1
|
Fiore VF, Almagro J, Fuchs E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol 2025; 26:442-455. [PMID: 39881165 PMCID: PMC12145570 DOI: 10.1038/s41580-024-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim, Ridgefield, CT, USA.
| | - Jorge Almagro
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Abubakar M, Fan S, Klein A, Pfeiffer RM, Lawrence S, Mutreja K, Kimes TM, Richert-Boe K, Figueroa JD, Gierach GL, Duggan MA, Rohan TE. Spatially Resolved Single-Cell Morphometry of Benign Breast Disease Biopsy Images Uncovers Quantitative Cytomorphometric Features Predictive of Subsequent Invasive Breast Cancer Risk. Mod Pathol 2025; 38:100767. [PMID: 40210131 DOI: 10.1016/j.modpat.2025.100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/12/2025]
Abstract
Currently, benign breast disease (BBD) pathologic classification and invasive breast cancer (BC) risk assessment are based on qualitative epithelial changes, with limited utility for BC risk stratification for women with lower-risk category BBD (ie, nonproliferative disease [NPD] and proliferative disease without atypia [PDWA]). Here, machine learning-based single-cell morphometry was used to characterize quantitative changes in epithelial nuclear morphology that reflect functional/structural decline (ie, increasing nuclear size, assessed as epithelial nuclear area and nuclear perimeter), altered DNA chromatin content (ie, increasing nuclear chromasia), and increased cellular crowding/proliferation (ie, increasing nuclear contour irregularity). Cytomorphologic changes reflecting chronic stromal inflammation were assessed using stromal cellular density. Data and pathology materials were obtained from a case-control study (n = 972) nested within a cohort of 15,395 women diagnosed with BBD at Kaiser Permanente Northwest (1971-2012). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations of cytomorphometric features with risk of subsequent BC were assessed using multivariable logistic regression. More than 55 million epithelial and 37 million stromal cells were profiled across 972 BBD images. Cytomorphometric features were individually predictive of subsequent BC risk, independently of BBD histologic classification. However, cytomorphometric features of epithelial functional/structural decline were statistically significantly predictive of low-grade but not high-grade BC following PDWA (OR for low-grade BC per 1-SD increase in nuclear area and nuclear perimeter, 2.10; 95% CI, 1.26-3.49, and 2.22; 95% CI, 1.30-3.78, respectively), whereas stromal inflammation was predictive of high-grade but not low-grade BC following NPD (OR for high-grade BC per 1-SD increase in stromal cellular density, 1.53; 95% CI, 1.13-2.08). Associations of nuclear chromasia and nuclear contour irregularity with subsequent tumor grade were context specific, with both features predicting low-grade BC risk following PDWA (OR per 1-SD, 1.58; 95% CI, 1.06-2.35, and 2.21; 95% CI, 1.25-3.91, for nuclear chromasia and nuclear contour irregularity, respectively) and high-grade BC following NPD (OR per 1-SD, 1.47; 95% CI, 1.11-1.96, and 1.29; 95% CI, 1.00-1.70, for nuclear chromasia and nuclear contour irregularity, respectively). The results indicate that cytomorphometric features on BBD hematoxylin-eosin-stained images might help to refine BC risk estimation and potentially inform BC risk reduction strategies for BBD patients, particularly those currently designated as low risk.
Collapse
Affiliation(s)
- Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health (NIH), Rockville, Maryland.
| | - Shaoqi Fan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health (NIH), Rockville, Maryland
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health (NIH), Rockville, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health (NIH), Rockville, Maryland
| | - Scott Lawrence
- Molecular and Digital Pathology Laboratory, Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick, Maryland
| | - Karun Mutreja
- Molecular and Digital Pathology Laboratory, Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick, Maryland
| | - Teresa M Kimes
- Kaiser Permanente Center for Health Research, Portland, Oregon
| | | | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health (NIH), Rockville, Maryland
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health (NIH), Rockville, Maryland
| | - Maire A Duggan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
3
|
Hariawan B, Miatmoko A, Anjani Q, Annuryanti F, Kamadjaja D, Nurkanto A, Purwati, Hariyadi D. Nanomaterial application for protein delivery in bone regeneration therapy. Braz J Med Biol Res 2025; 58:e14057. [PMID: 39907403 PMCID: PMC11793153 DOI: 10.1590/1414-431x2024e14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/14/2024] [Indexed: 02/06/2025] Open
Abstract
Bone fractures must undergo a complex healing process involving intricate cellular and molecular mechanisms. They require a suitable biological environment to restore skeletal stability and resolve inflammation. Scaffolds play a vital role in bone regeneration, thus reducing disease burden. Autologous bone graft represents the gold standard of therapy. However, its application is limited due to various reasons. Nanotechnology, in the form of nanomaterials and nano-drug delivery systems, has been proven to increase the potency of active substances in mimicking extracellular matrix (ECM), thereby providing physical support benefits and enhancing therapeutic effectiveness. Various materials, including protein, metal oxide, hydroxyapatite, and silica are modified with nanoparticle technology for the purposes of tissue regeneration therapy. Moreover, the properties of nanomaterials such as size, seta potential, and surface properties will affect their effectiveness in bone regeneration therapy. This review provides insights that deepen the knowledge of the manufacturing and application of nanomaterials as a therapeutic agent for bone regeneration.
Collapse
Affiliation(s)
- B.S. Hariawan
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - A. Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
- Pharmaceutics and Delivery System for Drugs, Cosmetics and Nanomedicines Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
- Skin and Cosmetics Technology Centre of Excellent, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - Q.K. Anjani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - F. Annuryanti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - D.B. Kamadjaja
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - A. Nurkanto
- Research Center for Biosystematics and Evolution, Research Organization of Life Sciences and Environment, National Research and Innovation Agency, InaCC Building Soekarno Science and Technology Area, Cibinong, Indonesia
| | - Purwati
- Stem Cell Research and Development Center, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - D.M. Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
- Pharmaceutics and Delivery System for Drugs, Cosmetics and Nanomedicines Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
- Skin and Cosmetics Technology Centre of Excellent, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
4
|
Ajongbolo AO, Langhans SA. YAP/TAZ-associated cell signaling - at the crossroads of cancer and neurodevelopmental disorders. Front Cell Dev Biol 2025; 13:1522705. [PMID: 39936032 PMCID: PMC11810912 DOI: 10.3389/fcell.2025.1522705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
YAP/TAZ (Yes-associated protein/paralog transcriptional co-activator with PDZ-binding domain) are transcriptional cofactors that are the key and major downstream effectors of the Hippo signaling pathway. Both are known to play a crucial role in defining cellular outcomes, including cell differentiation, cell proliferation, and apoptosis. Aside from the canonical Hippo signaling cascade with the key components MST1/2 (mammalian STE20-like kinase 1/2), SAV1 (Salvador homologue 1), MOB1A/B (Mps one binder kinase activator 1A/B) and LATS1/2 (large tumor suppressor kinase 1/2) upstream of YAP/TAZ, YAP/TAZ activation is also influenced by numerous other signaling pathways. Such non-canonical regulation of YAP/TAZ includes well-known growth factor signaling pathways such as the epidermal growth factor receptor (EGFR)/ErbB family, Notch, and Wnt signaling as well as cell-cell adhesion, cell-matrix interactions and mechanical cues from a cell's microenvironment. This puts YAP/TAZ at the center of a complex signaling network capable of regulating developmental processes and tissue regeneration. On the other hand, dysregulation of YAP/TAZ signaling has been implicated in numerous diseases including various cancers and neurodevelopmental disorders. Indeed, in recent years, parallels between cancer development and neurodevelopmental disorders have become apparent with YAP/TAZ signaling being one of these pathways. This review discusses the role of YAP/TAZ in brain development, cancer and neurodevelopmental disorders with a special focus on the interconnection in the role of YAP/TAZ in these different conditions.
