1
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
2
|
Field CM, Pelletier JF, Mitchison TJ. Disassembly of Actin and Keratin Networks by Aurora B Kinase at the Midplane of Cleaving Xenopus laevis Eggs. Curr Biol 2019; 29:1999-2008.e4. [PMID: 31178324 DOI: 10.1016/j.cub.2019.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/28/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Abstract
The large length scale of Xenopus laevis eggs facilitates observation of bulk cytoplasm dynamics far from the cortex during cytokinesis. The first furrow ingresses through the egg midplane, which is demarcated by chromosomal passenger complex (CPC) localized on microtubule bundles at the boundary between asters. Using an extract system, we found that local kinase activity of the Aurora B kinase (AURKB) subunit of the CPC caused disassembly of F-actin and keratin between asters and local softening of the cytoplasm as assayed by flow patterns. Beads coated with active CPC mimicked aster boundaries and caused AURKB-dependent disassembly of F-actin and keratin that propagated ∼40 μm without microtubules and much farther with microtubules present. Consistent with extract observations, we observed disassembly of the keratin network between asters in zygotes fixed before and during 1st cytokinesis. We propose that active CPC at aster boundaries locally reduces cytoplasmic stiffness by disassembling actin and keratin networks. Possible functions of this local disassembly include helping sister centrosomes move apart after mitosis, preparing a soft path for furrow ingression, and releasing G-actin from internal networks to build cortical networks that support furrow ingression.
Collapse
Affiliation(s)
- Christine M Field
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02153, USA; Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | - James F Pelletier
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02153, USA; Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02153, USA; Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| |
Collapse
|
3
|
Carotenuto R, Tussellino M. Xenopus laevis oocyte as a model for the study of the cytoskeleton. C R Biol 2018; 341:219-227. [PMID: 29705198 DOI: 10.1016/j.crvi.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 11/28/2022]
Abstract
At the beginning of diplotene, the oocyte of Xenopus laevis is a cell of about 10-20 microns destined to increase 10,000-fold its size when the oocyte becomes filled with yolk platelets and has accumulated a great number of pigment granules in a half of its periphery. Its internal architecture is gradually accomplished during growth because of several factors, especially because of cytoskeletal changes. In the fully-grown oocyte, the cytoskeleton appears to sustain the eccentrically located germinal vesicle through arms radiating from the cortex to the germinal vesicle, a unique organization not to be found in other Amphibians. In this report, we summarized and analysed steps of cytoskeletal proteins and related mRNAs organization and function throughout diplotene stage, highlighting our studies in this animal model. The cytoskeletal proteins appear to exploit their activity with respect to ribosomal 60S subunit maturation and during translation. Most importantly, the polarity of the oocyte is achieved through a sophisticated and highly organized localization of mRNAs and cytoskeletal proteins in one side of the cell. This asymmetry will start the construction of the oocyte polarity that is instrumental for determining the characteristic of this cell, which will become an embryo. Moreover, in the same time membrane composition, conditioned by the underlying cytoskeletal organization, will acquire the prerequisites for sperm binding and fusion.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Napoli, Italy.
| | | |
Collapse
|
4
|
Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes. ZYGOTE 2014; 23:669-82. [DOI: 10.1017/s0967199414000409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryActin-based cytoskeleton (CSK) and microtubules may bind to RNAs and related molecules implicated in translation. However, many questions remain to be answered regarding the role of cytoskeletal components in supporting the proteins involved in steps in the maturation and translation processes. Here, we performed co-immunoprecipitation and immunofluorescence to examine the association between spectrins, keratins and tubulin and proteins involved in 60S ribosomal maturation and translation in Xenopus stage I oocytes, including ribosomal rpl10, eukaryotic initiation factor 6 (Eif6), thesaurins A/B, homologs of the eEF1α elongation factor, and P0, the ribosomal stalk protein. We found that rpl10 and eif6 cross-reacted with the actin-based CSK and with tubulin. rpl10 co-localizes with spectrin, particularly in the perinuclear region. eif6 is similarly localized. Given that upon ribosomal maturation, the insertion of rpl10 into the 60S subunit occurs simultaneously with the release of eif6, one can hypothesise that actin-based CSK and microtubules provide the necessary scaffold for the insertion/release of these two molecules and, subsequently, for eif6 transport and binding to the mature 60S subunit. P0 and thesaurins cross-reacted with only spectrin and cytokeratins. Thesaurins aggregated at the oocyte periphery, rendering this a territory favourable site for protein synthesis; the CSK may support the interaction between thesaurins and sites of the translating ribosome. Moreover, given that the assembly of the ribosome stalk, where P0 is located, to the 60S subunit is essential for the release of eif6, it can be hypothesised that the CSK can facilitate the binding of the stalk to the 60S.
