, this report of the 14-3-3ζ-TRAF5 axis, which differentially regulates IL-17A-induced IL-6 and CXCL-1 production, is unique.
Collapse
Affiliation(s)
- Jenna McGowan
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Cara Peter
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Joshua Kim
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Sonam Popli
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Brent Veerman
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Jessica Saul-McBeth
- Department of Biological Sciences, College of Natural Sciences & Mathematics, University of Toledo, Toledo, OH 43614
| | - Heather Conti
- Department of Biological Sciences, College of Natural Sciences & Mathematics, University of Toledo, Toledo, OH 43614
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614
| | - Ritu Chakravarti
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, OH 43614;
| |
Collapse
|
9
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
10
|
Differential Subcellular Distribution and Translocation of Seven 14-3-3 Isoforms in Response to EGF and During the Cell Cycle. Int J Mol Sci 2020; 21:ijms21010318. [PMID: 31906564 PMCID: PMC6981507 DOI: 10.3390/ijms21010318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple isoforms of 14-3-3 proteins exist in different organisms. In mammalian cells, 14-3-3 protein has seven isoforms (α/β, ε, η, γ, σ, θ/τ, and δ/ζ), with α and δ representing the phosphorylated versions of β and ζ, respectively. While the existence of multiple isoforms may represent one more level of regulation in 14-3-3 signaling, our knowledge regarding the isoform-specific functions of 14-3-3 proteins is very limited. Determination of the subcellular localization of the different 14-3-3 isoforms could give us important clues of their specific functions. In this study, by using indirect immunofluorescence, subcellular fractionation, and immunoblotting, we studied the subcellular localization of the total 14-3-3 protein and each of the seven 14-3-3 isoforms; their redistribution throughout the cell cycle; and their translocation in response to EGF in Cos-7 cells. We showed that 14-3-3 proteins are broadly distributed throughout the cell and associated with many subcellular structures/organelles, including the plasma membrane (PM), mitochondria, ER, nucleus, microtubules, and actin fibers. This broad distribution underlines the multiple functions identified for 14-3-3 proteins. The different isoforms of 14-3-3 proteins have distinctive subcellular localizations, which suggest their distinctive cellular functions. Most notably, 14-3-3ƞ is almost exclusively localized to the mitochondria, 14-3-3γ is only localized to the nucleus, and 14-3-3σ strongly and specifically associated with the centrosome during mitosis. We also examined the subcellular localization of the seven 14-3-3 isoforms in other cells, including HEK-293, MDA-MB-231, and MCF-7 cells, which largely confirmed our findings with Cos-7 cells.
Collapse
|
11
|
Abdrabou A, Brandwein D, Liu C, Wang Z. Rac1 S71 Mediates the Interaction between Rac1 and 14-3-3 Proteins. Cells 2019; 8:E1006. [PMID: 31480268 PMCID: PMC6770128 DOI: 10.3390/cells8091006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Both 14-3-3 proteins (14-3-3s) and Rho proteins regulate cytoskeleton remodeling and cell migration, which suggests a possible interaction between the signaling pathways regulated by these two groups of proteins. Indeed, more and more emerging evidence indicates the mutual regulation of these two signaling pathways. However, all of the data regarding the interaction between Rac1 signaling pathways and 14-3-3 signaling pathways are through either the upstream regulators or downstream substrates. It is not clear if Rac1 could interact with 14-3-3s directly. It is interesting to notice that the Rac1 sequence 68RPLSYP73 is likely a 14-3-3 protein binding motif following the