Collapse
Affiliation(s)
- Aderonke O. Ajongbolo
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
- Biological Sciences Graduate Program, University of Delaware, Newark, DE, United States
| | - Sigrid A. Langhans
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
| |
Collapse
|
5
|
Stotsky J, Othmer HG. The Role of Cytonemes and Diffusive Transport in the Establishment of Morphogen Gradients. Bull Math Biol 2025; 87:21. [PMID: 39751988 DOI: 10.1007/s11538-024-01388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Spatial distributions of morphogens provide positional information in developing systems, but how the distributions are established and maintained remains an open problem. Transport by diffusion has been the traditional mechanism, but recent experimental work has shown that cells can also communicate by filopodia-like structures called cytonemes that make direct cell-to-cell contacts. Here we investigate the roles each may play individually in a complex tissue and how they can jointly establish a reliable spatial distribution of a morphogen. To this end, we formulate models that capture fundamental aspects of various cytoneme-based transport mechanisms. In simple cases, exact solutions are attainable, and in more complex cases, we discuss results of numerical simulations.
Collapse
Affiliation(s)
- Jay Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, USA.
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, USA
| |
Collapse
|
6
|
Mim MS, Kumar N, Levis M, Unger MF, Miranda G, Gazzo D, Robinett T, Zartman JJ. Piezo regulates epithelial topology and promotes precision in organ size control. Cell Rep 2024; 43:114398. [PMID: 38935502 PMCID: PMC11606527 DOI: 10.1016/j.celrep.2024.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanosensitive Piezo channels regulate cell division, cell extrusion, and cell death. However, systems-level functions of Piezo in regulating organogenesis remain poorly understood. Here, we demonstrate that Piezo controls epithelial cell topology to ensure precise organ growth by integrating live-imaging experiments with pharmacological and genetic perturbations and computational modeling. Notably, the knockout or knockdown of Piezo increases bilateral asymmetry in wing size. Piezo's multifaceted functions can be deconstructed as either autonomous or non-autonomous based on a comparison between tissue-compartment-level perturbations or between genetic perturbation populations at the whole-tissue level. A computational model that posits cell proliferation and apoptosis regulation through modulation of the cutoff tension required for Piezo channel activation explains key cell and tissue phenotypes arising from perturbations of Piezo expression levels. Our findings demonstrate that Piezo promotes robustness in regulating epithelial topology and is necessary for precise organ size control.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria F Unger
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gabriel Miranda
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Trent Robinett
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
7
|
Rigato A, Meng H, Chardes C, Runions A, Abouakil F, Smith RS, LeGoff L. A mechanical transition from tension to buckling underlies the jigsaw puzzle shape morphogenesis of histoblasts in the Drosophila epidermis. PLoS Biol 2024; 22:e3002662. [PMID: 38870210 PMCID: PMC11175506 DOI: 10.1371/journal.pbio.3002662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
The polygonal shape of cells in proliferating epithelia is a result of the tensile forces of the cytoskeletal cortex and packing geometry set by the cell cycle. In the larval Drosophila epidermis, two cell populations, histoblasts and larval epithelial cells, compete for space as they grow on a limited body surface. They do so in the absence of cell divisions. We report a striking morphological transition of histoblasts during larval development, where they change from a tensed network configuration with straight cell outlines at the level of adherens junctions to a highly folded morphology. The apical surface of histoblasts shrinks while their growing adherens junctions fold, forming deep lobules. Volume increase of growing histoblasts is accommodated basally, compensating for the shrinking apical area. The folded geometry of apical junctions resembles elastic buckling, and we show that the imbalance between the shrinkage of the apical domain of histoblasts and the continuous growth of junctions triggers buckling. Our model is supported by laser dissections and optical tweezer experiments together with computer simulations. Our analysis pinpoints the ability of histoblasts to store mechanical energy to a much greater extent than most other epithelial cell types investigated so far, while retaining the ability to dissipate stress on the hours time scale. Finally, we propose a possible mechanism for size regulation of histoblast apical size through the lateral pressure of the epidermis, driven by the growth of cells on a limited surface. Buckling effectively compacts histoblasts at their apical plane and may serve to avoid physical harm to these adult epidermis precursors during larval life. Our work indicates that in growing nondividing cells, compressive forces, instead of tension, may drive cell morphology.
Collapse
Affiliation(s)
- Annafrancesca Rigato
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
- Aix Marseille Univ, CNRS, IBDM UMR7288, Turing Center for Living Systems, Marseille, France
| | - Huicheng Meng
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Claire Chardes
- Aix Marseille Univ, CNRS, IBDM UMR7288, Turing Center for Living Systems, Marseille, France
| | - Adam Runions
- Department of Computer Science, University of Calgary, Calgary, Canada
| | - Faris Abouakil
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Richard S. Smith
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Loïc LeGoff
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
8
|
Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. Evolutionary dynamics of mutants that modify population structure. J R Soc Interface 2023; 20:20230355. [PMID: 38016637 PMCID: PMC10684346 DOI: 10.1098/rsif.2023.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.