Collapse
|
5
|
Tamari F, Chen FW, Li C, Chaudhari J, Ioannou YA. PKC activation in Niemann pick C1 cells restores subcellular cholesterol transport. PLoS One 2013; 8:e74169. [PMID: 23977398 PMCID: PMC3744505 DOI: 10.1371/journal.pone.0074169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
Abstract
Activation of protein kinase C (PKC) has previously been shown to ameliorate the cholesterol transport defect in Niemann Pick Type C1 (NPC1) cells, presumably by increasing the soluble levels of one of its substrates, vimentin. This activity would then restore the vimentin cycle in these cells and allow vimentin-dependent retrograde transport to proceed. Here, we further investigate the effects of PKC activation in NPC1 cells by evaluating different isoforms for their ability to solubilize vimentin and correct the NPC1 cholesterol storage phenotype. We also examine the effects of PKC activators, including free fatty acids and the PKC-specific activator diazoxide, on the NPC1 disease phenotype. Our results indicate that PKC isoforms α, βII, and ε have the greatest effects on vimentin solubilization. Furthermore, expression or activation of PKCε in NPC1 cells dramatically reduces the amount of stored cholesterol and restores cholesterol transport out of endocytic vesicles. These results provide further support for the contribution of PKCs in NPC1 disease pathogenesis and suggest that PKCs may be targeted in future efforts to develop therapeutics for NPC1 disease.
Collapse
Affiliation(s)
- Farshad Tamari
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, New York, United States of America
| | - Fannie W. Chen
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
| | - Chunlei Li
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jagrutiben Chaudhari
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yiannis A. Ioannou
- Department of Genetics and Genomic Sciences, the Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Marrari Y, Rouvière C, Houliston E. Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation. Dev Biol 2004; 271:38-48. [PMID: 15196948 DOI: 10.1016/j.ydbio.2004.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/10/2004] [Accepted: 03/11/2004] [Indexed: 01/01/2023]
Abstract
Aligned vegetal subcortical microtubules in fertilized Xenopus eggs mediate the "cortical rotation", a translocation of the vegetal cortex and of dorsalizing factors toward the egg equator. Kinesin-related protein (KRP) function is essential for the cortical rotation, and dynein has been implicated indirectly; however, the role of neither microtubule motor protein family is understood. We examined the consequence of inhibiting dynein--dynactin-based transport by microinjection of excess dynamitin beneath the vegetal egg surface. Dynamitin introduced before the cortical rotation prevented formation of the subcortical array, blocking microtubule incorporation from deeper regions. In contrast, dynamitin injected after the microtubule array was fully established did not block cortical translocation, unlike inhibitory-KRP antibodies. During an early phase of cortical rotation, when microtubules showed a distinctive wavy organization, dynamitin disrupted microtubule alignment and perturbed cortical movement. These findings indicate that dynein is required for formation and early maintenance of the vegetal microtubule array, while KRPs are largely responsible for displacing the cortex once the microtubule tracks are established. Consistent with this model for the cortical rotation, photobleach analysis revealed both microtubules that translocated with the vegetal cytoplasm relative to the cortex, and ones that moved with the cortex relative to the cytoplasm.