phosphorylation of S71 by Akt. Thus, we hypothesize that Rac1 directly interacts with 14-3-3s. We tested this hypothesis in this research. By using mutagenesis, co-immunoprecipitation (co-IP), Rac1 activity assay, immunoblotting, and indirect immunofluorescence, we demonstrate that 14-3-3s interact with Rac1. This interaction is mediated by Rac1 S71 in both phosphorylation-dependent and -independent manners, but the phosphorylation-dependent interaction is much stronger. Epidermal growth factor (EGF) strongly stimulates the phosphorylation of Rac1 S71 and the interaction between 14-3-3s and Rac1. Mutating S71 to A completely abolishes both phosphorylation-dependent and -independent interactions between 14-3-3s and Rac1. The interaction between 14-3-3s and Rac1 mostly serve to regulate the activity and subcellular localization of Rac1. Among the seven 14-3-3 isoforms, 14-3-3η, -σ, and -θ showed interactions with Rac1 in both Cos-7 and HEK 293 cells. 14-3-3γ also binds to Rac1 in HEK 293 cells, but not in Cos-7 cells. We conclude that 14-3-3s interact with Rac1. This interaction is mediated by Rac1 S71 in both phosphorylation-dependent and -independent manners. The interaction between 14-3-3 and Rac1 mostly serves to regulate the activity and subcellular localization of Rac1. Among the seven 14-3-3 isoforms, 14-3-3η, -γ, -σ, and -θ interact with Rac1.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Daniel Brandwein
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Changyu Liu
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
12
|
Rivero G, Aldana AA, Frontini Lopez YR, Liverani L, Boccacini AR, Bustos DM, Abraham GA. 14-3-3ε protein-immobilized PCL-HA electrospun scaffolds with enhanced osteogenicity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:99. [PMID: 31455977 DOI: 10.1007/s10856-019-6302-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) accelerate the osteointegration of bone grafts and improve the efficiency in the formation of uniform bone tissue, providing a practical and clinically attractive approach in bone tissue regeneration. In this work, the effect of nanofibrous biomimetic matrices composed of poly(ε-caprolactone) (PCL), nanometric hydroxyapatite (nHA) particles and 14-3-3 protein isoform epsilon on the initial stages of human ASCs (hASCs) osteogenic differentiation was investigated. The cells were characterized by flow cytometry and induction to differentiation to adipogenic and osteogenic lineages. The isolated hASCs were induced to differentiate to osteoblasts over all scaffolds, and adhesion and viability of the hASCs were found to be similar. However, the activity of alkaline phosphatase (ALP) as early osteogenic marker in the PCL-nHA/protein scaffold was four times higher than in PCL-nHA and more than five times than the measured in neat PCL.
Collapse
Affiliation(s)
- G Rivero
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Mar del Plata, Argentina
| | - A A Aldana
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Mar del Plata, Argentina
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Y R Frontini Lopez
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | - L Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - A R Boccacini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - D M Bustos
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET-UNCUYO), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales (UNCuyo), Mendoza, Argentina
| | - G A Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Mar del Plata, Argentina.
| |
Collapse
|
13
|
The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability. Genes (Basel) 2016; 7:genes7080053. [PMID: 27556493 PMCID: PMC4999841 DOI: 10.3390/genes7080053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022] Open
Abstract
The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coliTm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform.
