1
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Matsui JK, Perlow HK, Ritter AR, Upadhyay R, Raval RR, Thomas EM, Beyer SJ, Pillainayagam C, Goranovich J, Ong S, Giglio P, Palmer JD. Small Molecules and Immunotherapy Agents for Enhancing Radiotherapy in Glioblastoma. Biomedicines 2022; 10:biomedicines10071763. [PMID: 35885067 PMCID: PMC9313399 DOI: 10.3390/biomedicines10071763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor that is associated with a poor prognosis and quality of life. The standard of care has changed minimally over the past two decades and currently consists of surgery followed by radiotherapy (RT), concomitant and adjuvant temozolomide, and tumor treating fields (TTF). Factors such as tumor hypoxia and the presence of glioma stem cells contribute to the radioresistant nature of GBM. In this review, we discuss the current treatment modalities, mechanisms of radioresistance, and studies that have evaluated promising radiosensitizers. Specifically, we highlight small molecules and immunotherapy agents that have been studied in conjunction with RT in clinical trials. Recent preclinical studies involving GBM radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Jennifer K. Matsui
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Haley K. Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Alex R. Ritter
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Rituraj Upadhyay
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Raju R. Raval
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Evan M. Thomas
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Sasha J. Beyer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Clement Pillainayagam
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.P.); (J.G.); (S.O.); (P.G.)
| | - Justin Goranovich
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.P.); (J.G.); (S.O.); (P.G.)
| | - Shirley Ong
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.P.); (J.G.); (S.O.); (P.G.)
| | - Pierre Giglio
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.P.); (J.G.); (S.O.); (P.G.)
| | - Joshua D. Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
- Correspondence:
| |
Collapse
|
3
|
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer 2022; 8:855-869. [PMID: 35750630 DOI: 10.1016/j.trecan.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Radiation is frequently administered for cancer treatment, but resistance or remission remains common. Cancer cells alter their metabolism after radiotherapy to reduce its cytotoxic effects. The influence of altered cancer metabolism extends to the tumor microenvironment (TME), where components of the TME exchange metabolites to support tumor growth. Combining radiotherapy with metabolic targets in the TME can improve therapy response. We review the metabolic rewiring of cancer cells following radiotherapy and put these observations in the context of the TME to describe the metabolic hallmarks of radiotherapy in the TME.
Collapse
Affiliation(s)
- Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Repurposing Drugs for Cancer Radiotherapy: Early Successes and Emerging Opportunities. ACTA ACUST UNITED AC 2020; 25:106-115. [PMID: 30896532 DOI: 10.1097/ppo.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has long been recognized that combining radiotherapy with cytotoxic drugs such as cisplatin can improve efficacy. However, while concurrent chemoradiotherapy improves patient outcomes, it comes at costs of increased toxicity. A tremendous opportunity remains to investigate drug combinations in the clinical setting that might increase the benefits of radiation without additional toxicity. This chapter highlights opportunities to apply repurposing of drugs along with a mechanistic understanding of radiation effects on cancer and normal tissue to discover new therapy-modifying drugs and help rapidly translate them to the clinic. We survey candidate radiosensitizers that alter DNA repair, decrease hypoxia, block tumor survival signaling, modify tumor metabolism, block growth factor signaling, slow tumor invasiveness, impair angiogenesis, or stimulate antitumor immunity. Promising agents include widely used drugs such as aspirin, metformin, and statins, offering the potential to improve outcomes, decrease radiation doses, and lower costs. Many other candidate drugs are also discussed.
Collapse
|
6
|
Wu CC, Jin LW, Wang IF, Wei WY, Ho PC, Liu YC, Tsai KJ. HDAC1 dysregulation induces aberrant cell cycle and DNA damage in progress of TDP-43 proteinopathies. EMBO Mol Med 2020; 12:e10622. [PMID: 32449313 PMCID: PMC7278561 DOI: 10.15252/emmm.201910622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) has been implicated in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-TDP) and amyotrophic lateral sclerosis. Histone deacetylase 1 (HDAC1) is involved in DNA repair and neuroprotection in numerous neurodegenerative diseases. However, the pathological mechanisms of FTLD-TDP underlying TDP-43 proteinopathies are unclear, and the role of HDAC1 is also poorly understood. Here, we found that aberrant cell cycle activity and DNA damage are important pathogenic factors in FTLD-TDP transgenic (Tg) mice, and we further identified these pathological features in the frontal cortices of patients with FTLD-TDP. TDP-43 proteinopathies contributed to pathogenesis by inducing cytosolic mislocalization of HDAC1 and reducing its activity. Pharmacological recovery of HDAC1 activity in FTLD-TDP Tg mice ameliorated their cognitive and motor impairments, normalized their aberrant cell cycle activity, and attenuated their DNA damage and neuronal loss. Thus, HDAC1 deregulation is involved in the pathogenesis of TDP-43 proteinopathies, and HDAC1 is a potential target for therapeutic interventions in FTLD-TDP.
Collapse
Affiliation(s)
- Cheng-Chun Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - I-Fang Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chih Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Abstract
Histone deacetylases (HDACs) modulate chromatin structure by removing acetyl groups from histones. Upon DNA double-strand breaks (DSBs), deacetylation of H3K56 and H4K16 by HDACs occurs immediately at break sites, and is crucial for DSB repair. Here we describe two assays that examine defective DSB repair caused by HDAC inhibition in primary cortical neurons: single-cell gel electrophoresis to assay DNA integrity (the comet assay) and western blot analysis for γH2AX, a phosphorylated histone variant associated with DSBs.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Zhang F, Chen Z, Shao C, Huang Q. Is level of acetylation directly correlated to radiation sensitivity of cancer cell? Mutat Res 2018; 813:13-19. [PMID: 30576946 DOI: 10.1016/j.mrfmmm.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023]
Abstract
It is known that histone deacetylase inhibitors (HDACis) can modify acetylation of tumor cells and affect radiation sensitivity, or, radiosensitivity. While previous studies showed that trichostatin A (TSA, a typical HDACi) could enhance cell acetylation and so be used as radiation-sensitizer in radiotherapy, we questioned if the radiosensitivity is correlated with cellular acetylation directly. So we inspected radiation response of HeLa cells treated with TSA and investigated the time-dependent effect on radiosensitivity. To our surprise, HeLa cells treated with 200 nM TSA for shorter period (6 h) had relatively higher acetylation level but apparently less radiation damage compared to the irradiated cells with same radiation dose treatment of TSA but for longer time (24 h) with lower acetylation level, gainsaying the direct relationship between acetylation and radiosensitivity. We explained that the anti-oxidation activity for the combined treatments with TSA-radiation gave rise to the enhanced radiation protection of the cells at certain period of time. This work has therefore for the first time presented the experimental evidence showing that there is no direct relationship between acetylation and radiation sensitivity, and our results may also provide the guidance for optimized radiotherapy assisted by HDACis in cancer treatment.