Collapse
Affiliation(s)
- Yannick Marrari
- Unité de Biologie du Développement, UMR 7009 CNRS/Université Paris VI, Observatoire Océanologique, 06230 Villefranche sur mer, France
| | | | | |
Collapse
|
7
|
Maurizii MG, Alibardi L, Taddei C. ?-Tubulin and acetylated ?-tubulin during ovarian follicle differentiation in the lizardPodarcis sicula Raf. ACTA ACUST UNITED AC 2004; 301:532-41. [PMID: 15181647 DOI: 10.1002/jez.a.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During most of the previtellogenic oocyte growth, the follicular epithelium of the lizard Podarcis sicula shows a polymorphic structure, due to the presence of different follicle cells. These include small cells which divide and move from the periphery of the follicle to the oocyte surface, intermediate cells which represent an initial step in the process of cell enlargement, and large pyriform cells engaged in the transport of different materials to the oocyte through intercellular bridges. We have studied, by immunolocalization and immunoblotting, the localization of alpha-tubulin and its acetylated form in different follicle cells and in the oocyte during the main steps of ovarian follicle differentiation. Our results indicate that alpha-tubulin is present in all follicle cells at different stages of ovarian follicle differentiation, while its acetylated form is detectable exclusively in the small proliferating and migrating follicle cells. In pyriform cells, alpha-tubulin is localized around the nucleus, extends to the cell apex, and crosses the zona pellucida into the oocyte cortex. The presence of acetylated tubulin in the small follicle cells may be related to the proliferation and/or migration of these cells. The absence of acetylated tubulin form in the cytoplasm of intermediate and pyriform cells can be related to the colocalization of alpha-tubulin with the keratin cytoskeleton in these cells, as detected by confocal microscopy. We have also identified the colocalization of alpha-tubulin with keratin in the cortical region of the oocyte, in particular when the cortex is engaged in the uptake of the yolk proteins.
Collapse
Affiliation(s)
- Maria Gabriella Maurizii
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università degli Studi di Bologna, Via Selmi N degrees 3, I-40126 Bologna, Italy
| | | | | |
Collapse
|
8
|
Clarke EJ, Allan VJ. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs. CELL MOTILITY AND THE CYTOSKELETON 2003; 56:13-26. [PMID: 12905528 DOI: 10.1002/cm.10131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytokeratin intermediate filaments are prominent constituents of developing Xenopus oocytes and eggs, forming radial and cortical networks. In order to investigate the dynamics of the cortical cytokeratin network, we expressed EGFP-tagged Xenopus cytokeratin 1(8) in oocytes and eggs. The EGFP-cytokeratin co-assembled with endogenous partner cytokeratin proteins to form fluorescent filaments. Using time-lapse confocal microscopy, cytokeratin filament assembly was monitored in live Xenopus oocytes at different stages of oogenesis, and in the artificially-activated mature egg during the first cell cycle. In stage III to V oocytes, cytokeratin proteins formed a loose cortical geodesic network, which became more tightly bundled in stage VI oocytes. Maturation of oocytes into metaphase II-arrested eggs induced disassembly of the EGFP-cytokeratin network. Imaging live eggs after artificial activation allowed us to observe the reassembly of cytokeratin filaments in the vegetal cortex. The earliest observable structures were loose foci, which then extended into curly filament bundles. The position and orientation of these bundles altered with time, suggesting that forces were acting upon them. During cortical rotation, the cytokeratin network realigned into a parallel array that translocated in a directed manner at 5 microm/minute, relative to stationary cortex. The cytokeratin filaments are, therefore, moving in association with the bulk cytoplasm of the egg, suggesting that they may provide a structural role at the moving interface between cortex and cytoplasm.