Collapse
|
14
|
Aghazadeh Y, Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov Today 2015; 21:278-87. [PMID: 26456530 DOI: 10.1016/j.drudis.2015.09.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
14-3-3 proteins regulate intracellular signaling pathways, such as signal transduction, protein trafficking, cell cycle, and apoptosis. In addition to the ubiquitous roles of 14-3-3 isoforms, unique tissue-specific functions are also described for each isoform. Owing to their role in regulating cell cycle, protein trafficking, and steroidogenesis, 14-3-3 proteins are prevalent in human diseases, such as cancer, neurodegeneration, and reproductive disorders, and, therefore, serve as valuable drug targets. In this review, we summarize the role of 14-3-3 proteins in normal and disease states, with a focus on 14-3-3γ and ɛ. We also discuss drug compounds targeting 14-3-3 proteins and their potential therapeutic uses.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
15
|
Liu J, Bai J, Zhang L, Hou C, Li Y, Jiang P. Proteomic alteration of PK-15 cells after infection by porcine circovirus type 2. Virus Genes 2014; 49:400-16. [PMID: 25103791 PMCID: PMC7089180 DOI: 10.1007/s11262-014-1106-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Porcine circovirus type 2 (PCV2) has been identified as the essential causal agent of post-weaning multisystemic wasting syndrome, which has spread worldwide. To discover cellular protein responses of PK-15 cells to PCV2 infection, two-dimensional liquid chromatography-tandem mass spectrometry (MS) coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the proteins that were differentially expressed in PK-15 from the PCV2-infected group compared to the uninfected control group. A total of 196 cellular proteins in PK-15 that were significantly altered at different time periods post-infection were identified. These differentially expressed proteins were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc. and their interactions. Moreover, some of these proteins were further confirmed by Western blot. The high number of differentially expressed proteins identified should be very useful in elucidating the mechanism of replication and pathogenesis of PCV2 in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Quantitative proteomic dissection of a native 14-3-3ε interacting protein complex associated with hepatocellular carcinoma. Amino Acids 2013; 46:841-52. [DOI: 10.1007/s00726-013-1644-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
|
17
|
Nagappan A, Park HS, Park KI, Kim JA, Hong GE, Kang SR, Zhang J, Kim EH, Lee WS, Won CK, Kim GS. Proteomic analysis of differentially expressed proteins in vitamin C-treated AGS cells. BMC BIOCHEMISTRY 2013; 14:24. [PMID: 24067024 PMCID: PMC3848938 DOI: 10.1186/1471-2091-14-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Vitamin C (ascorbic acid) is an essential nutrient of most living tissues that readily acts as a strong reducing agent, which is abundant in fruits and vegetables. Although, it inhibits cell growth in many human cancer cells in vitro, treatment in cancer is still controversial. Hence, the purpose of this study was to investigate the molecular mechanism of the inhibitory effect of vitamin C on AGS cell growth, and protein profiles in AGS cells after exposure to vitamin C treatment, by using proteomic tools. RESULTS Vitamin C showed a cytotoxic effect on AGS cells (IC50 300 μg/mL) and, 20 differentially expressed proteins (spot intensities which show ≥2 fold change and statistically significant, p<0.05 between the control and vitamin-C treated group) were successfully identified by assisted laser desorption/ ionization-time of flight/mass spectrometry (MALDI-TOF/MS). Of the 20 proteins, six were up-regulated and fourteen were down-regulated. Specifically, 14-3-3σ, 14-3-3ϵ, 14-3-3δ, tropomyosin alpha-3 chain and tropomyosin alpha-4 chain were down-regulated and peroxiredoxin-4 and thioredoxin domain-containing proteins 5 were up-regulated. The identified proteins are mainly involved in cell mobility, antioxidant and detoxification, signal transduction and protein metabolism. Further, the expressions of 14-3-3 isoforms were verified with immuno-blotting analysis. CONCLUSIONS Our proteome results suggest that the apoptosis related proteins were involved in promoting and regulating cell death of AGS cells, and might be helpful to understand the molecular mechanism of vitamin C on AGS cell growth inhibition.