Collapse
Affiliation(s)
- Fengqiu Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Henan Key Laboratory of Ion-beam Bioengineering, School of Physical Engineering, Zhengzhou University, Zhengzhou, 450052, China; University of Science &Technology of China, Hefei, 230026, China
| | - Zhu Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; University of Science &Technology of China, Hefei, 230026, China
| | - Changsheng Shao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; University of Science &Technology of China, Hefei, 230026, China
| | - Qing Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; University of Science &Technology of China, Hefei, 230026, China.
| |
Collapse
|
9
|
Tian XL, Lu X, Feng JB, Cai TJ, Li S, Tian M, Liu QJ. Alterations in histone acetylation following exposure to 60Co γ-rays and their relationship with chromosome damage in human lymphoblastoid cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:215-222. [PMID: 29774413 DOI: 10.1007/s00411-018-0742-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Chromosome damage is related to DNA damage and erroneous repair. It can cause cell dysfunction and ultimately induce carcinogenesis. Histone acetylation is crucial for regulating chromatin structure and DNA damage repair. Ionizing radiation (IR) can alter histone acetylation. However, variations in histone acetylation in response to IR exposure and the relationship between histone acetylation and IR-induced chromosome damage remains unclear. Hence, this study investigated the variation in the total acetylation levels of H3 and H4 in human lymphocytes exposed to 0-2 Gy 60Co γ-rays. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, was added to modify the histone acetylation state of irradiated cells. Then, the total acetylation level, enzyme activity, dicentric plus centric rings (dic + r) frequencies, and micronucleus (MN) frequencies of the treated cells were analyzed. Results indicated that the acetylation levels of H3 and H4 significantly decreased at 1 and 24 h, respectively, after radiation exposure. The acetylation levels of H3 and H4 in irradiated groups treated with SAHA were significantly higher than those in irradiated groups that were not treated with SAHA. SAHA treatment inhibited HDAC activity in cells exposed to 0-1 Gy 60Co γ-rays. SAHA treatment significantly decreased dic + r/cell and MN/cell in cells exposed to 0.5 or 1.0 Gy 60Co γ-rays relative to that in cells that did not receive SAHA treatment. In conclusion, histone acetylation is significantly affected by IR and is involved in chromosome damage induced by 60Co γ-radiation.
Collapse
Affiliation(s)
- Xue-Lei Tian
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Jiang-Bin Feng
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, People's Republic of China.
| |
Collapse
|
10
|
Kumar JS, Suman S, Chandna S. Radioresistant Sf9 insect cells readily undergo an intrinsic mode of apoptosis in response to histone deacetylase (HDAC) inhibition. Mol Cell Biochem 2018; 444:207-218. [PMID: 29236219 DOI: 10.1007/s11010-017-3245-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Insect cell lines have been utilized as an important higher eukaryotic model system to decipher stress responses and cell death mechanisms. Lepidopteran Sf9 cells (derived from the ovaries of Spodoptera frugiperda) display nearly 100 times higher resistance to ionizing radiation in contrast to mammalian cells, which is partly contributed by an unusually high HDAC activity. However, their response to HDAC inhibition remains to be evaluated. In the present study, the effects of HDAC inhibitor (NaBt) on Sf9 cellular/nuclear morphology, cell cycle progression, DNA damage/repair, redox status, and mitochondrial perturbations were evaluated. NaBt-induced apoptosis was evident at 18 h in Sf9 cells at 2 mM concentration, primarily through mitochondrial induction of oxidative stress and subsequent DNA damage. Cell cycle analysis revealed appearance of sub-G1 DNA content at 12 h onwards and DNA fragmentation by 18 h. Initial few hours of treatment caused significant loss in MMP through oxidation of mitochondrial inner membrane protein, i.e., cardiolipin. HDAC inhibition-mediated apoptosis was associated with increased Bax/Bcl2 ratio, mitochondrial cytochrome-c release, and caspase-3 activation. The study thus infers that Sf9 cells, which can withstand very high radiation doses, are quite sensitive to the increase in the chromatin acetylation levels. In addition, HDAC inhibition also sensitized Sf9 cells to radiation-induced DNA damage, further corroborating our recent finding that chromatin compactness contributes significantly to their radioresistance. Therefore, the study demonstrates prominence of prevailing DNA/chromatin protective mechanisms in Lepidopteran insect cells.
Collapse
Affiliation(s)
- Jyoti Swaroop Kumar
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi, 110054, India
| | - Shubhankar Suman
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi, 110054, India
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sudhir Chandna
- Division of Natural Radiation Response Mechanisms, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi, 110054, India.
| |
Collapse
|
11
|
Choo DW, Goh SH, Cho YW, Baek HJ, Park EJ, Motoyama N, Kim TH, Kim JY, Kim SS. CHK2 is involved in the p53-independent radiosensitizing effects of valproic acid. Oncol Lett 2017; 13:2591-2598. [PMID: 28454438 PMCID: PMC5403276 DOI: 10.3892/ol.2017.5792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/20/2016] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy is an effective treatment for the majority of types of localized solid cancer. However, the risk of side effects to the surrounding normal tissues limits radiotherapeutic approaches. Whilst the mechanism of action of valproic acid, an inhibitor of histone deacetylase, remains unknown, the inhibitor is a potential antineoplastic radiosensitizer. The present study demonstrated the in vitro radiosensitizing effects of valproic acid on the human breast cancer MCF7 cell line, and revealed that valproic acid increased the level of DNA breakage, apoptosis and senescence. In addition, western blot analyses revealed that valproic acid induced tumor suppressor protein (p)53 and p21 expression, and activated checkpoint kinase 2 (CHK2) in MCF7 cells and primary mouse embryonic fibroblasts. Notably, treatment with valproic acid also induced increases in the level of p21 protein levels and CHK2 activity in p53-null colon cancer HCT116 cells. Furthermore, the present study demonstrated that valproic acid-induced radiosensitization was largely dependent on the activity of CHK2. The results of the present study reveal that valproic acid may exhibit clinical utility with respect to increasing the anticancer efficacy of radiotherapy by affecting the level of p53.
Collapse
Affiliation(s)
- Dong Wan Choo
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sung Ho Goh
- Cancer Genomics Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Young Woo Cho
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea.,Colgate University, Hamilton, NY 13346, USA
| | - Hye Jung Baek
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Eun Jung Park
- Cancer Immunology Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Noboru Motoyama
- Department of Cognitive Brain Science, National Centre for Geriatrics and Gerontology, Obu, Aichi 474-8522, Japan.,Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tae Hyun Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Joo Young Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sang Soo Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| |
Collapse
|
12
|
Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int J Mol Sci 2016; 17:ijms17010102. [PMID: 26784176 PMCID: PMC4730344 DOI: 10.3390/ijms17010102] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/22/2015] [Accepted: 12/25/2015] [Indexed: 12/20/2022] Open
Abstract
During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.
Collapse
|
13
|
Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015; 12:527-40. [PMID: 26122185 DOI: 10.1038/nrclinonc.2015.120] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The past 20 years have seen dramatic changes in the delivery of radiation therapy, but the impact of radiobiology on the clinic has been far less substantial. A major consideration in the use of radiotherapy has been on how best to exploit differences between the tumour and host tissue characteristics, which in the past has been achieved empirically by radiation-dose fractionation. New advances are uncovering some of the mechanistic processes that underlie this success story. In this Review, we focus on how these processes might be targeted to improve the outcome of radiotherapy at the individual patient level. This approach would seem a more productive avenue of treatment than simply trying to increase the radiation dose delivered to the tumour.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| | - William H McBride
- Department of Radiation Oncology, Room B3-109, Center for Health Sciences, Westwood, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA
| |
Collapse
|
14
|
Vorinostat as a radiosensitizer for brain metastasis: a phase I clinical trial. J Neurooncol 2014; 118:313-319. [PMID: 24728831 DOI: 10.1007/s11060-014-1433-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Perform a phase I study to evaluate the safety, and tolerability of vorinostat, an HDAC inhibitor, when combined with whole brain radiation treatment (WBRT) in patients with brain metastasis. A multi-institutional phase I clinical trial enrolled patients with a histological diagnosis of malignancy and radiographic evidence of brain metastasis. WBRT was 37.5 Gy in 2.5 Gy fractions delivered over 3 weeks. Vorinostat was administrated by mouth, once daily, Monday through Friday, concurrently with radiation treatment. The vorinostat dose was escalated from 200 to 400 mg daily using a 3+3 trial design. Seventeen patients were enrolled, 4 patients were excluded from the analysis due to either incorrect radiation dose (n = 1), or early treatment termination due to disease progression (n = 3). There were no treatment related grade 3 or higher toxicities in the 200 and 300 mg dose levels. In the 400 mg cohort there was a grade 3 pulmonary embolus and one death within 30 days of treatment. Both events were most likely related to disease progression rather than treatment; nonetheless, we conservatively classified the death as a dose limiting toxicity. We found Vorinostat administered with concurrent WBRT to be well tolerated to a dose of 300 mg once daily. This is the recommended dose for phase II study.