Collapse
Affiliation(s)
- Emma J Clarke
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
9
|
Abstract
The body plan of the embryo is established by a polarized source of developmental information in the oocyte. The Xenopus laevis oocyte creates polarity by anchoring mRNAs in the vegetal cortex, including Vg1 and Xwnt-11, which might function in body plan specification, and Xcat-2, which might function in germ cell development. To identify components of the RNA anchoring mechanism, we used the manually isolated vegetal cortex (IVC) to assay loss or change in spatial arrangement of mRNAs caused by disruption of cortical elements. The role of cytoskeleton in mRNA anchoring was tested by treating oocytes with inhibitors that selectively disrupted actin microfilaments and cytokeratin filaments. Treatment of oocytes with cytochalasin B caused clumping of Vg1 and Xwnt-11 as revealed by in situ hybridization of the IVC, but did not cause their release, as confirmed by RT-PCR analysis. These mRNA clumps did not match the distribution of actin microfilament clumps, but were distributed similarly to the remnant cytokeratin filaments. Treatment of oocytes with monoclonal anti-cytokeratin antibody C11 released these mRNAs from the cortex. C11 altered the texture of the cytokeratin network, but did not affect the actin meshwork. These results show that Vg1 and Xwnt-11 are retained by a cytokeratin filament-dependent mechanism, and that organization of the cytokeratin network depend on an intact actin meshwork. Colcemid did not disrupt Vg1 and Xwnt-11 retention in the IVC, so anchoring of these mRNAs are independent of microtubules. Membrane disruption in the IVC by Triton X-100 decreased Vg1 and Xwnt-11. Loss of these mRNAs was due mainly to ribonuclease activity released from membrane components. However, when ribonuclease activity was suppressed under cold temperature, a higher amount of Vg1 and Xwnt-11 was recovered in the supernatant. This result suggested that a fraction of these mRNAs required membranes to be retained in the cortex. By contrast, Xcat-2 mRNA was neither released nor degraded following treatments with cytochalasin B, C11, colcemid and Triton X-100 under cold temperature, so no cortical element could be implicated in its anchoring.
Collapse
Affiliation(s)
- V B Alarcón
- Dept of Zoology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| | | |
Collapse
|
10
|
St Amand AL, Klymkowsky MW. Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:291-355. [PMID: 11131519 DOI: 10.1016/s0074-7696(01)03010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt signaling plays a critical role in a wide range of developmental and oncogenic processes. Altered gene regulation by the canonical Wnt signaling pathway involves the cytoplasmic stabilization of beta-catenin, a protein critical to the assembly of cadherin-based cell-cell adherence junctions. In addition to binding to cadherins, beta-catenin also interacts with transcription factors of the TCF-subfamily of HMG box proteins and regulates their activity. The Xenopus embryo has proven to be a particularly powerful experimental system in which to study the role of Wnt signaling components in development and differentiation. We review this literature, focusing on the role of Wnt signaling and interacting components in establishing patterns within the early embryo.
Collapse
Affiliation(s)
- A L St Amand
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
11
|
Abstract
Plakophilins are armadillo-repeat containing proteins, identified through their localization to desmosomes. Expressed in a wide range of tissues, plakophilins are largely nuclear in most cell types [Schmidt et al. (1997) Cell Tissue Res 290:481; Mertens et al. (1996) J. Cell Biol 135:1009]. Using Xenopus embryos and cultured A6 cells, together with myc- and green fluorescent protein (GFP)-tags, we found that both the N-terminal, non-armadillo repeat "head" and the C-terminal armadillo repeat-containing regions can enter nuclei. The "arm" repeat domain is predominantly cytoplasmic and concentrated at the cell cortex, whereas the head and full-length polypeptides are concentrated in the nucleus. The head domain can also be seen to decorate and disrupt keratin filament network organization in some cells. In the course of these studies, we found that the distribution of the myc-epitope and green fluorescence differed in fixed cells, e.g., while the green fluorescence of a myc- and GFP-tagged head domain polypeptide was usually exclusively nuclear, a substantial fraction of the myc-immunoreactivity was cytoplasmic. Treating cells with the translation inhibitor cycloheximide reduces the cytoplasmic myc-signal, suggesting that it represented nascent polypeptides awaiting folding and nuclear import. Based on these types of experiments, GFP can be seen as a marker of the distribution of the mature form of the tagged polypeptide.
Collapse
Affiliation(s)
- M W Klymkowsky
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.