Collapse
Affiliation(s)
- Arulkumar Nagappan
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju, Gyeongnam 660-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tang S, Bao H, Zhang Y, Yao J, Yang P, Chen X. 14-3-3ε mediates the cell fate decision-making pathways in response of hepatocellular carcinoma to Bleomycin-induced DNA damage. PLoS One 2013; 8:e55268. [PMID: 23472066 PMCID: PMC3589417 DOI: 10.1371/journal.pone.0055268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/27/2012] [Indexed: 11/30/2022] Open
Abstract
Background Lack of understanding of the response of hepatocellular carcinoma (HCC) to anticancer drugs causes the high mortality of HCC patients. Bleomycin (BLM) that induces DNA damage is clinically used for cancer therapy, while the mechanism underlying BLM-induced DNA damage response (DDR) in HCC cells remains ambiguous. Given that 14-3-3 proteins are broadly involved in regulation of diverse biological processes (BPs)/pathways, we investigate how a 14-3-3 isoform coordinates particular BPs/pathways in BLM-induced DDR in HCC. Methodology/Principal Findings Using dual-tagging quantitative proteomic approach, we dissected the 14-3-3ε interactome formed during BLM-induced DDR, which revealed that 14-3-3ε via its associations with multiple pathway-specific proteins coordinates multiple pathways including chromosome remodeling, DNA/RNA binding/processing, DNA repair, protein ubiquitination/degradation, cell cycle arrest, signal transduction and apoptosis. Further, “zoom-in” investigation of the 14-3-3ε interacting network indicated that the BLM-induced interaction between 14-3-3ε and a MAP kinase TAK1 plays a critical role in determining cell propensity of apoptosis. Functional characterization of this interaction further revealed that BLM triggers site-specific phosphorylations in the kinase domain of TAK1. These BLM-induced changes of phosphorylations directly correlate to the strength of the TAK1 binding to 14-3-3ε, which govern the phosphorylation-dependent TAK1 activation. The enhanced 14-3-3ε-TAK1 association then inhibits the anti-apoptotic activity of TAK1, which ultimately promotes BLM-induced apoptosis in HCC cells. In a data-dependent manner, we then derived a mechanistic model where 14-3-3ε plays the pivotal role in integrating diverse biological pathways for cellular DDR to BLM in HCC. Conclusions Our data demonstrated on a systems view that 14-3-3ε coordinates multiple biological pathways involved in BLM-induced DDR in HCC cells. Specifically, 14-3-3ε associates with TAK1 in a phosphorylation-dependent manner to determine the cell fate of BLM-treated HCC cells. Not only individual proteins but also those critical links in the network could be the potential targets for BLM-mediated therapeutic intervention of HCC.
Collapse
Affiliation(s)
- Siwei Tang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huimin Bao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Yao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xian Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Cheah PS, Ramshaw HS, Thomas PQ, Toyo-Oka K, Xu X, Martin S, Coyle P, Guthridge MA, Stomski F, van den Buuse M, Wynshaw-Boris A, Lopez AF, Schwarz QP. Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency. Mol Psychiatry 2012; 17:451-66. [PMID: 22124272 DOI: 10.1038/mp.2011.158] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Complex neuropsychiatric disorders are believed to arise from multiple synergistic deficiencies within connected biological networks controlling neuronal migration, axonal pathfinding and synapse formation. Here, we show that deletion of 14-3-3ζ causes neurodevelopmental anomalies similar to those seen in neuropsychiatric disorders such as schizophrenia, autism spectrum disorder and bipolar disorder. 14-3-3ζ-deficient mice displayed striking behavioural and cognitive deficiencies including a reduced capacity to learn and remember, hyperactivity and disrupted sensorimotor gating. These deficits are accompanied by subtle developmental abnormalities of the hippocampus that are underpinned by aberrant neuronal migration. Significantly, 14-3-3ζ-deficient mice exhibited abnormal mossy fibre navigation and glutamatergic synapse formation. The molecular basis of these defects involves the schizophrenia risk factor, DISC1, which interacts isoform specifically with 14-3-3ζ. Our data provide the first evidence of a direct role for 14-3-3ζ deficiency in the aetiology of neurodevelopmental disorders and identifies 14-3-3ζ as a central risk factor in the schizophrenia protein interaction network.
Collapse
Affiliation(s)
- P S Cheah
- Department of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Analysis of cellular proteome alterations in porcine alveolar macrophage cells infected with 2009 (H1N1) and classical swine H1N1 influenza viruses. J Proteomics 2012; 75:1732-41. [DOI: 10.1016/j.jprot.2011.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/23/2022]
|
21
|
Shandala T, Woodcock JM, Ng Y, Biggs L, Skoulakis EMC, Brooks DA, Lopez AF. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity. J Cell Sci 2011; 124:2165-74. [DOI: 10.1242/jcs.080598] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.