Collapse
|
15
|
Lavelle C, Foray N. Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology. Int J Biochem Cell Biol 2014; 49:84-97. [PMID: 24486235 DOI: 10.1016/j.biocel.2014.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Genomic DNA in eukaryotic cells is basically divided into chromosomes, each consisting of a single huge nucleosomal fiber. It is now clear that chromatin structure and dynamics play a critical role in all processes involved in DNA metabolism, e.g. replication, transcription, repair and recombination. Radiation is a useful tool to study the biological effects of chromatin alterations. Conversely, radiotherapy and radiodiagnosis raise questions about the influence of chromatin integrity on clinical features and secondary effects. This review focuses on the link between DNA damage and chromatin structure at different scales, showing how a comprehensive multiscale vision is required to understand better the effect of radiations on DNA. Clinical aspects related to high- and low-dose of radiation and chromosomal instability will be discussed. At the same time, we will show that the analysis of the radiation-induced DNA damage distribution provides good insight on chromatin structure. Hence, we argue that chromatin "structuralists" and radiobiological "clinicians" would each benefit from more collaboration with the other. We hope that this focused review will help in this regard.
Collapse
Affiliation(s)
- Christophe Lavelle
- Genome Structure and Instability, National Museum of Natural History, Paris, France; CNRS UMR7196, Paris, France; INSERM U1154, Paris, France; Nuclear Architecture and Dynamics, CNRS GDR 3536, Paris, France.
| | - Nicolas Foray
- Nuclear Architecture and Dynamics, CNRS GDR 3536, Paris, France; INSERM, UMR1052, Radiobiology Group, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
16
|
Kim JH, Kim IH, Shin JH, Kim HJ, Kim IA. Sequence-Dependent Radiosensitization of Histone Deacetylase Inhibitors Trichostatin A and SK-7041. Cancer Res Treat 2013; 45:334-42. [PMID: 24454006 PMCID: PMC3893331 DOI: 10.4143/crt.2013.45.4.334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/29/2013] [Indexed: 11/21/2022] Open
Abstract
PURPOSE This preclinical study is to determine whether the capacity of histone deacetylase (HDAC) inhibitors to enhance radiation response depends on temporal sequences of HDAC inhibition and irradiation. MATERIALS AND METHODS The effects of HDAC inhibitors trichostatin A (TSA) and SK-7041 on radiosensitivity in human lung cancer cells were examined using a clonogenic assay, exposing cells to HDAC inhibitors in various sequences of HDAC inhibition and radiation. We performed Western blot of acetylated histone H3 and flow cytometry to analyze cell cycle phase distribution. RESULTS TSA and SK-7041 augmented radiation cell lethality in an exposure time-dependent manner when delivered before irradiation. The impact of TSA and SK-7041 on radiosensitivity rapidly diminished when HDAC inhibition was delayed after irradiation. Radiation induced the acetylation of histone H3 in cells exposed to TSA, while irradiation alone had no effect on the expression of acetylated histone H3 in TSA-naïve cells. Preirradiation exposure to TSA abrogated radiation-induced G2/M-phase arrest. When delivered after irradiation, TSA had no effect on the peak of radiation-induced G2/M-phase arrest. CONCLUSION TSA and SK-7041 enhances radiosensitivity only when delivered before irradiation. Unless proven otherwise, it seems prudent to apply scheduling including preirradiation HDAC inhibition so that maximal radiosensitization is obtained.
Collapse
Affiliation(s)
- Jin Ho Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. ; Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jin Hee Shin
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. ; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
17
|
Lara PC, López-Peñalver JJ, Farias VDA, Ruiz-Ruiz MC, Oliver FJ, Ruiz de Almodóvar JM. Direct and bystander radiation effects: a biophysical model and clinical perspectives. Cancer Lett 2013; 356:5-16. [PMID: 24045041 DOI: 10.1016/j.canlet.2013.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 12/12/2022]
Abstract
In planning treatment for each new patient, radiation oncologists pay attention to the aspects that they control. Thus their attention is usually focused on volume and dose. The dilemma for the physician is how to protract the treatment in a way that maximizes control of the tumor and minimizes normal tissue injury. The initial radiation-induced damage to DNA may be a biological indicator of the quantity of energy transferred to the DNA. However, until now the biophysical models proposed cannot explain either the early or the late adverse effects of radiation, and a more general theory appears to be required. The bystander component of tumor cell death after radiotherapy measured in many experimental works highlights the importance of confirming these observations in a clinical situation.
Collapse
Affiliation(s)
- Pedro Carlos Lara
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena s/n, Las Palmas de Gran Canaria, CP 35010, Spain
| | - Jesús Joaquín López-Peñalver
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - Virgínea de Araújo Farias
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - M Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - Francisco Javier Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Avda. Conocimiento 4, 18016 Granada, Spain
| | - José Mariano Ruiz de Almodóvar
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain; Hospital Universitario San Cecilio, Avda. Dr. Olóriz s/n, 18012 Granada, Spain.
| |
Collapse
|
18
|
Keuser B, Khobta A, Gallé K, Anderhub S, Schulz I, Pauly K, Epe B. Influences of histone deacetylase inhibitors and resveratrol on DNA repair and chromatin compaction. Mutagenesis 2013; 28:569-76. [PMID: 23814181 DOI: 10.1093/mutage/get034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accessibility of DNA is a prerequisite for both DNA damage and repair. Therefore, the chromatin structure is expected to have major impact on both processes, with opposite consequences for the stability of the genome. To analyse the influence of chromatin compaction on the generation and repair of various types of DNA modifications, we modulated the global chromatin structure of AS52 Chinese hamster ovary cells and HeLa cells by treatment with either histone deacetylase inhibitors or resveratrol and measured the repair kinetics of (i) pyrimidine dimers induced by ultraviolet B, (ii) oxidised purines generated by photosensitisation and (iii) single-strand breaks induced by H2O2, using an alkaline elution technique. The decrease of chromatin compaction (detected as reduced DNA accessibility to DNase I) after treatment with trichostatin A or butyrate slightly increased the damage generation but had no significant effect on the global repair rates. In contrast, incubation of AS52 cells with resveratrol at concentrations that caused significant chromatin compaction and that had only moderate influence on cell proliferation gave rise to a strong decrease of the repair rates of all three types of DNA modifications. Similar, but less pronounced effects were observed in HeLa cells. The effects of resveratrol on the repair rates were not antagonised by the sirtuin inhibitor EX-527 or by an increase of the intracellular thiol levels.