Collapse
Affiliation(s)
- Josef Tkadlec
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Computer Science Institute, Charles University, Prague, Czech Republic
| | - Kamran Kaveh
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Krishnendu Chatterjee
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Hughes MDG, Cussons S, Hanson BS, Cook KR, Feller T, Mahmoudi N, Baker DL, Ariëns R, Head DA, Brockwell DJ, Dougan L. Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks. Nat Commun 2023; 14:5593. [PMID: 37696784 PMCID: PMC10495373 DOI: 10.1038/s41467-023-40921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Fibrous networks constructed from high aspect ratio protein building blocks are ubiquitous in nature. Despite this ubiquity, the functional advantage of such building blocks over globular proteins is not understood. To answer this question, we engineered hydrogel network building blocks with varying numbers of protein L domains to control the aspect ratio. The mechanical and structural properties of photochemically crosslinked protein L networks were then characterised using shear rheology and small angle neutron scattering. We show that aspect ratio is a crucial property that defines network architecture and mechanics, by shifting the formation from translationally diffusion dominated to rotationally diffusion dominated. Additionally, we demonstrate that a similar transition is observed in the model living system: fibrin blood clot networks. The functional advantages of this transition are increased mechanical strength and the rapid assembly of homogenous networks above a critical protein concentration, crucial for in vivo biological processes such as blood clotting. In addition, manipulating aspect ratio also provides a parameter in the design of future bio-mimetic and bio-inspired materials.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Benjamin S Hanson
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Kalila R Cook
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Tímea Feller
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - Daniel L Baker
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Robert Ariëns
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - David A Head
- School of Computing, Faculty of Engineering and Physical Science, University of Leeds, Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
10
|
Cui W, Subramani A, Fonseca P, Zhang Y, Tong L, Zhang Y, Egevad L, Lundqvist A, Holmgren L. Deciphering the Role of p60AmotL2 in Epithelial Extrusion and Cell Detachment. Cells 2023; 12:2158. [PMID: 37681890 PMCID: PMC10486482 DOI: 10.3390/cells12172158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Preserving an accurate cell count is crucial for maintaining homeostasis. Apical extrusion, a process in which redundant cells are eliminated by neighboring cells, plays a key role in this regard. Recent studies have revealed that apical extrusion can also be triggered in cells transformed by oncogenes, suggesting it may be a mechanism through which tumor cells escape their microenvironment. In previous work, we demonstrated that p60AmotL2 modulates the E-cadherin function by inhibiting its connection to radial actin filaments. This isoform of AmotL2 is expressed in invasive breast and colon tumors and promotes invasion in vitro and in vivo. Transcriptionally regulated by c-Fos, p60AmotL2 is induced by local stress signals such as severe hypoxia. In this study, we investigated the normal role of p60AmotL2 in epithelial tissues. We found that this isoform is predominantly expressed in the gut, where cells experience rapid turnover. Through time-lapse imaging, we present evidence that cells expressing p60AmotL2 are extruded by their normal neighboring cells. Based on these findings, we hypothesize that tumor cells exploit this pathway to detach from normal epithelia and invade surrounding tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum J6:20, Solnavägen 30, Karolinska Institutet, 171 64 Stockholm, Sweden (L.E.)
| |
Collapse
|
11
|
Wang L, Goldwag J, Bouyea M, Barra J, Matteson K, Maharjan N, Eladdadi A, Embrechts MJ, Intes X, Kruger U, Barroso M. Spatial topology of organelle is a new breast cancer cell classifier. iScience 2023; 26:107229. [PMID: 37519903 PMCID: PMC10384275 DOI: 10.1016/j.isci.2023.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Genomics and proteomics have been central to identify tumor cell populations, but more accurate approaches to classify cell subtypes are still lacking. We propose a new methodology to accurately classify cancer cells based on their organelle spatial topology. Herein, we developed an organelle topology-based cell classification pipeline (OTCCP), which integrates artificial intelligence (AI) and imaging quantification to analyze organelle spatial distribution and inter-organelle topology. OTCCP was used to classify a panel of human breast cancer cells, grown as 2D monolayer or 3D tumor spheroids using early endosomes, mitochondria, and their inter-organelle contacts. Organelle topology allows for a highly precise differentiation between cell lines of different subtypes and aggressiveness. These findings lay the groundwork for using organelle topological profiling as a fast and efficient method for phenotyping breast cancer function as well as a discovery tool to advance our understanding of cancer cell biology at the subcellular level.
Collapse
Affiliation(s)
- Ling Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Joshua Goldwag
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Megan Bouyea
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Jonathan Barra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Kailie Matteson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Niva Maharjan
- Department of Mathematics, The College of Saint Rose, Albany, NY 12203, USA
| | - Amina Eladdadi
- Department of Mathematics, The College of Saint Rose, Albany, NY 12203, USA
| | - Mark J. Embrechts
- Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Uwe Kruger
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
12
|
Boman BM, Dinh TN, Decker K, Emerick B, Modarai S, Opdenaker L, Fields JZ, Raymond C, Schleiniger G. Beyond the Genetic Code: A Tissue Code?. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36945600 PMCID: PMC10028806 DOI: 10.1101/2023.03.05.531161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The genetic code determines how the precise amino acid sequence of proteins is specified by genomic information in cells. But what specifies the precise histologic organization of cells in plant and animal tissues is unclear. We now hypothesize that another code, the tissue code , exists at an even higher level of complexity which determines how tissue organization is dynamically maintained. Accordingly, we modeled spatial and temporal asymmetries of cell division and established that five simple mathematical laws ("the tissue code") convey a set of biological rules that maintain the specific organization and continuous self-renewal dynamics of cells in tissues. These laws might even help us understand wound healing, and how tissue disorganization leads to birth defects and tissue pathology like cancer.
Collapse
|
13
|
Lopez-Sauceda J, von Bülow P, Ortega-Laurel C, Perez-Martinez F, Miranda-Perkins K, Carrillo-González JG. Entropy as a Geometrical Source of Information in Biological Organizations. ENTROPY 2022; 24:1390. [PMCID: PMC9601958 DOI: 10.3390/e24101390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Considering both biological and non-biological polygonal shape organizations, in this paper we introduce a quantitative method which is able to determine informational entropy as spatial differences between heterogeneity of internal areas from simulation and experimental samples. According to these data (i.e., heterogeneity), we are able to establish levels of informational entropy using statistical insights of spatial orders using discrete and continuous values. Given a particular state of entropy, we establish levels of information as a novel approach which can unveil general principles of biological organization. Thirty-five geometric aggregates are tested (biological, non-biological, and polygonal simulations) in order to obtain the theoretical and experimental results of their spatial heterogeneity. Geometrical aggregates (meshes) include a spectrum of organizations ranging from cell meshes to ecological patterns. Experimental results for discrete entropy using a bin width of 0.5 show that a particular range of informational entropy (0.08 to 0.27 bits) is intrinsically associated with low rates of heterogeneity, which indicates a high degree of uncertainty in finding non-homogeneous configurations. In contrast, differential entropy (continuous) results reflect negative entropy within a particular range (−0.4 to −0.9) for all bin widths. We conclude that the differential entropy of geometrical organizations is an important source of neglected information in biological systems.