| |
Collapse
|
12
|
Abstract
The division of the Xenopus oocyte cortex into structurally and functionally distinct "animal" and "vegetal" regions during oogenesis provides the basis of the organisation of the early embryo. The vegetal region of the cortex accumulates specific maternal mRNAs that specify the development of the endoderm and mesoderm, as well as functionally-defined "determinants" of dorso-anterior development, and recognisable "germ plasm" determinants that segregate into primary germ cells. These localised elements on the vegetal cortex underlie both the primary animal-vegetal polarity of the egg and the organisation of the developing embryo. The animal cortex meanwhile becomes specialised for the events associated with fertilisation: sperm entry, calcium release into the cytoplasm, cortical granule exocytosis, and polarised cortical contraction. Cortical and subcortical reorganisations associated with meiotic maturation, fertilisation, cortical rotation, and the first mitotic cleavage divisions redistribute the vegetal cortical determinants, contributing to the specification of dorso-anterior axis and segregation of the germ line. In this article we consider what is known about the changing organisation of the oocyte and egg cortex in relation to the mechanisms of determinant localisation, anchorage, and redistribution, and show novel ultrastructural views of cortices isolated at different stages and processed by the rapid-freeze deep-etch method. Cortical organisation involves interactions between the different cytoskeletal filament systems and internal membranes. Associated proteins and cytoplasmic signals probably modulate these interactions in stage-specific ways, leaving much to be understood.
Collapse
Affiliation(s)
- P Chang
- Unité de Biologie Cellulaire Marine (UMR. 643 CNRS-Université Paris VI), Station Zoologique, Villefranche-sur-mer, France
| | | | | |
Collapse
|
13
|
Cerdà J, Conrad M, Markl J, Brand M, Herrmann H. Zebrafish vimentin: molecular characterization, assembly properties and developmental expression. Eur J Cell Biol 1998; 77:175-87. [PMID: 9860133 DOI: 10.1016/s0171-9335(98)80105-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To provide a basis for the investigation of the intermediate filament (IF) protein vimentin in one of the most promising experimental vertebrate systems, the zebrafish (Danio rerio), we have isolated a cDNA clone of high sequence identity to and with the characteristic features of human vimentin. Using this clone we produced recombinant zebrafish vimentin and studied its assembly behaviour. Unlike other vimentins, zebrafish vimentin formed unusually thick filaments when assembled at temperatures below 21 degrees C. At 37 degrees C few filaments were observed, which often also terminated in aggregated masses, indicating that its assembly was severely disturbed at this temperature. Between 21 and 34 degrees C apparently normal IFs were generated. By viscometry, the temperature optimum of assembly was determined to be around 28 degrees C. At this temperature, zebrafish vimentin partially rescued, in mixing experiments, the temperature-dependent assembly defect of trout vimentin. Therefore it is apparently able to "instruct" the misorganized trout vimentin such that it can enter normal IFs. This feature, that assembly is best at the normal body temperature of various species, puts more weight on the assumption that vimentin is vital for some aspects of generating functional adult tissues. Remarkably, like in most other vertebrates, zebrafish vimentin appears to be an abundant factor in the lens and the retina as well as transiently, during development, in various parts of the central and peripheral nervous system. Therefore, promising cell biological investigations may now be performed with cells involved in the generation of the vertebrate eye and brain, and, in particular, the retina. Moreover, the power of genetics of the zebrafish system may be employed to investigate functional properties of vimentin in vivo.
Collapse
Affiliation(s)
- J Cerdà
- Division of Cell Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | |
Collapse
|
14
|
Zhang B, Chen Y, Han Z, Ris H, Zhai Z. The role of keratin filaments during nuclear envelope reassembly in Xenopus egg extracts. FEBS Lett 1998; 428:52-6. [PMID: 9645473 DOI: 10.1016/s0014-5793(98)00484-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report here a new structure, named 'strings-of-pearls', which are seen to form in Xenopus egg extracts after incubation, as 200 nm membrane vesicles attach to 10 nm filaments. These membrane vesicles fuse together along the filaments to form annulate lamellae (AL) or attach to demembranated sperm chromatin to initiate assembly of a nuclear envelope. Immunoassay with anti-keratin antibodies AE3 showed that the filaments were mainly composed of a 56 kDa keratin-like protein. Addition of AE3 to the extracts resulted in inhibition of AL formation and defective assembly of NE. These results suggest a function of keratins in the assembly of nuclear envelopes during Xenopus development.