Collapse
Affiliation(s)
- Bettina Keuser
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, 55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Torres-Roca JF. A molecular assay of tumor radiosensitivity: a roadmap towards biology-based personalized radiation therapy. Per Med 2012; 9:547-557. [PMID: 23105945 DOI: 10.2217/pme.12.55] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The last two decades have seen technological developments that have led to more accurate delivery of radiation therapy (RT), which has resulted in clinical gains in many solid tumors. However, a fundamental question and perhaps the next major hurdle is whether biological strategies can be developed to further enhance the effectiveness and efficiency of RT. This article addresses the development of a novel genomics-based molecular assay to predict tumor radiosensitivity, and proposes that this assay may prove pivotal in the development of biologically guided RT.
Collapse
Affiliation(s)
- Javier F Torres-Roca
- Department of Experimental Therapeutics & Radiation Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA, Tel.: +1 813 745 1824
| |
Collapse
|
20
|
Mairs RJ, Boyd M. Preclinical assessment of strategies for enhancement of metaiodobenzylguanidine therapy of neuroendocrine tumors. Semin Nucl Med 2012; 41:334-44. [PMID: 21803183 DOI: 10.1053/j.semnuclmed.2011.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By virtue of its high affinity for the norepinephrine transporter (NET), [(131)I]metaiodobenzylguanidine ([(131)I]MIBG) has been used for the therapy of tumors of neuroectodermal origin for more than 25 years. Although not yet universally adopted, [(131)I]MIBG targeted radiotherapy remains a highly promising means of management of neuroblastoma, pheochromocytoma, and carcinoids. Appreciation of the mode of conveyance of [(131)I]MIBG into malignant cells and of factors that influence the activity of the uptake mechanism has indicated a variety of means of increasing the effectiveness of this type of treatment. Studies in model systems revealed that radiolabeling of MIBG to high specific activity reduced the amount of cold competitor, thereby increasing tumor dose and minimizing pressor effects. Increased radiotoxicity to targeted tumors might also be achieved by the use of the α-particle emitter [(211)At]astatine rather than (131)I as radiolabel. Recently it has been demonstrated that potent cytotoxic bystander effects were induced by [(131)I]MIBG, [(123)I]MIBG, and [(211)At]meta-astatobenzylguanidine. Discovery of the structure of bystander factors could increase the therapeutic ratio achievable by MIBG targeted radiotherapy. [(131)I]MIBG combined with topotecan produced supra-additive cytotoxicity in vitro and tumor growth delay in vivo. The enhanced antitumor effect was consistent with a failure to repair DNA damage. Initial findings suggest that further enhancement of efficacy might be achieved by triple combination therapy with drugs that disrupt alternative tumor-specific pathways and synergize not only with [(131)I]MIBG abut also with topotecan. With these ploys, it is expected that advances will be made toward the optimization of [(131)I]MIBG therapy of neuroectodermal tumors.
Collapse
Affiliation(s)
- Rob J Mairs
- Radiation Oncology, Division of Cancer Science and Molecular Pathology, University of Glasgow, Cancer Research UK, Beatson Laboratories, Glasgow, Scotland.
| | | |
Collapse
|
21
|
Histone deacetylase inhibitors sensitize human non-small cell lung cancer cells to ionizing radiation through acetyl p53-mediated c-myc down-regulation. J Thorac Oncol 2011; 6:1313-9. [PMID: 21642861 DOI: 10.1097/jto.0b013e318220caff] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Histone deacetylase inhibitors (HDACIs) induce growth arrest and apoptosis in cancer cells. In addition to their intrinsic anticancer properties, HDACIs modulate cellular responses to ionizing radiation (IR). We examined the molecular mechanism(s) associated with the radiosensitizing effects of HDACIs in human lung cancer cells. METHODS Lung cancer cells were pretreated with the appropriate concentrations of suberoylanilide hydroxamic acid or trichostatin A. After 2 hours, cells were irradiated with various doses of γ-IR, and then we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, fluorescence-activated cell sorting analysis, clonogenic assay, and Western blotting to detect cell viability or apoptosis and changes of specific proteins expression levels. RESULTS In this study, we showed that HDACIs (including suberoylanilide hydroxamic acid and trichostatin A) and IR synergistically trigger cell death in human non-small cell lung cancer cells. Cell viability and clonogenic survival were markedly decreased in cultures cotreated with HDACIs and IR. Interestingly, p53 acetylation at lysine 382 was significantly increased, and c-myc expression simultaneously down-regulated in cotreated cells. Radiosensitization by HDACIs was inhibited on transfection with small interfering RNA against p53 and c-myc overexpression, supporting the involvement of p53 and c-myc in this process. Furthermore, c-myc down-regulation and apoptotic cell death coinduced by IR and HDACI were suppressed in cells transfected with mutant K382R p53 and C135Y p53 displaying loss of acetylation at lysine 382 and DNA-binding activity, respectively. CONCLUSIONS Our results collectively demonstrate that the degree of radiosensitization by HDACIs is influenced by acetyl p53-mediated c-myc down-regulation.
Collapse
|
22
|
Platelet-derived endothelial cell growth factor/thymidine phosphorylase inhibitor augments radiotherapeutic efficacy in experimental colorectal cancer. Cancer Lett 2011; 318:199-205. [PMID: 22178656 DOI: 10.1016/j.canlet.2011.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/04/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
Abstract
PURPOSES A lot of radiosensitizers have been developed. However, there are few to be available in the clinical setting. Thymidine phosphorylase inhibitor (TPI) regulates the phosphorolysis of thymidine to thymine and 2-deoxy-d-ribose-1-phosphate which is essential for tumor angiogenesis. The aim of this study is to evaluate whether TPI augments the radiotherapy for colorectal cancer in vitro and in vivo studies. MATERIALS AND METHODS The cytotoxicity of TPI with irradiation on HT29 and HCT116 cells was examined using MTT- and colony formation assay. At 10days post-inoculation, HT29 bearing orthotopic model mice (n=28) were divided into four groups and orally treated with TPI- (50mg/kg/day for 2weeks), radiation (RT, 2Gy×4: Total 8Gy), their combination or the vehicle. The mechanisms underlying the efficacy were assessed genomically and immunohistochemically. RESULTS Compared to each single treatment, the combination of TPI and RT synergistically inhibited the cell viability in a time- and dose-dependent manner. In the HT-29 bearing mice, the combination of TPI and RT reduced the tumor growth compared with RT alone. Notably, the mRNA levels of VEGF, TGF-β and, Rad51 and the protein expressions of VEGF and CD34 were significantly lower in the combination than the others. Furthermore, the combination markedly increased the TUNEL-positive cells, suggesting that TPI augments the cancer cell death through inhibition of angiogenesis and DNA repair system in the radiotherapy. CONCLUSIONS Our study first demonstrated that the combination of TPI and irradiation was effective in colon cancer. TPI would provide a promising therapeutic strategy as a radiosensitizer.