Collapse
Affiliation(s)
- Juan Lopez-Sauceda
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Avenida Insurgentes Sur 1582, Colonia Crédito Constructor, Alcaldía Benito Juárez, Mexico City 03940, Mexico
- Departamento de Procesos Productivos, Universidad Autónoma Metropolitana, Avenida de las Garzas No. 10, Colonia El Panteón, Lerma de Villada 52005, Mexico
| | - Philipp von Bülow
- Departamento de Procesos Productivos, Universidad Autónoma Metropolitana, Avenida de las Garzas No. 10, Colonia El Panteón, Lerma de Villada 52005, Mexico
| | - Carlos Ortega-Laurel
- Departamento de Sistemas de Información y Comunicaciones, Universidad Autónoma Metropolitana, Avenida de las Garzas No. 10, Colonia El Panteón, Lerma de Villada 52005, Mexico
| | - Francisco Perez-Martinez
- Departamento de Sistemas de Información y Comunicaciones, Universidad Autónoma Metropolitana, Avenida de las Garzas No. 10, Colonia El Panteón, Lerma de Villada 52005, Mexico
| | - Kalina Miranda-Perkins
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Avenida Ejército Nacional 223, Colonia Anáhuac, Alcaldía Miguel Hidalgo, Mexico City 11320, Mexico
| | - José Gerardo Carrillo-González
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Avenida Insurgentes Sur 1582, Colonia Crédito Constructor, Alcaldía Benito Juárez, Mexico City 03940, Mexico
- Departamento de Sistemas de Información y Comunicaciones, Universidad Autónoma Metropolitana, Avenida de las Garzas No. 10, Colonia El Panteón, Lerma de Villada 52005, Mexico
| |
Collapse
|
14
|
Khalil K, Eon A, Janody F. Cell Architecture-Dependent Constraints: Critical Safeguards to Carcinogenesis. Int J Mol Sci 2022; 23:8622. [PMID: 35955754 PMCID: PMC9369145 DOI: 10.3390/ijms23158622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal cells display great diversity in their shape. These morphological characteristics result from crosstalk between the plasma membrane and the force-generating capacities of the cytoskeleton macromolecules. Changes in cell shape are not merely byproducts of cell fate determinants, they also actively drive cell fate decisions, including proliferation and differentiation. Global and local changes in cell shape alter the transcriptional program by a multitude of mechanisms, including the regulation of physical links between the plasma membrane and the nuclear envelope and the mechanical modulation of cation channels and signalling molecules. It is therefore not surprising that anomalies in cell shape contribute to several diseases, including cancer. In this review, we discuss the possibility that the constraints imposed by cell shape determine the behaviour of normal and pro-tumour cells by organizing the whole interconnected regulatory network. In turn, cell behaviour might stabilize cells into discrete shapes. However, to progress towards a fully transformed phenotype and to acquire plasticity properties, pro-tumour cells might need to escape these cell shape restrictions. Thus, robust controls of the cell shape machinery may represent a critical safeguard against carcinogenesis.
Collapse
Affiliation(s)
- Komal Khalil
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Master Programme in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Alice Eon
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Magistère Européen de Génétique, Université Paris Cité, 5 Rue Thomas Mann, 75013 Paris, France
| | - Florence Janody
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
15
|
Kuyyamudi C, Menon SN, Sinha S. Contact-mediated signaling enables disorder-driven transitions in cellular assemblies. Phys Rev E 2022; 106:L022401. [PMID: 36109907 DOI: 10.1103/physreve.106.l022401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We show that, when cells communicate by contact-mediated interactions, heterogeneity in cell shapes and sizes leads to qualitatively distinct collective behavior in the tissue. For intercellular coupling that implements lateral inhibition, such disorder-driven transitions can substantially alter the asymptotic pattern of differentiated cells by modulating their fate choice through changes in the neighborhood geometry. In addition, when contact-induced signals influence inherent cellular oscillations, disorder leads to the emergence of functionally relevant partially-ordered dynamical states.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
16
|
Roshal DS, Martin M, Fedorenko K, Golushko I, Molle V, Baghdiguian S, Rochal SB. Random nature of epithelial cancer cell monolayers. J R Soc Interface 2022; 19:20220026. [PMID: 35537474 PMCID: PMC9090488 DOI: 10.1098/rsif.2022.0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the polygonal shape of epithelial cells has been drawing the attention of scientists for several centuries, only a decade and a half ago it was demonstrated that distributions of polygon types (DOPTs) are similar in proliferative epithelia of many different plant and animal species. In this study, we show that hyper-proliferation of cancer cells disrupts this universal paradigm and results in randomly organized epithelial structures. Examining non-synchronized and synchronized HeLa cervix cells, we suppose that the spread of cell sizes is the main parameter controlling the DOPT in the cancer cell monolayers. To test this hypothesis, we develop a theory of morphologically similar random polygonal packings. By analysing differences between tumoural and normal epithelial cell monolayers, we conclude that the latter have more ordered structures because of their lower proliferation rates and, consequently, more effective relaxation of mechanical stress associated with cell division and growth. To explain the structural features of normal proliferative epithelium, we take into account the spread of cell sizes in the monolayer. The proposed theory also rationalizes some highly ordered unconventional post-mitotic epithelia.
Collapse
Affiliation(s)
- Daria S Roshal
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don, 344090, Russia
| | - Marianne Martin
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier 34095, France
| | - Kirill Fedorenko
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don, 344090, Russia
| | - Ivan Golushko
- Research and Education Center 'Materials', Don State Technical University, 1 Gagarin Square, Rostov-on-Don 344000, Russia
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier 34095, France
| | - Stephen Baghdiguian
- Institut des Sciences de l'Evolution-Montpellier, Université de Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, Montpellier 34095, France
| | - Sergei B Rochal
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don, 344090, Russia
| |
Collapse
|
17
|
Çamkıran J, Parsch F, Hibbard GD. A local orientational order parameter for systems of interacting particles. J Chem Phys 2022; 156:091101. [DOI: 10.1063/5.0079985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many physical systems are well modeled as collections of interacting particles. Nevertheless, a general approach to quantifying the absolute degree of order immediately surrounding a particle has yet to be described. Motivated thus, we introduce a quantity E that captures the amount of pairwise informational redundancy among the bonds formed by a particle. Particles with larger E have less diversity in bond angles and thus simpler neighborhoods. We show that E possesses a number of intuitive mathematical properties, such as increasing monotonicity in the coordination number of Platonic polyhedral geometries. We demonstrate analytically that E is, in principle, able to distinguish a wide range of structures and conjecture that it is maximized by the icosahedral geometry under the constraint of equal sphere packing. An algorithm for computing E is described and is applied to the structural characterization of crystals and glasses. The findings of this study are generally consistent with existing knowledge on the structure of such systems. We compare E to the Steinhardt order parameter Q6 and polyhedral template matching (PTM). We observe that E has resolution comparable to Q6 and robustness similar to PTM despite being much simpler than the former and far more informative than the latter.
Collapse
Affiliation(s)
- John Çamkıran
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Fabian Parsch
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Glenn D. Hibbard
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
18
|
Phatak M, Kulkarni S, Miles LB, Anjum N, Dworkin S, Sonawane M. Grhl3 promotes retention of epidermal cells under endocytic stress to maintain epidermal architecture in zebrafish. PLoS Genet 2021; 17:e1009823. [PMID: 34570762 PMCID: PMC8496789 DOI: 10.1371/journal.pgen.1009823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/07/2021] [Accepted: 09/11/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelia such as epidermis cover large surfaces and are crucial for survival. Maintenance of tissue homeostasis by balancing cell proliferation, cell size, and cell extrusion ensures epidermal integrity. Although the mechanisms of cell extrusion are better understood, how epithelial cells that round up under developmental or perturbed genetic conditions are reintegrated in the epithelium to maintain homeostasis remains unclear. Here, we performed live imaging in zebrafish embryos to show that epidermal cells that round up due to membrane homeostasis defects in the absence of goosepimples/myosinVb (myoVb) function, are reintegrated into the epithelium. Transcriptome analysis and genetic interaction studies suggest that the transcription factor Grainyhead-like 3 (Grhl3) induces the retention of rounded cells by regulating E-cadherin levels. Moreover, Grhl3 facilitates the survival of MyoVb deficient embryos by regulating cell adhesion, cell retention, and epidermal architecture. Our analyses have unraveled a mechanism of retention of rounded cells and its importance in epithelial homeostasis.