Collapse
Affiliation(s)
- Tetyana Shandala
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide SA5000, Australia
| | - Joanna M. Woodcock
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| | - Yeap Ng
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
| | - Lisa Biggs
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| | | | - Doug A. Brooks
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide SA5000, Australia
| | - Angel F. Lopez
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| |
Collapse
|
22
|
Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson's disease. PLoS One 2011; 6:e17153. [PMID: 21390248 PMCID: PMC3046972 DOI: 10.1371/journal.pone.0017153] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/20/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent studies show that mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the cause of the most common inherited and some sporadic forms of Parkinson's disease (PD). The molecular mechanism underlying the pathogenic role of LRRK2 mutations in PD remains unknown. METHODOLOGY/PRINCIPAL FINDINGS Using affinity purification and mass spectrometric analysis, we investigated phosphorylation sites and binding proteins of LRRK2 purified from mouse brain. We identified multiple phosphorylation sites at N-terminus of LRRK2 including S910, S912, S935 and S973. Focusing on the high stoichiometry S935 phosphorylation site, we developed an anti-pS935 specific antibody and showed that LRRK2 is constitutively phosphorylated at S935 in various tissues (including brain) and at different ages in mice. We find that 14-3-3 proteins (especially isoforms γ and η) bind LRRK2 and this binding depends on phosphorylation of S935. The binding of 14-3-3, with little effect on dimer formation of LRRK2, confers protection of the phosphorylation status of S935. Furthermore, we show that protein kinase A (PKA), but not LRRK2 kinase itself, can cause the phosphorylation of LRRK2 at S935 in vitro and in cell culture, suggesting that PKA is a potential upstream kinase that regulates LRRK2 function. Finally, our study indicates that the common PD-related mutations of LRRK2, R1441G, Y1699C and G2019S, decrease homeostatic phosphorylation levels of S935 and impair 14-3-3 binding of LRRK2. CONCLUSIONS/SIGNIFICANCE LRRK2 is extensively phosphorylated in vivo, and the phosphorylation of specific sites (e.g. S935) determines 14-3-3 binding of LRRK2. We propose that 14-3-3 is an important regulator of LRRK2-mediated cellular functions. Our study suggests that PKA, a cAMP-dependent kinase involved in regulating dopamine physiology, is a potential upstream kinase that phosphorylates LRRK2 at S935. Furthermore, the reduction of phosphorylation/14-3-3 binding of LRRK2 due to the common familial PD-related mutations provides novel insight into the pathogenic mechanism of LRRK2-linked PD.
Collapse
|
23
|
Fu Z, Jin X, Ding D, Li Y, Fu Z, Tang J. Proteomic analysis of heterosis during maize seed germination. Proteomics 2011; 11:1462-72. [DOI: 10.1002/pmic.201000481] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/21/2010] [Accepted: 01/18/2011] [Indexed: 12/29/2022]
|
24
|
Ge F, Li WL, Bi LJ, Tao SC, Zhang ZP, Zhang XE. Identification of novel 14-3-3ζ interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK). J Proteome Res 2010; 9:5848-58. [PMID: 20879785 DOI: 10.1021/pr100616g] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The family of 14-3-3 proteins has emerged as critical regulators of diverse cellular responses under both physiological and pathological conditions. To gain insight into the molecular action of 14-3-3ζ in multiple myeloma (MM), we performed a systematic proteomic analysis of 14-3-3ζ-associated proteins. This analysis, recently developed by Matthias Mann, termed quantitative immunoprecipitation combined with knockdown (QUICK), integrates RNAi, SILAC, immunoprecipitation, and quantitative MS technologies. Quantitative mass spectrometry analysis allowed us to distinguish 14-3-3ζ-interacting proteins from background proteins, resulting in the identification of 292 proteins in total with 95 novel interactions. Three 14-3-3ζ-interacting proteins-BAX, HSP70, and BAG3-were further confirmed by reciprocal coimmunoprecipitations and colocalization analysis. Our results therefore not only uncover a large number of novel 14-3-3ζ-associated proteins that possess a variety of cellular functions, but also provide new research directions for the study of the functions of 14-3-3ζ. This study also demonstrated that QUICK is a useful approach to detect specific protein-protein interactions with very high confidence and may have a wide range of applications in the investigation of protein complex interaction networks.