Collapse
|
23
|
Shabason JE, Tofilon PJ, Camphausen K. Grand rounds at the National Institutes of Health: HDAC inhibitors as radiation modifiers, from bench to clinic. J Cell Mol Med 2011; 15:2735-44. [PMID: 21362133 PMCID: PMC3112261 DOI: 10.1111/j.1582-4934.2011.01296.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/27/2011] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumour. Patients afflicted with this disease unfortunately have a very poor prognosis, and fewer than 5% of patients survive for 5 years from the time of diagnosis. Therefore, improved therapies to treat this disease are sorely needed. One such class of drugs that have generated great enthusiasm for the treatment of numerous malignancies, including GBM, is histone deacetylase (HDAC) inhibitors. Pre-clinical data have demonstrated the efficacy of various HDAC inhibitors as anticancer agents, with the greatest effects shown when HDAC inhibitors are used in combination with other therapies. As a result of encouraging pre-clinical data, numerous HDAC inhibitors are under investigation in clinical trials, either as monotherapies or in conjunction with other treatments such as chemotherapy, biologic therapy or radiation therapy. In fact, two actively studied HDAC inhibitors, vorinostat and depsipeptide, were recently approved for the treatment of refractory cutaneous T cell lymphoma. In this review, we first present a patient with GBM, and then discuss the pathogenesis, epidemiology and current treatment options of GBM. Finally, we examine the translation of pre-clinical studies that have demonstrated HDAC inhibitors as potent radiosensitizers in in vitro and in vivo models, to a phase II clinical trial combining the HDAC inhibitor, valproic acid, along with temozolomide and radiation therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Jacob E Shabason
- Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
- Howard Hughes Medical Institute—National Institutes of Health Research Scholars ProgramBethesda, MD, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
24
|
Zhu J, Li W, Mao Z. Cdk5: mediator of neuronal development, death and the response to DNA damage. Mech Ageing Dev 2011; 132:389-94. [PMID: 21600237 DOI: 10.1016/j.mad.2011.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 10/25/2022]
Abstract
In the central nervous system, cyclin-dependent kinase 5 (Cdk5), an unusual member of the Cdk family, is implicated in the regulation of various physiological processes ranging from neuronal survival, migration and differentiation, to synaptogenesis, synaptic plasticity and neurotransmission. Dysregulation of this kinase has been demonstrated to play a critical role in the pathogenic process of neurodegenerative disorders. DNA damage is emerging as an important pathological component in various neurodegenerative conditions. In this review, we discuss the recent progress regarding the regulation and roles of Cdk5 under physiological conditions, and its dysregulation under pathological conditions, especially in neuronal death mediated by DNA damage.
Collapse
Affiliation(s)
- Jinqiu Zhu
- Department of Pharmacology, Emory University School of Medicine, Whitehead Bldg., Rm505L 615 Michael St., Atlanta, GA 30322, USA
| | | | | |
Collapse
|
25
|
Mellert HS, Stanek TJ, Sykes SM, Rauscher FJ, Schultz DC, McMahon SB. Deacetylation of the DNA-binding domain regulates p53-mediated apoptosis. J Biol Chem 2010; 286:4264-70. [PMID: 21148320 DOI: 10.1074/jbc.m110.184663] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In unstressed cells, the p53 tumor suppressor is highly unstable. DNA damage and other forms of cellular stress rapidly stabilize and activate p53. This process is regulated by a complex array of post-translational modifications that are dynamically deposited onto p53. Recent studies show that these modifications orchestrate p53-mediated processes such as cell cycle arrest and apoptosis. Cancer cells carry inherent genetic damage, but avoid arrest and apoptosis by inactivating p53. Defining the enzymatic machinery that regulates the stress-induced modification of p53 at single-residue resolution is critical to our understanding of the biochemical mechanisms that control this critical tumor suppressor. Specifically, acetylation of p53 at lysine 120, a DNA-binding domain residue mutated in human cancer, is essential for triggering apoptosis. Given the oncogenic properties of deacetylases and the success of deacetylase inhibitors as anticancer agents, we investigated the regulation of Lys(120) deacetylation using pharmacologic and genetic approaches. This analysis revealed that histone deacetylase 1 is predominantly responsible for the deacetylation of Lys(120). Furthermore, treatment with the clinical-grade histone deacetylase inhibitor entinostat enhances Lys(120) acetylation, an event that is mechanistically linked to its apoptotic effect. These data expand our understanding of the mechanisms controlling p53 function and suggest that regulation of p53 modification status at single-residue resolution by targeted therapeutics can selectively alter p53 pathway function. This knowledge may impact the rational application of deacetylase inhibitors in the treatment of human cancer.
Collapse
Affiliation(s)
- Hestia S Mellert
- Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Deorukhkar A, Shujun S, Park HC, Diagaradjane P, Puduvalli V, Aggarwal B, Guha S, Krishnan S. Inhibition of radiation-induced DNA repair and prosurvival pathways contributes to vorinostat-mediated radiosensitization of pancreatic cancer cells. Pancreas 2010; 39:1277-1283. [PMID: 20531243 PMCID: PMC2955787 DOI: 10.1097/mpa.0b013e3181dd63e1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The intrinsic radioresistance of pancreatic cancer (PaCa) is caused by multiple oncogenic signaling pathways. In contrast to combining radiation therapy (RT) with targeted therapeutic agent(s) whose blockade can be circumvented by redundant signaling pathways, we evaluated the combination of RT with a broad-spectrum histone deacetylase inhibitor, vorinostat. METHODS Radiosensitization by vorinostat was analyzed using clonogenic survival assays. Apoptosis was evaluated using flow cytometry and immunoblotting. DNA repair was evaluated using immunofluorescence assessment of histone 2AX phosphorylation and immunoblotting for DNA repair proteins. Prosurvival pathway proteins were measured by immunoblotting and electrophoretic mobility shift assays. RESULTS Vorinostat significantly sensitized PaCa cells to radiation, but vorinostat-induced apoptosis did not contribute significantly to the observed radiosensitization. However, vorinostat inhibited DNA damage repair by targeting key DNA repair proteins and also abrogated prosurvival pathways responsible for PaCa aggressiveness and radioresistance. Specifically, the constitutively overexpressed epidermal growth factor receptor and nuclear factor κB pathways were shown to be induced by radiation and inhibited by vorinostat. CONCLUSIONS Vorinostat augments the antitumor effects of RT by abrogating radioresistance responses of PaCa cells mediated by prosurvival and DNA repair pathways and promises to be a clinically relevant adjunct to RT for treatment of PaCa.
Collapse
Affiliation(s)
- Amit Deorukhkar
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Shentu Shujun
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Hee Chul Park
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Parmeswaran Diagaradjane
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Vinay Puduvalli
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Bharat Aggarwal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sushovan Guha
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
27
|
Abstract
Aberrant cell cycle activity and DNA damage have been observed in neurons in association with various neurodegenerative conditions. While there is strong evidence for a causative role for these events in neurotoxicity, it is unclear how they are triggered and why they are toxic. Here, we introduce a brief background of the current view on cell cycle activity and DNA damage in neurons and speculate on their relevance to neuronal survival. Furthermore, we suggest that the two events may be triggered in common by deregulation of fundamental processes, such as chromatin modulation, which are required for maintaining both DNA integrity and proper regulation of cell cycle gene expression.