Collapse
Affiliation(s)
- Mandar Phatak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shruti Kulkarni
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Lee B. Miles
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| | - Nazma Anjum
- Center for Biotechnology, A.C. College of Technology, Anna University, Chennai, India
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
19
|
Stotsky JA, Gou J, Othmer HG. A Random Walk Approach to Transport in Tissues and Complex Media: From Microscale Descriptions to Macroscale Models. Bull Math Biol 2021; 83:92. [PMID: 34269878 DOI: 10.1007/s11538-021-00917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/01/2021] [Indexed: 01/22/2023]
Abstract
The biological processes necessary for the development and continued survival of any organism are often strongly influenced by the transport properties of various biologically active species. The transport phenomena involved vary over multiple temporal and spatial scales, from organism-level behaviors such as the search for food, to systemic processes such as the transport of oxygen from the lungs to distant organs, down to microscopic phenomena such as the stochastic movement of proteins in a cell. Each of these processes is influenced by many interrelated factors. Identifying which factors are the most important, and how they interact to determine the overall result is a problem of great importance and interest. Experimental observations are often fit to relatively simple models, but in reality the observations are the output of complicated functions of the physicochemical, topological, and geometrical properties of a given system. Herein we use multistate continuous-time random walks and generalized master equations to model transport processes involving spatial jumps, immobilization at defined sites, and stochastic internal state changes. The underlying spatial models, which are framed as graphs, may have different classes of nodes, and walkers may have internal states that are governed by a Markov process. A general form of the solutions, using Fourier-Laplace transforms and asymptotic analysis, is developed for several spatially infinite regular lattices in one and two spatial dimensions, and the theory is developed for the analysis of transport and internal state changes on general graphs. The goal in each case is to shed light on how experimentally observable macroscale transport coefficients can be explained in terms of microscale properties of the underlying processes. This work is motivated by problems arising in transport in biological tissues, but the results are applicable to a broad class of problems that arise in other applications.
Collapse
Affiliation(s)
- Jay A Stotsky
- School of Mathematics, University of Minnesota, 270A Vincent Hall, Minneapolis, USA
| | - Jia Gou
- Department of Mathematics, University of California, 900 University Ave. Skye Hall, Riverside, CA 92521, USA
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, 270A Vincent Hall, Minneapolis, USA.
| |
Collapse
|
20
|
Javer A, Rittscher J, Sailem HZ. DeepScratch: Single-cell based topological metrics of scratch wound assays. Comput Struct Biotechnol J 2020; 18:2501-2509. [PMID: 33005312 PMCID: PMC7516198 DOI: 10.1016/j.csbj.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Changes in tissue architecture and multicellular organisation contribute to many diseases, including cancer and cardiovascular diseases. Scratch wound assay is a commonly used tool that assesses cells' migratory ability based on the area of a wound they cover over a certain time. However, analysis of changes in the organisational patterns formed by migrating cells following genetic or pharmacological perturbations are not well explored in these assays, in part because analysing the resulting imaging data is challenging. Here we present DeepScratch, a neural network that accurately detects the cells in scratch assays based on a heterogeneous set of markers. We demonstrate the utility of DeepScratch by analysing images of more than 232,000 lymphatic endothelial cells. In addition, we propose various topological measures of cell connectivity and local cell density (LCD) to characterise tissue remodelling during wound healing. We show that LCD-based metrics allow classification of CDH5 and CDC42 genetic perturbations that are known to affect cell migration through different biological mechanisms. Such differences cannot be captured when considering only the wound area. Taken together, single-cell detection using DeepScratch allows more detailed investigation of the roles of various genetic components in tissue topology and the biological mechanisms underlying their effects on collective cell migration.
Collapse
Affiliation(s)
- Avelino Javer
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford OX3 7DQ, UK
| | - Jens Rittscher
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford OX3 7DQ, UK
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus Research Building, Oxford OX3 7LF, UK
| | - Heba Z. Sailem
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford OX3 7DQ, UK
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus Research Building, Oxford OX3 7LF, UK
| |
Collapse
|
21
|
Víšová I, Smolková B, Uzhytchak M, Vrabcová M, Chafai DE, Houska M, Pastucha M, Skládal P, Farka Z, Dejneka A, Vaisocherová-Lísalová H. Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery. Biomolecules 2020; 10:biom10081146. [PMID: 32764330 PMCID: PMC7464033 DOI: 10.3390/biom10081146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Barbora Smolková
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Mariia Uzhytchak
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Markéta Vrabcová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Djamel Eddine Chafai
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Milan Houska
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
- Correspondence: (Z.F.); (H.V.-L.); Tel.: +420-549497674 (Z.F.); +420-266052993 (H.V.-L.)
| | - Alexandr Dejneka
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Hana Vaisocherová-Lísalová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
- Correspondence: (Z.F.); (H.V.-L.); Tel.: +420-549497674 (Z.F.); +420-266052993 (H.V.-L.)
| |
Collapse
|
22
|
Lam MSY, Lisica A, Ramkumar N, Hunter G, Mao Y, Charras G, Baum B. Isotropic myosin-generated tissue tension is required for the dynamic orientation of the mitotic spindle. Mol Biol Cell 2020; 31:1370-1379. [PMID: 32320325 PMCID: PMC7353144 DOI: 10.1091/mbc.e19-09-0545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/01/2022] Open
Abstract
The ability of cells to divide along their longest axis has been proposed to play an important role in maintaining epithelial tissue homeostasis in many systems. Because the division plane is largely set by the position of the anaphase spindle, it is important to understand how spindles become oriented. While several molecules have been identified that play key roles in spindle orientation across systems, most notably Mud/NuMA and cortical dynein, the precise mechanism by which spindles detect and align with the long cell axis remain poorly understood. Here, in exploring the dynamics of spindle orientation in mechanically distinct regions of the fly notum, we find that the ability of cells to properly reorient their divisions depends on local tissue tension. Thus, spindles reorient to align with the long cell axis in regions where isotropic tension is elevated, but fail to do so in elongated cells within the crowded midline, where tension is low, or in regions that have been mechanically isolated from the rest of the tissue via laser ablation. Importantly, these differences in spindle behavior outside and inside the midline can be recapitulated by corresponding changes in tension induced by perturbations that alter nonmuscle myosin II activity. These data lead us to propose that isotropic tension within an epithelium provides cells with a mechanically stable substrate upon which localized cortical motor complexes can act on astral microtubules to orient the spindle.