Collapse
Affiliation(s)
- Feng Ge
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| | | | | | | | | | | |
Collapse
|
25
|
Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J Virol 2010; 84:6050-9. [PMID: 20392858 DOI: 10.1128/jvi.00213-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The discovery of a novel coronavirus (CoV) as the causative agent of severe acute respiratory syndrome (SARS) has highlighted the need for a better understanding of CoV replication. The replication of SARS-CoV is highly dependent on host cell factors. However, relatively little is known about the cellular proteome changes that occur during SARS-CoV replication. Recently, we developed a cell line expressing a SARS-CoV subgenomic replicon and used it to screen inhibitors of SARS-CoV replication. To identify host proteins important for SARS-CoV RNA replication, the protein profiles of the SARS-CoV replicon cells and parental BHK21 cells were compared using a quantitative proteomic strategy termed "stable-isotope labeling by amino acids in cell culture-mass spectrometry" (SILAC-MS). Our results revealed that, among the 1,081 host proteins quantified in both forward and reverse SILAC measurements, 74 had significantly altered levels of expression. Of these, significantly upregulated BCL2-associated athanogene 3 (BAG3) was selected for further functional studies. BAG3 is involved in a wide variety of cellular processes, including cell survival, cellular stress response, proliferation, migration, and apoptosis. Our results show that inhibition of BAG3 expression by RNA interference led to significant suppression of SARS-CoV replication, suggesting the possibility that upregulation of BAG3 may be part of the machinery that SARS-CoV relies on for replication. By correlating the proteomic data with these functional studies, the findings of this study provide important information for understanding SARS-CoV replication.
Collapse
|
26
|
Liang S, Yu Y, Yang P, Gu S, Xue Y, Chen X. Analysis of the protein complex associated with 14-3-3 epsilon by a deuterated-leucine labeling quantitative proteomics strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:627-34. [DOI: 10.1016/j.jchromb.2009.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
|
27
|
Boyce JP, Brown ME, Chin W, Fitzner JN, Paxton RJ, Shen M, Stevens T, Wolfson MF, Wright CD. Identification of 14−3−3ζ by Chemical Affinity with Salicylanilide Inhibitors of Interleukin-12p40 Production. Bioconjug Chem 2008; 19:1775-84. [PMID: 18763820 DOI: 10.1021/bc800078q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jim P. Boyce
- Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Michael E. Brown
- Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Wilson Chin
- Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | | | - Raymond J. Paxton
- Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Min Shen
- Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Tracey Stevens
- Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | - Martin F. Wolfson
- Amgen Incorporated, 1201 Amgen Court West, Seattle, Washington 98119
| | | |
Collapse
|
28
|
Winter S, Fischle W, Seiser C. Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns. Cell Cycle 2008; 7:1336-42. [PMID: 18418070 DOI: 10.4161/cc.7.10.5946] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Post-translational modifications of histones are determining factors in the global and local regulation of genome activity. Phosphorylation of histone H3 is globally associated with mitotic chromatin compaction but occurs in a much more restricted manner during interphase transcriptional regulation of a limited subset of genes. In the course of gene regulation, serine 10 phosphorylation at histone H3 is targeted to a very small fraction of nucleosomes that is highly susceptible to additional acetylation events. Recently, we and others have identified 14-3-3 as a binding protein that recognizes both phosphorylated serine 10 and phosphorylated serine 28 on histone H3. In vitro, the affinity of 14-3-3 for phosphoserine 10 is weak but becomes significantly increased by additional acetylation of either lysine 9 or lysine 14 on the same histone tail. In contrast, the histone H3S28 site matches elements of 14-3-3 high affinity consensus motifs. This region mediates an initial stronger interaction that is less susceptible to modulation by "auxiliary" modifications. Here we discuss the binding of 14-3-3 proteins to histone H3 in detail and putative biological implications of these interactions.