Collapse
Affiliation(s)
- Dohoon Kim
- Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, Cambridge, Massachusetts 01239, USA
| | | |
Collapse
|
28
|
Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Rocha-Lima C, Kelley S, Calvin DP, Yeatman TJ, Begg AC, Torres-Roca JF. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys 2009; 75:489-96. [PMID: 19735873 DOI: 10.1016/j.ijrobp.2009.06.014] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/25/2009] [Accepted: 06/08/2009] [Indexed: 02/07/2023]
Abstract
PURPOSE Development of a radiosensitivity predictive assay is a central goal of radiation oncology. We reasoned a gene expression model could be developed to predict intrinsic radiosensitivity and treatment response in patients. METHODS AND MATERIALS Radiosensitivity (determined by survival fraction at 2 Gy) was modeled as a function of gene expression, tissue of origin, ras status (mut/wt), and p53 status (mut/wt) in 48 human cancer cell lines. Ten genes were identified and used to build a rank-based linear regression algorithm to predict an intrinsic radiosensitivity index (RSI, high index = radioresistance). This model was applied to three independent cohorts treated with concurrent chemoradiation: head-and-neck cancer (HNC, n = 92); rectal cancer (n = 14); and esophageal cancer (n = 12). RESULTS Predicted RSI was significantly different in responders (R) vs. nonresponders (NR) in the rectal (RSI R vs. NR 0.32 vs. 0.46, p = 0.03), esophageal (RSI R vs. NR 0.37 vs. 0.50, p = 0.05) and combined rectal/esophageal (RSI R vs. NR 0.34 vs. 0.48, p = 0.001511) cohorts. Using a threshold RSI of 0.46, the model has a sensitivity of 80%, specificity of 82%, and positive predictive value of 86%. Finally, we evaluated the model as a prognostic marker in HNC. There was an improved 2-year locoregional control (LRC) in the predicted radiosensitive group (2-year LRC 86% vs. 61%, p = 0.05). CONCLUSIONS We validate a robust multigene expression model of intrinsic tumor radiosensitivity in three independent cohorts totaling 118 patients. To our knowledge, this is the first time that a systems biology-based radiosensitivity model is validated in multiple independent clinical datasets.
Collapse
|
29
|
Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys 2009; 75:497-505. [PMID: 19735874 DOI: 10.1016/j.ijrobp.2009.05.056] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 02/05/2023]
Abstract
PURPOSE The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems-biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers. METHODS AND MATERIALS Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt). RESULTS The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers. CONCLUSION We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice.
Collapse
|
30
|
Bandyopadhyay K, Banères JL, Martin A, Blonski C, Parello J, Gjerset RA. Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer-specific chemo- and radiosensitization. Cell Cycle 2009; 8:2779-88. [PMID: 19652528 DOI: 10.4161/cc.8.17.9416] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acetyl group turnover on specific lysine epsilon-amino groups of the core chromosomal histones regulates DNA accessibility function, and the acetylating and deacetylating enzymes that govern the turnover provide important targets for the development of anti-cancer drugs. Histone deacetylase (HDAC) inhibitors have been developed and evaluated extensively in clinical trials, while the development of inhibitors of histone acetyltransferase (HAT) has proceeded more slowly. Here we have examined the cellular effects of an S-substituted coenzyme A (CoA) inhibitor of histone acetylation, consisting of spermidine (Spd) linked to the S-terminus of CoA through a thioglycolic acid linkage (adduct abbreviated as Spd-CoA), as well as the effects of a truncated Spd-CoA derivative lacking the negatively charged portion of the CoA moiety. While exposure of cancer cells to Spd-CoA has little effect on cell viability, it causes a rapid inhibition of histone acetylation that correlates with a transient arrest of DNA synthesis, a transient delay in S-phase progression, and an inhibition of nucleotide excision repair and DNA double strand break repair. These effects correlate with increased cellular sensitivity to the DNA-targeted chemotherapeutic drugs, cisplatin (Platinol()) and 5-fluorouracil, to the DNA damaging drug, camptothecin, and to UV-C irradiation. The sensitization effects of Spd-CoA are not observed in normal cells due to a barrier to uptake. The truncated Spd-CoA derivative displays similar but enhanced chemosensitization effects, suggesting that further modifications of the Spd-CoA structure could further improve potency. The results demonstrate that Spd-CoA and its truncated version are efficiently and selectively internalized into cancer cells, and suggest that the resulting inhibition of acetylation-dependent DNA repair enhances cellular sensitivity to DNA damage. These and related inhibitors of histone acetylation could therefore constitute a novel class of potent therapy sensitizers applicable to a broad range of conventional cancer treatments.
Collapse
|
31
|
Alao JP, Olesch J, Sunnerhagen P. Inhibition of type I histone deacetylase increases resistance of checkpoint-deficient cells to genotoxic agents through mitotic delay. Mol Cancer Ther 2009; 8:2606-15. [PMID: 19723888 DOI: 10.1158/1535-7163.mct-09-0218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors potently inhibit tumor growth and are currently being evaluated for their efficacy as chemosensitizers and radiosensitizers. This efficacy is likely to be limited by the fact that HDAC inhibitors also induce cell cycle arrest. Deletion of the class I HDAC Rpd3 has been shown to specifically suppress the sensitivity of Saccharomyces cerevisiae DNA damage checkpoint mutants to UV and hydroxyurea. We show that in the fission yeast Schizosaccharomyces pombe, inhibition of the homologous class I HDAC specifically suppresses the DNA damage sensitivity of checkpoint mutants. Importantly, the prototype HDAC inhibitor Trichostatin A also suppressed the sensitivity of DNA damage checkpoint but not of DNA repair mutants to UV and HU. TSA suppressed DNA damage activity independently of the mitogen-activated protein kinase-dependent and spindle checkpoint pathways. We show that TSA delays progression into mitosis and propose that this is the main mechanism for suppression of the DNA damage sensitivity of S. pombe checkpoint mutants, partially compensating for the loss of the G(2) checkpoint pathway. Our studies also show that the ability of HDAC inhibitors to suppress DNA damage sensitivity is not species specific. Class I HDACs are the major target of HDAC inhibitors and cancer cells are often defective in checkpoint activation. Effective use of these agents as chemosensitizers and radiosensitizers may require specific treatment schedules that circumvent their inhibition of cell cycle progression.
Collapse
Affiliation(s)
- John P Alao
- Department of Cell and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Göteborg, Sweden
| | | | | |
Collapse
|
32
|
Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 2009; 28:1878-89. [PMID: 19407812 PMCID: PMC2684025 DOI: 10.1038/emboj.2009.119] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/26/2009] [Indexed: 01/05/2023] Open
Abstract
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells.
Collapse
Affiliation(s)
- Jorrit V Tjeertes
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- These authors contributed equally to this work
| | - Kyle M Miller
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- These authors contributed equally to this work
| | | |
Collapse
|
33
|
Affiliation(s)
- Philip J Tofilon
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA.
| | | |
Collapse
|
34
|
Baschnagel A, Russo A, Burgan WE, Carter D, Beam K, Palmieri D, Steeg PS, Tofilon P, Camphausen K. Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol Cancer Ther 2009; 8:1589-95. [PMID: 19509253 DOI: 10.1158/1535-7163.mct-09-0038] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vorinostat (suberoylanilide hydroxamic acid), a histone deacetylase inhibitor, is currently undergoing clinical evaluation as therapy for cancer. We investigated the effects of vorinostat on tumor cell radiosensitivity in a breast cancer brain metastasis model using MDA-MB-231-BR cells. In vitro radiosensitivity was evaluated using clonogenic assay. Cell cycle distribution and apoptosis was measured using flow cytometry. DNA damage and repair was evaluated using gammaH2AX. Mitotic catastrophe was measured by immunostaining. Growth delay and intracranial xenograft models were used to evaluate the in vivo tumor radiosensitivity. Cells exposed to vorinostat for 16 hours before and maintained in the medium after irradiation had an increase in radiosensitivity with a dose enhancement factor of 1.57. gammaH2AX, as an indicator of double-strand breaks, had significantly more foci per cell in the vorinostat plus irradiation group. Mitotic catastrophe, measured at 72 hours, was significantly increased in cells receiving vorinostat plus irradiation. Irradiation of s.c. MDA-MB-231-BR tumors in mice treated with vorinostat resulted in an increase in radiation-induced tumor growth delay. Most importantly, animals with intracranial tumor implants lived the longest after combination treatment. These results indicate that vorinostat enhances tumor cell radiosensitivity in vitro and in vivo. There was a greater than additive improvement in survival in our intracranial model. Combining vorinostat with radiation may be a potential treatment option for patients with breast cancer who develop brain metastases.