Collapse
Affiliation(s)
- B Zhang
- College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | |
Collapse
|
15
|
Gard DL, Cha BJ, King E. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules. Dev Biol 1997; 184:95-114. [PMID: 9142987 DOI: 10.1006/dbio.1997.8508] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Confocal immunofluorescence microscopy with anti-cytokeratin antibodies revealed a continuous and polarized network of cytokeratin (CK) filaments in the cortex of stage VI Xenopus oocytes. In the animal cortex, CK filaments formed a dense meshwork that both was thicker and exhibited a finer mesh than the network of CK filaments previously observed in the vegetal cortex (Klymkowsky et al., 1987). CK filaments first appeared in association with germinal vesicle (GV) and mitochondrial mass (MM) of oocytes in early mid stage I, indicating that CK filaments are the last of the three cytoskeletal networks to be assembled. By late stage I, CK filaments formed complex networks surrounding the GV, surrounding and penetrating the MM, and linking these networks to a meshwork of CK filaments in the oocyte cortex. During stage III-early IV, CK filaments formed a highly interconnected, apparently unpolarized, radial array linking the perinuclear and cortical CK filament networks. Polarization of the CK filament network was observed during mid stage IV-stage V, as first the animal, then the vegetal CK filament networks adopted the organization characteristic of stage VI oocytes. Treatment of stage VI oocytes with cytochalasin B disrupted the organization of both cortical and cytoplasmic CK filaments, releasing CK filaments from the oocyte cortex and inducing formation of numerous cytoplasmic CK filament aggregates. CB also disrupted the organization of cytoplasmic microtubules (MTs) in stage VI oocytes. Disassembly of oocyte MTs with nocodazole resulted in loss of the characteristic A-V polarity of the cortical CK filament network. In contrast, disruption of cytoplasmic CK filaments by microinjection of anti-CK antibodies had no apparent effect on cytoplasmic or MT organization. We propose a model in which the organization and polarization of the cortical network of CK filaments in stage VI Xenopus oocytes are dependent upon a hierarchy of interactions with actin filaments and microtubules.
Collapse
Affiliation(s)
- D L Gard
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
16
|
|
17
|
Bachant JB, Klymkowsky MW. A nontetrameric species is the major soluble form of keratin in Xenopus oocytes and rabbit reticulocyte lysates. J Cell Biol 1996; 132:153-65. [PMID: 8567720 PMCID: PMC2120706 DOI: 10.1083/jcb.132.1.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Inside the interphase cell, approximately 5% of the total intermediate filament protein exists in a soluble form. Past studies using velocity gradient sedimentation (VGS) indicate that soluble intermediate filament protein exists as an approximately 7 S tetrameric species. While studying intermediate filament assembly dynamics in the Xenopus oocyte, we used both VGS and size-exclusion chromatography (SEC) to analyze the soluble form of keratin. Previous studies (Coulombe, P. A., and E. Fuchs. 1990. J. Cell Biol. 111:153) report that tetrameric keratins migrate on SEC with an apparent molecular weight of approximately 150,000; the major soluble form of keratin in the oocyte, in contrast, migrates with an apparent molecular weight of approximately 750,000. During oocyte maturation, the keratin system disassembles into a soluble form (Klymkowsky, M. W., L. A. Maynell, and C. Nislow. 1991. J. Cell Biol. 114:787) and the amount of the 750-kD keratin complex increases dramatically. Immunoprecipitation analysis of soluble keratin from matured oocytes revealed the presence of type I and type II keratins, but no other stoichiometrically associated polypeptides, suggesting that the 750-kD keratin complex is composed solely of keratin. To further study the formation of the 750-kD keratin complex, we used rabbit reticulocyte lysates (RRL). The 750-kD keratin complex was formed in RRLs contranslating type I and type II Xenopus keratins, but not when lysates translated type I or type II keratin RNAs alone. The 750-kD keratin complex could be formed posttranslationally in an ATP-independent manner when type I and type II keratin translation reactions were mixed. Under conditions of prolonged incubation, such as occur during VGS analysis, the 750-kD keratin complex disassembled into a 7 S (by VGS), 150-kD (by SEC) form. In urea denaturation studies, the 7 S/150-kD form could be further disassembled into an 80-kD species that consists of cofractionating dimeric and monomeric keratin. Based on these results, the 750-kD species appears to be a supratetrameric complex of keratins and is the major, soluble form of keratin in both prophase and M-phase oocytes, and RRL reactions.
Collapse
Affiliation(s)
- J B Bachant
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | |
Collapse
|