Collapse
Affiliation(s)
| | - Ana Lisica
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
| | | | | | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| | - Guillaume Charras
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| |
Collapse
|
23
|
Wang D, Vannier J, Yang XG, Sun J, Sun YF, Hao WJ, Tang QQ, Liu P, Han J. Cuticular reticulation replicates the pattern of epidermal cells in lowermost Cambrian scalidophoran worms. Proc Biol Sci 2020; 287:20200470. [PMID: 32370674 DOI: 10.1098/rspb.2020.0470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cuticle of ecdysozoans (Panarthropoda, Scalidophora, Nematoida) is secreted by underlying epidermal cells and renewed via ecdysis. We explore here the relationship between epidermis and external cuticular ornament in stem-group scalidophorans from the early Cambrian of China (Kuanchuanpu Formation; ca 535 Ma) that had two types of microscopic polygonal cuticular networks with either straight or microfolded boundaries. Detailed comparisons with modern scalidophorans (priapulids) indicate that these networks faithfully replicate the cell boundaries of the epidermis. This suggests that the cuticle of early scalidophorans formed through the fusion between patches of extracellular material secreted by epidermal cells, as observed in various groups of present-day ecdysozoans, including arthropods. Key genetic, biochemical and mechanical processes associated with ecdysis and cuticle formation seem to have appeared very early (at least not later than 535 Ma) in the evolution of ecdysozoans. Microfolded reticulation is likely to be a mechanical response to absorbing contraction exerted by underlying muscles. The polygonal reticulation in early and extant ecdysozoans is clearly a by-product of the epidermal cell pavement and interacted with the sedimentary environment.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China.,Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | - Jean Vannier
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | - Xiao-Guang Yang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Jie Sun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Yi-Fei Sun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Wen-Jing Hao
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Qing-Qin Tang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Ping Liu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Jian Han
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
24
|
Long Y, Cheddadi I, Mosca G, Mirabet V, Dumond M, Kiss A, Traas J, Godin C, Boudaoud A. Cellular Heterogeneity in Pressure and Growth Emerges from Tissue Topology and Geometry. Curr Biol 2020; 30:1504-1516.e8. [PMID: 32169211 DOI: 10.1016/j.cub.2020.02.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 01/22/2023]
Abstract
Cell-to-cell heterogeneity prevails in many systems, as exemplified by cell growth, although the origin and function of such heterogeneity are often unclear. In plants, growth is physically controlled by cell wall mechanics and cell hydrostatic pressure, alias turgor pressure. Whereas cell wall heterogeneity has received extensive attention, the spatial variation of turgor pressure is often overlooked. Here, combining atomic force microscopy and a physical model of pressurized cells, we show that turgor pressure is heterogeneous in the Arabidopsis shoot apical meristem, a population of stem cells that generates all plant aerial organs. In contrast with cell wall mechanical properties that appear to vary stochastically between neighboring cells, turgor pressure anticorrelates with cell size and cell neighbor number (local topology), in agreement with the prediction by our model of tissue expansion, which couples cell wall mechanics and tissue hydraulics. Additionally, our model predicts two types of correlations between pressure and cellular growth rate, where high pressure may lead to faster- or slower-than-average growth, depending on cell wall extensibility, yield threshold, osmotic pressure, and hydraulic conductivity. The meristem exhibits one of these two regimes, depending on conditions, suggesting that, in this tissue, water conductivity may contribute to growth control. Our results unravel cell pressure as a source of patterned heterogeneity and illustrate links between local topology, cell mechanical state, and cell growth, with potential roles in tissue homeostasis.
Collapse
Affiliation(s)
- Yuchen Long
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France.
| | - Ibrahim Cheddadi
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Gabriella Mosca
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Vincent Mirabet
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France; Lycée A. et L. Lumière, 69372 Lyon Cedex 08, France
| | - Mathilde Dumond
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Jan Traas
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France.
| |
Collapse
|
25
|
Gou J, Stotsky JA, Othmer HG. Growth control in the Drosophila wing disk. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1478. [PMID: 31917525 DOI: 10.1002/wsbm.1478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth. Extracellular signals are transduced into gene-control signals via complex signal transduction networks, and since cells typically receive many different signals, a mechanism for integrating the signals is needed. Our understanding of the effect of morphogens on tissue-level growth regulation via individual pathways has increased significantly in the last half century, but our understanding of how multiple biochemical and mechanical signals are integrated to determine whether or not a cell decides to divide is still rudimentary. Numerous fundamental questions are involved in understanding the decision-making process, and here we review the major biochemical and mechanical pathways involved in disk development with a view toward providing a basis for beginning to understand how multiple signals can be integrated at the cell level, and how this translates into growth control at the level of the imaginal disk. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Jay A Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
26
|
Thüroff F, Goychuk A, Reiter M, Frey E. Bridging the gap between single-cell migration and collective dynamics. eLife 2019; 8:e46842. [PMID: 31808744 PMCID: PMC6992385 DOI: 10.7554/elife.46842] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/06/2019] [Indexed: 11/13/2022] Open
Abstract
Motivated by the wealth of experimental data recently available, we present a cellular-automaton-based modeling framework focussing on high-level cell functions and their concerted effect on cellular migration patterns. Specifically, we formulate a coarse-grained description of cell polarity through self-regulated actin organization and its response to mechanical cues. Furthermore, we address the impact of cell adhesion on collective migration in cell cohorts. The model faithfully reproduces typical cell shapes and movements down to the level of single cells, yet allows for the efficient simulation of confluent tissues. In confined circular geometries, we find that specific properties of individual cells (polarizability; contractility) influence the emerging collective motion of small cell cohorts. Finally, we study the properties of expanding cellular monolayers (front morphology; stress and velocity distributions) at the level of extended tissues.
Collapse
Affiliation(s)
- Florian Thüroff
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of PhysicsLudwig-Maximilians-Universität MünchenMunichGermany
| | - Andriy Goychuk
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of PhysicsLudwig-Maximilians-Universität MünchenMunichGermany
| | - Matthias Reiter
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of PhysicsLudwig-Maximilians-Universität MünchenMunichGermany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of PhysicsLudwig-Maximilians-Universität MünchenMunichGermany
| |
Collapse
|
27
|
Janoušková O, Přádný M, Vetrík M, Chylíková Krumbholcová E, Michálek J, Dušková Smrčková M. Biomimetic modification of dual porosity poly(2-hydroxyethyl methacrylate) hydrogel scaffolds-porosity and stem cell growth evaluation. ACTA ACUST UNITED AC 2019; 14:055004. [PMID: 31181551 DOI: 10.1088/1748-605x/ab2856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The macroporous synthetic poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels as 3D cellular scaffolds with specific internal morphology, so called dual pore size, were designed and studied. The morphological microstructure of hydrogels was characterized in the gel swollen state and the susceptibility of gels for stem cells was evaluated. The effect of specific chemical groups covalently bound in the hydrogel network by copolymerization on cell adhesion and growth, followed by effect of laminin coating were investigated. The evaluated gels contained either carboxyl groups of the methacrylic acid or quaternary ammonium groups brought by polymerizable ammonium salt or their combinations. The morphology of swollen gel was visualized using the laser scanning confocal microscopy. All hydrogels had very similar porous structures - their matrices contained large pores (up to 102 μm) surrounded with gel walls with small pores (100 μm). The total pore volume in hydrogels swollen in buffer solution ranged between 69 and 86 vol%. Prior to the seeding of the mouse embryonal stem cells, the gels were coated with laminin. The hydrogel with quaternary ammonium groups (with or without laminin) stimulated the cell growth the most. The laminin coating lead to a significant and quaternary ammonium groups. The gel chemical modification influenced also the topology of cell coverage that ranged from individual cell clusters to well dispersed multi cellular structures. Findings in this study point out the laser scanning confocal microscopy as an irreplaceable method for a precise and quick assessment of the hydrogel morphology. In addition, these findings help to optimize the chemical composition of the hydrogel scaffold through the combination of chemical and biological factors leading to intensive cell attachment and proliferation.