Collapse
Affiliation(s)
- Andrew Baschnagel
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Radiosensitization by SAHA in experimental colorectal carcinoma models-in vivo effects and relevance of histone acetylation status. Int J Radiat Oncol Biol Phys 2009; 74:546-52. [PMID: 19427556 DOI: 10.1016/j.ijrobp.2009.01.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/11/2009] [Accepted: 01/14/2009] [Indexed: 11/22/2022]
Abstract
PURPOSE Histone deacetylase inhibitors are being evaluated as antitumor agents in ongoing clinical trials, and promising preclinical results, combined with favorable toxicity profiles, have rendered the drugs as interesting candidates for combination with other treatment modalities, such as radiotherapy. The aim of the present study was to evaluate the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) and the possible requirement of histone hyperacetylation at radiation exposure. METHODS AND MATERIALS Radiosensitization by SAHA was assessed in a colorectal carcinoma cell line and in two colorectal xenograft models by analysis of clonogenic survival and tumor growth delay, respectively. Histone acetylation status at radiation exposure was evaluated by Western blot. RESULTS In vitro, radiosensitization was demonstrated when cells were preincubated with SAHA, and, in the xenografts, tumor growth was delayed when the mice were treated with fractionated radiation combined with daily SAHA injections compared with radiation alone. Surprisingly, the SAHA-dependent growth delay was still present when radiation was delivered at restored baseline acetylation levels compared with maximal histone hyperacetylation. CONCLUSION SAHA was an effective radiosensitizer in experimental colorectal carcinoma models, suggesting that histone deacetylase inhibition might constitute a valuable supplement to current multimodal treatment strategies in rectal cancer. The presence of histone hyperacetylation at radiation was not required to obtain an increased radiation response, questioning the validity of using histone hyperacetylation as a molecular marker for radiosensitivity.
Collapse
|
36
|
Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, Broodie N, Mazitschek R, Delalle I, Haggarty SJ, Neve RL, Lu Y, Tsai LH. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 2009; 60:803-17. [PMID: 19081376 DOI: 10.1016/j.neuron.2008.10.015] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 09/02/2008] [Accepted: 10/09/2008] [Indexed: 12/19/2022]
Abstract
Aberrant cell-cycle activity and DNA damage are emerging as important pathological components in various neurodegenerative conditions. However, their underlying mechanisms are poorly understood. Here, we show that deregulation of histone deacetylase 1 (HDAC1) activity by p25/Cdk5 induces aberrant cell-cycle activity and double-strand DNA breaks leading to neurotoxicity. In a transgenic model for neurodegeneration, p25/Cdk5 activity elicited cell-cycle activity and double-strand DNA breaks that preceded neuronal death. Inhibition of HDAC1 activity by p25/Cdk5 was identified as an underlying mechanism for these events, and HDAC1 gain of function provided potent protection against DNA damage and neurotoxicity in cultured neurons and an in vivo model for ischemia. Our findings outline a pathological signaling pathway illustrating the importance of maintaining HDAC1 activity in the adult neuron. This pathway constitutes a molecular link between aberrant cell-cycle activity and DNA damage and is a potential target for therapeutics against diseases and conditions involving neuronal death.
Collapse
Affiliation(s)
- Dohoon Kim
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
De Schutter H, Kimpe M, Isebaert S, Nuyts S. A systematic assessment of radiation dose enhancement by 5-Aza-2'-deoxycytidine and histone deacetylase inhibitors in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2009; 73:904-12. [PMID: 19215824 DOI: 10.1016/j.ijrobp.2008.10.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 10/20/2008] [Accepted: 10/23/2008] [Indexed: 11/25/2022]
Abstract
PURPOSE Investigations of epigenetic drugs have shown that radiotherapy can be successfully combined with histone deacetylase inhibitors (HDAC-Is) for the treatment of head-and-neck squamous cell carcinoma (HNSCC). Whether the reversal of epigenetic silencing by demethylating agents with or without HDAC-Is can also act as radiosensitizing remains unclear. This study therefore aimed to investigate whether 5-aza-2'-deoxycytidine (DAC) alone or in combination with the HDAC-Is trichostatin A, LBH589, or MGCD0103 could radiosensitize HNSCC tumor cell lines. METHODS AND MATERIALS Histone acetylation status and expression of epigenetically silenced genes at the DNA, RNA, and protein levels were assessed as measures of drug effectiveness in six HNSCC cell lines. Based on their colony-forming capacity, colony assays were performed in four of six cell lines to evaluate the radiosensitizing potential of DAC with or without HDAC-Is. Additional assays of cell survival, apoptosis, cell proliferation, and DNA damage were performed. RESULTS Radiosensitization was observed in two HNSCC cell lines treated with noncytotoxic doses of DAC with or without HDAC-Is before irradiation. The radiosensitizing doses induced histone hyperacetylation and reversal of gene silencing to variable extents and increased radiation-induced cell-cycle arrest. CONCLUSIONS A role for low-dose DAC with or without HDAC-Is as radiosensitizers in HNSCC seems promising and is supportive of future clinical use, especially for combinations of DAC with LBH589 or MGCD0103, although the mechanisms by which they work will require further study.
Collapse
Affiliation(s)
- Harlinde De Schutter
- Laboratory of Experimental Radiotherapy, Leuvens Kanker Instituut, University Hospitals Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
38
|
Ree AH, Folkvord S, Flatmark K. HDAC2 deficiency and histone acetylation. Nat Genet 2008; 40:812-3; author reply 813. [PMID: 18583969 DOI: 10.1038/ng0708-812] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Banuelos CA, Banáth JP, MacPhail SH, Zhao J, Reitsema T, Olive PL. Radiosensitization by the histone deacetylase inhibitor PCI-24781. Clin Cancer Res 2008; 13:6816-26. [PMID: 18006784 DOI: 10.1158/1078-0432.ccr-07-1126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE PCI-24781 is a novel broad spectrum histone deacetylase inhibitor that is currently in phase I clinical trials. The ability of PCI-24781 to act as a radiation sensitizer and the mechanisms of radiosensitization were examined. EXPERIMENTAL DESIGN Exponentially growing human SiHa cervical and WiDr colon carcinoma cells were exposed to 0.1 to 10 micromol/L PCI-24781 in vitro for 2 to 20 h before irradiation and 0 to 4 h after irradiation. Single cells and sorted populations were analyzed for histone acetylation, H2AX phosphorylation, cell cycle distribution, apoptotic fraction, and clonogenic survival. RESULTS PCI-24781 treatment for 4 h increased histone H3 acetylation and produced a modest increase in gammaH2AX but negligible cell killing or radiosensitization. Treatment for 24 h resulted in up to 80% cell kill and depletion of cells in S phase. Toxicity reached maximum levels at a drug concentration of approximately 1 micromol/L, and cells in G(1) phase at the end of treatment were preferentially spared. A similar dose-modifying factor (DMF(0.1) = 1.5) was observed for SiHa cells exposed for 24 h at 0.1 to 3 micromol/L, and more radioresistant WiDr cells showed less sensitization (DMF(0.1) = 1.2). Limited radiosensitization and less killing were observed in noncycling human fibroblasts. Cell sorting experiments confirmed that depletion of S-phase cells was not a major mechanism of radiosensitization and that inner noncycling cells of SiHa spheroids could be sensitized by nontoxic doses. PCI-24781 pretreatment increased the fraction of cells with gammaH2AX foci 24 h after irradiation but did not affect the initial rate of loss of radiation-induced gammaH2AX or the rate of rejoining of DNA double-strand breaks. CONCLUSIONS PCI-24781 shows promise as a radiosensitizing agent that may compromise the accuracy of repair of radiation damage.