Collapse
Affiliation(s)
- Stefan Winter
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | | | | |
Collapse
|
29
|
Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci U S A 2007; 104:6460-5. [PMID: 17404219 PMCID: PMC1851029 DOI: 10.1073/pnas.0610208104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SnRK2.8 is a member of the sucrose nonfermenting-related kinase family that is down-regulated when plants are deprived of nutrients and growth is reduced. When this kinase is over expressed in Arabidopsis, the plants grow larger. To understand how this kinase modulates growth, we identified some of the proteins that are phosphorylated by this kinase. A new phosphoproteomic method was used in which total protein from plants overexpressing the kinase was compared with total protein from plants in which the kinase was inactivated. Protein profiles were compared on two-dimensional gels following staining by a dye that recognizes phosphorylated amino acids. Candidate target proteins were confirmed with in vitro phosphorylation assays, using the kinase and target proteins that were purified from Escherichia coli. Seven target proteins were confirmed as being phosphorylated by SnRK2.8. Certain targets, such as 14-3-3 proteins, regulate as yet unidentified proteins, whereas other targets, such as glyoxalase I and ribose 5-phosphate isomerase, detoxify byproducts from glycolysis and catalyze one of the final steps in carbon fixation, respectively. Also, adenosine kinase and 60S ribosomal protein were confirmed as targets of SnRK2.8. Using mass spectrometry, we identified phosphorylated residues in the SnRK2.8, the 14-3-3kappa, and the 14-3-3chi. These data show that the expression of SnRK2.8 is correlated with plant growth, which may in part be due to the phosphorylation of enzymes involved in metabolic processes.
Collapse
Affiliation(s)
- Ryoung Shin
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - Adrien Y. Burch
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - Joseph M. Jez
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
| | - Daniel P. Schachtman
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Schoonheim PJ, Sinnige MP, Casaretto JA, Veiga H, Bunney TD, Quatrano RS, de Boer AH. 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:289-301. [PMID: 17241451 DOI: 10.1111/j.1365-313x.2006.02955.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Proteins of the 14-3-3 family have well-defined functions as regulators of plant primary metabolism and ion homeostasis. However, neither their function nor action mechanism in plant hormonal signaling have been fully addressed. Here we show that abscisic acid (ABA) affects both expression and protein levels of five 14-3-3 isoforms in embryonic barley roots. As ABA prolongs the presence of 14-3-3 proteins in the elongating radicle, we tested whether 14-3-3s are instrumental in ABA action using RNA interference. Transient co-expression of 14-3-3 RNAi constructs along with an ABA-responsive promoter showed that each 14-3-3 is functional in generating an ABA response. In a yeast two-hybrid screen, we identified three new 14-3-3 interactors that belong to the ABF protein family. Moreover, using a yeast two-hybrid assay, we show that the transcription factor HvABI5, which binds to cis-acting elements of the ABA-inducible HVA1 promoter, interacts with three of the five 14-3-3s. Our analyses identify two 14-3-3 binding motifs in HvABI5 that are essential for 14-3-3 binding and proper in vivo trans-activation activity of HvABI5. In line with these results, 14-3-3 silencing effectively blocks trans-activation. Our results indicate that 14-3-3 genes/proteins are not only under the control of ABA, but that they control ABA action as well.
Collapse
Affiliation(s)
- Peter J Schoonheim
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Hopfner M, Sutter AP, Huether A, Baradari V, Scherubl H. Tyrosine kinase of insulin-like growth factor receptor as target for novel treatment and prevention strategies of colorectal cancer. World J Gastroenterol 2006; 12:5635-43. [PMID: 17007015 PMCID: PMC4088163 DOI: 10.3748/wjg.v12.i35.5635] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the antineoplastic potency of the novel insulin-like growth factor 1 receptor (IGF-1R) tyrosine kinase inhibitor (TKI) NVP-AEW541 in cell lines and primary cell cultures of human colorectal cancer (CRC).