Collapse
|
28
|
Piekarska-Stachowiak A, Szymanowska-Pułka J, Potocka I, Lipowczan M. Topological traits of a cellular pattern versus growth rate anisotropy in radish roots. PROTOPLASMA 2019; 256:1037-1049. [PMID: 30834467 PMCID: PMC6579784 DOI: 10.1007/s00709-019-01362-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The topology of a cellular pattern, which means the spatial arrangement of cells, directly corresponds with cell packing, which is crucial for tissue and organ functioning. The topological features of cells that are typically analyzed are the number of their neighbors and the cell area. To date, the objects of most topological studies have been the growing cells of the surface tissues of plant and animal organs. Some of these researches also provide verification of Lewis's Law concerning the linear correlation between the number of neighboring cells and the cell area. Our aim was to analyze the cellular topology and applicability of Lewis's Law to an anisotropically growing plant organ. The object of our study was the root apex of radish. Based on the tensor description of plant organ growth, we specified the level of anisotropy in specific zones (the root proper, the columella of the cap and the lateral parts of the cap) and in specific types of both external (epidermis) and internal tissues (stele and ground tissue) of the apex. The strongest anisotropy occurred in the root proper, while both zones of the cap showed an intermediate level of anisotropy of growth. Some differences in the topology of the cellular pattern in the zones were also detected; in the root proper, six-sided cells predominated, while in the root cap columella and in the lateral parts of the cap, most cells had five neighbors. The correlation coefficient rL between the number of neighboring cells and the cell area was high in the apex as a whole as well as in all of the zones except the root proper and in all of the tissue types except the ground tissue. In general, Lewis's Law was fulfilled in the anisotropically growing radish root apex. However, the level of the applicability (rL value) of Lewis's Law was negatively correlated with the level of the anisotropy of growth, which may suggest that in plant organs in the regions of anisotropic growth, the number of neighboring cells is less dependent on the cell size.
Collapse
Affiliation(s)
- Anna Piekarska-Stachowiak
- Department of Biophysics and Morphogenesis of Plants, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Joanna Szymanowska-Pułka
- Department of Biophysics and Morphogenesis of Plants, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Izabela Potocka
- Laboratory of Microscopic Techniques, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Marcin Lipowczan
- Department of Biophysics and Morphogenesis of Plants, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland.
| |
Collapse
|
29
|
Bassel GW. Multicellular Systems Biology: Quantifying Cellular Patterning and Function in Plant Organs Using Network Science. MOLECULAR PLANT 2019; 12:731-742. [PMID: 30794885 DOI: 10.1016/j.molp.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Organ function is at least partially shaped and constrained by the organization of their constituent cells. Extensive investigation has revealed mechanisms explaining how these patterns are generated, with less being known about their functional relevance. In this paper, a methodology to discretize and quantitatively analyze cellular patterning is described. By performing global organ-scale cellular interaction mapping, the organization of cells can be extracted and analyzed using network science. This provides a means to take the developmental analysis of cellular organization in complex organisms beyond qualitative descriptions and provides data-driven approaches to inferring cellular function. The bridging of a structure-function relationship in hypocotyl epidermal cell patterning through global topological analysis provides support for this approach. The analysis of cellular topologies from patterning mutants further enables the contribution of gene activity toward the organizational properties of tissues to be linked, bridging molecular and tissue scales. This systems-based approach to investigate multicellular complexity paves the way to uncovering the principles of complex organ design and achieving predictive genotype-phenotype mapping.
Collapse
Affiliation(s)
- George W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
30
|
Sampedro MF, Izaguirre MF, Sigot V. E-cadherin expression pattern during zebrafish embryonic epidermis development. F1000Res 2019; 7:1489. [PMID: 30473778 PMCID: PMC6234749 DOI: 10.12688/f1000research.15932.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background: E-cadherin is the major adhesion receptor in epithelial adherens junctions (AJs). On established epidermis, E-cadherin performs fine-tuned cell-cell contact remodeling to maintain tissue integrity, which is characterized by modulation of cell shape, size and packing density. In zebrafish, the organization and distribution of E-cadherin in AJs during embryonic epidermis development remain scarcely described. Methods: Combining classical immunofluorescence, deconvolution microscopy and 3D-segmentation of AJs in epithelial cells, a quantitative approach was implemented to assess the spatial and temporal distribution of E-cadherin across zebrafish epidermis between 24 and 72 hpf. Results: increasing levels of E-cadh protein parallel higher cell density and the appearance of hexagonal cells in the enveloping layer (EVL) as well as the establishments of new cell-cell contacts in the epidermal basal layer (EBL), being significantly between 31 and 48 hpf
. Conclusions: Increasing levels of E-cadherin in AJs correlates with extensive changes in cell morphology towards hexagonal packing during the epidermis morphogenesis.
Collapse
Affiliation(s)
- María Florencia Sampedro
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina.,Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET- Universidad Nacional de Entre Ríos), Oro Verde, 3100, Argentina
| | - María Fernanda Izaguirre
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina
| | - Valeria Sigot
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina.,Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET- Universidad Nacional de Entre Ríos), Oro Verde, 3100, Argentina
| |
Collapse
|
31
|
Long Y, Boudaoud A. Emergence of robust patterns from local rules during plant development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:127-137. [PMID: 30577002 DOI: 10.1016/j.pbi.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The formation of spatial and temporal patterns is an essential component of organismal development. Patterns can be observed on every level from subcellular to organismal and may emerge from local rules that correspond to the interactions between molecules, cells, or tissues. The emergence of robust patterns may seem in contradiction with the prominent heterogeneity at subcellular and cellular scales, however it has become increasingly clear that heterogeneity can be instrumental for pattern formation. Here we review recent examples in plant development, involving genetic regulation, cell arrangement, growth and signal gradient. We discuss how patterns emerge from local rules, whether heterogeneity is stochastic or can be patterned, and whether stochastic noise is amplified or requires filtering for robust patterns to be achieved. We also stress the importance of modelling in investigating such questions.