Collapse
Affiliation(s)
- Carmen A Banuelos
- Medical Biophysics Department, British Columbia Cancer Research Center, 675 W. 10th Avenue, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Adimoolam S, Sirisawad M, Chen J, Thiemann P, Ford JM, Buggy JJ. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci U S A 2007; 104:19482-7. [PMID: 18042714 PMCID: PMC2148315 DOI: 10.1073/pnas.0707828104] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Indexed: 12/24/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors such as the phenyl hydroxamic acid PCI-24781 have emerged recently as a class of therapeutic agents for the treatment of cancer. Recent data showing synergy of HDAC inhibitors with ionizing radiation and other DNA-damaging agents have suggested that HDAC inhibitors may act, in part, by inhibiting DNA repair. Here we present evidence that HDAC enzymes are important for homologous recombinational repair of DNA double-strand breaks. Combination studies of PCI-24781 with the poly(ADP-ribose) polymerase inhibitor PJ34, an agent thought to produce lesions repaired by homologous recombination (HR), resulted in a synergistic effect on apoptosis. Immunofluorescence analysis demonstrated that HDAC inhibition caused a complete inhibition of subnuclear repair foci in response to ionizing radiation. Mechanistic investigations revealed that inhibition of HDAC enzymes by PCI-24781 led to a significant reduction in the transcription of genes specifically associated with HR, including RAD51. RAD51 protein levels were significantly decreased after 24 h of drug exposure both in vitro and in vivo. Consistent with inhibition of HR, treatment with PCI-24781 resulted in a decreased ability to perform homology directed repair of I-SceI-induced chromosome breaks in transfected CHO cells. In addition, an enhancement of cell killing was observed in Ku mutant cells lacking functional nonhomologous end joining compared with WT cells. Together these results demonstrate that HDAC enzymes are critically important to enable functional HR by controlling the expression of HR-related genes and promoting the proper assembly of HR-directed subnuclear foci.
Collapse
Affiliation(s)
| | | | - Jun Chen
- *Pharmacyclics, Inc., Sunnyvale, CA 94085-4521; and
| | | | - James M. Ford
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305
| | | |
Collapse
|
41
|
Camphausen K, Tofilon PJ. Inhibition of Histone Deacetylation: A Strategy for Tumor Radiosensitization. J Clin Oncol 2007; 25:4051-6. [PMID: 17827453 DOI: 10.1200/jco.2007.11.6202] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, strategies to enhance tumor radiosensitivity have begun to focus on targeting the molecules and processes that regulate cellular radioresponse. A molecular target that has begun to receive considerable attention is histone acetylation. Histone acetylation is determined by the dynamic interaction of two families of enzymes: histone acetylases and histone deacetylases (HDACs). Histone acetylation plays a role in regulating chromatin structure and gene expression—two parameters that have long been considered determinants of radioresponse. As a means of modifying histone acetylation status, considerable effort has been put into the development of inhibitors of HDAC activity. This has led to the generation of a relatively large number of structurally diverse compounds that can inhibit HDAC activity resulting in histone hyperacetylation. Many of the newer HDAC inhibitor compounds have been designed with better bioavailability or pharmacology than the first-generation compounds. Whereas a number of these second-generation HDAC inhibitors have antitumor activity in preclinical cancer models when delivered as single agents, early clinical data demonstrate only cytostasis when used as monotherapy. However, recent preclinical studies have indicated that HDAC inhibitors from structurally diverse classes can enhance both the in vitro and in vivo radiosensitivity of human tumor cell lines generated from a spectrum of solid tumors. HDAC inhibitors are in clinical trials as single modalities, in combination with chemotherapeutic agents, and recently, in combination with radiotherapy.
Collapse
Affiliation(s)
- Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
42
|
Bar-Sela G, Jacobs KM, Gius D. Histone deacetylase inhibitor and demethylating agent chromatin compaction and the radiation response by cancer cells. Cancer J 2007; 13:65-9. [PMID: 17464248 DOI: 10.1097/ppo.0b013e31803c7565] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It now appears that epigenetics plays a central role in transformation, both in vitro and in vivo. The expression and regulation of DNA methylation and the subsequent chromatin structure are significantly altered in tumor cells, suggesting a direct role in the process of in vivo cellular transformation. If epigenetics and posttranslational modifications of histones play a role in transformation, then it seems logical that the genes regulating chromatin compaction may also be molecular targets and markers in profiling tumor cell resistance. Local remodeling of chromatin is a key step in the regulation of gene expression, and altering the expression of these genes might also favorably alter how tumor cells respond to anticancer agents. Several new agents that alter chromatin compaction, either methyltransferase or histone deacetylases inhibitors, are progressing through clinical trials and have shown promising preclinical interactions when combined with radiation. In this review, we discuss the potential for histone deacetylases inhibitors as radiosensitizing agents.
Collapse
Affiliation(s)
- Gil Bar-Sela
- Radiation Oncology Branch, Radiation Oncology Sciences Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Moros EG, Corry PM, Orton CG. Thermoradiotherapy is underutilized for the treatment of cancer. Med Phys 2007; 34:1-4. [PMID: 17278484 DOI: 10.1118/1.2404790] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Eduardo G Moros
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
44
|
Karagiannis TC, El-Osta A. Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 2006; 21:61-5. [PMID: 17109024 DOI: 10.1038/sj.leu.2404464] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histone deacetylase (HDAC) inhibitors can induce differentiation, cell cycle and growth arrest or in certain cases apoptosis in cancer cells. In a remarkably short period of time, especially considering that their mechanism of action remains largely undefined, HDAC inhibitors have realized both success and failure as therapeutics for cancer in clinical trials. Notably, the pleiotropic HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and depsipeptide, have shown efficacy in a wide range of cancers, in particular for cutaneous T-cell lymphoma (CTCL), and are progressing in phase II clinical studies. However, evidence is accumulating that specific HDAC enzymes are important with respect to clinical efficacy, calling the usefulness of the classical inhibitors into question. Class I enzymes are being heralded as the most clinically relevant, however, this is still controversial and much of the information is in the private domain. Nevertheless, the potential to alter the expression of a more focused, disease-related subset of genes and to limit adverse effects has prompted the development of isoform-specific HDAC inhibitors. Here, we consider the growing view that broad-spectrum HDAC inhibitors may be superseded by more specific compounds.
Collapse
Affiliation(s)
- T C Karagiannis
- Department of Molecular Radiation Biology, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | |
Collapse
|