METHODS: Cells of primary colorectal carcinomas were from 8 patients. Immunostaining and crystal violet staining were used for analysis of growth factor receptor protein expression and detection of cell number changes, respectively. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). The proportion of apoptotic cells was determined by quantifying the percentage of sub-G1 (hypodiploid) cells. Cell cycle status reflected by the DNA content of the nuclei was detected by flow cytometry.
RESULTS: NVP-AEW541 dose-dependently inhibited the proliferation of colorectal carcinoma cell lines and primary cell cultures by inducing apoptosis and cell cycle arrest. Apoptosis was characterized by caspase-3 activation and nuclear degradation. Cell cycle was arrested at the G1/S checkpoint. The NVP-AEW541-mediated cell cycle-related signaling involved the inactivation of Akt and extracellular signal-regulated kinase (ERK) 1/2, the upregulation of the cyclin-dependent kinase inhibitors p21Waf1/CIP1 and p27Kip1, and the downregulation of the cell cycle promoter cyclin D1. Moreover, BAX was upregulated during NVP-AEW541-induced apoptosis, whereas Bcl-2 was downregulated. Measurement of LDH release showed that the antineoplastic effect of NVP-AEW541 was not due to general cytotoxicity of the compound. However, augmented antineoplastic effects were observed in combination treatments of NVP-AEW541 with either 5-FU, or the EGFR-antibody cetuximab, or the HMG-CoA-reductase inhibitor fluvastatin.
CONCLUSION: IGF-1R-TK inhibition is a promising novel approach for either mono- or combination treatment strategies of colorectal carcinoma and even for CRC chemoprevention.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/prevention & control
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cetuximab
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/prevention & control
- Cytotoxins/therapeutic use
- Dose-Response Relationship, Drug
- Fatty Acids, Monounsaturated/therapeutic use
- Fluvastatin
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Indoles/therapeutic use
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/drug effects
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
Collapse
Affiliation(s)
- Michael Hopfner
- Klinik fur Gastroenterologie und Gastrointestinale Onkologie, Vivantes-Klinikum Am Urban, Dieffenbachstr. 1, Berlin 10967, Germany
| | | | | | | | | |
Collapse
|
32
|
Li R, Wang H, Bekele BN, Yin Z, Caraway NP, Katz RL, Stass SA, Jiang F. Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 2006; 25:2628-35. [PMID: 16369491 DOI: 10.1038/sj.onc.1209289] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amplification and overexpression of putative oncogenes confer growth advantages for tumor development. We used a functional genomic approach that integrated simultaneous genomic and transcript microarray, proteomics, and tissue microarray analyses to directly identify putative oncogenes in lung adenocarcinoma. We first identified 183 genes with increases in both genomic copy number and transcript in six lung adenocarcinoma cell lines. Next, we used two-dimensional polyacrylamide gel electrophoresis and mass spectrometry to identify 42 proteins that were overexpressed in the cancer cells relative to normal cells. Comparing the 183 genes with the 42 proteins, we identified four genes - PRDX1, EEF1A2, CALR, and KCIP-1 - in which elevated protein expression correlated with both increased DNA copy number and increased transcript levels (all r > 0.84, two-sided P < 0.05). These findings were validated by Southern, Northern, and Western blotting. Specific inhibition of EEF1A2 and KCIP-1 expression with siRNA in the four cell lines tested suppressed proliferation and induced apoptosis. Parallel fluorescence in situ hybridization and immunohistochemical analyses of EEF1A2 and KCIP-1 in tissue microarrays from patients with lung adenocarcinoma showed that gene amplification was associated with high protein expression for both genes and that protein overexpression was related to tumor grade, disease stage, Ki-67 expression, and a shorter survival of patients. The amplification of EEF1A2 and KCIP-1 and the presence of overexpressed protein in tumor samples strongly suggest that these genes could be oncogenes and hence potential targets for diagnosis and therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- R Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|