Collapse
Affiliation(s)
- Yuchen Long
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
32
|
Jackson MDB, Duran-Nebreda S, Kierzkowski D, Strauss S, Xu H, Landrein B, Hamant O, Smith RS, Johnston IG, Bassel GW. Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem. Cell Syst 2019; 8:53-65.e3. [PMID: 30660611 PMCID: PMC6345583 DOI: 10.1016/j.cels.2018.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 02/01/2023]
Abstract
The control of cell position and division act in concert to dictate multicellular organization in tissues and organs. How these processes shape global order and molecular movement across organs is an outstanding problem in biology. Using live 3D imaging and computational analyses, we extracted networks capturing cellular connectivity dynamics across the Arabidopsis shoot apical meristem (SAM) and topologically analyzed the local and global properties of cellular architecture. Locally generated cell division rules lead to the emergence of global tissue-scale organization of the SAM, facilitating robust global communication. Cells that lie upon more shorter paths have an increased propensity to divide, with division plane placement acting to limit the number of shortest paths their daughter cells lie upon. Cell shape heterogeneity and global cellular organization requires KATANIN, providing a multiscale link between cell geometry, mechanical cell-cell interactions, and global tissue order.
Collapse
Affiliation(s)
| | | | - Daniel Kierzkowski
- Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany; Department of Biological Sciences, Plant Science Research Institute, University of Montreal, 4101 Sherbrooke Est, Montréal, QC H1X 2B2, Canada
| | - Soeren Strauss
- Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Hao Xu
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Benoit Landrein
- CNRS, Laboratoire de Reproduction de développement des plantes, INRA, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon Cedex 07 69364, France
| | - Olivier Hamant
- CNRS, Laboratoire de Reproduction de développement des plantes, INRA, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon Cedex 07 69364, France
| | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
33
|
Xin Y, Karunarathna Mudiyanselage CM, Just W. Development of epithelial tissues: How are cleavage planes chosen? PLoS One 2018; 13:e0205834. [PMID: 30403682 PMCID: PMC6221281 DOI: 10.1371/journal.pone.0205834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
The cross-section of a cell in a monolayer epithelial tissue can be modeled mathematically as a k-sided polygon. Empirically studied distributions of the proportions of k-sided cells in epithelia show remarkable similarities in a wide range of evolutionarily distant organisms. A variety of mathematical models have been proposed for explaining this phenomenon. The highly parsimonious simulation model of (Patel et al., PLoS Comput. Biol., 2009) that takes into account only the number of sides of a given cell and cell division already achieves a remarkably good fit with empirical distributions from Drosophila, Hydra, Xenopus, Cucumber, and Anagallis. Within the same modeling framework as in that paper, we introduce additional options for the choice of the endpoints of the cleavage plane that appear to be biologically more realistic. By taking the same data sets as our benchmarks, we found that combinations of some of our new options consistently gave better fits with each of these data sets than previously studied ones. Both our algorithm and simulation data are made available as research tools for future investigations.
Collapse
Affiliation(s)
- Ying Xin
- Department of Mathematics, Ohio University, Athens, Ohio, 45701, United States of America
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, 59717, United States of America
- * E-mail:
| | | | - Winfried Just
- Department of Mathematics, Ohio University, Athens, Ohio, 45701, United States of America
- Quantitative Biology Institute, Ohio University, Athens, Ohio, 45701, United States of America
| |
Collapse
|
34
|
Liu H, Du S, Lei T, Wang H, He X, Tong R, Wang Y. Multifaceted regulation and functions of YAP/TAZ in tumors (Review). Oncol Rep 2018; 40:16-28. [PMID: 29749524 PMCID: PMC6059739 DOI: 10.3892/or.2018.6423] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway, initially identified through screenings for mutant tumor suppressors in Drosophila, is an evolutionarily conserved signaling pathway that controls organ size by regulating cell proliferation and apoptosis. Abnormal regulation of the Hippo pathway may lead to cancer in mammals. As the major downstream effectors of the Hippo pathway, unphosphorylated Yes-associated protein (YAP) and its homolog transcriptional co-activator TAZ (also called WWTR1) (hereafter called YAP/TAZ) are translocated into the nucleus. In the nucleus, in order to induce target gene expression, YAP/TAZ bind to the TEA domain (TEAD) proteins, and this binding subsequently promotes cell proliferation and inhibits apoptosis. In contrast, as key regulators of tumorigenesis and development, YAP/TAZ are phosphorylated and regulated by multiple molecules and pathways including Lats1/2 of Hippo, Wnt and G-protein-coupled receptor (GPCR) signaling, with a regulatory role in cell physiology, tumor cell development and pathological abnormalities simultaneously. In particular, the crucial role of YAP/TAZ in tumors ensures their potential as targets in designing anticancer drugs. To date, mounting research has elucidated the suppression of YAP/TAZ via effective inhibitors, which significantly highlights their application in cancer treatment. In the present review, we focus on the functions of YAP/TAZ in cancer, discuss their potential as new therapeutic target for tumor treatment, and provide valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Huirong Liu
- Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Suya Du
- School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P.R. China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, P.R. China
| | - Hailian Wang
- Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xia He
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
35
|
Tang Z, Hu Y, Wang Z, Jiang K, Zhan C, Marshall WF, Tang N. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis. Dev Cell 2018; 44:313-325.e5. [PMID: 29337000 DOI: 10.1016/j.devcel.2017.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/13/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
Abstract
Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis.
Collapse
Affiliation(s)
- Zan Tang
- College of Life Sciences, Peking University, Beijing 100871, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yucheng Hu
- Zhou Pei-yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Kewu Jiang
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Cheng Zhan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
36
|
He M, Ye W, Wang WJ, Sison ES, Jan YN, Jan LY. Cytoplasmic Cl - couples membrane remodeling to epithelial morphogenesis. Proc Natl Acad Sci U S A 2017; 114:E11161-E11169. [PMID: 29229864 PMCID: PMC5748203 DOI: 10.1073/pnas.1714448115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloride is the major free anion in the extracellular space (>100 mM) and within the cytoplasm in eukaryotes (10 ∼ 20 mM). Cytoplasmic Cl- level is dynamically regulated by Cl- channels and transporters. It is well established that movement of Cl- across the cell membrane is coupled with cell excitability through changes in membrane potential and with water secretion. However, whether cytoplasmic Cl- plays additional roles in animal development and tissue homeostasis is unknown. Here we use genetics, cell biological and pharmacological tools to demonstrate that TMEM16A, an evolutionarily conserved calcium-activated chloride channel (CaCC), regulates cytoplasmic Cl- homeostasis and promotes plasma membrane remodeling required for mammalian epithelial morphogenesis. We demonstrate that TMEM16A-mediated control of cytoplasmic Cl- regulates the organization of the major phosphoinositide species PtdIns(4,5)P2 into microdomains on the plasma membrane, analogous to processes that cluster soluble and membrane proteins into phase-separated droplets. We further show that an adequate cytoplasmic Cl- level is required for proper endocytic trafficking and membrane supply during early stages of ciliogenesis and adherens junction remodeling. Our study thus uncovers a critical function of CaCC-mediated cytoplasmic Cl- homeostasis in controlling the organization of PtdIns(4,5)P2 microdomains and membrane remodeling. This newly defined role of cytoplasmic Cl- may shed light on the mechanisms of intracellular Cl- signaling events crucial for regulating tissue architecture and organelle biogenesis during animal development.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Eirish S Sison
- Department of Physiology, University of California, San Francisco, CA 94158
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, CA 94158;
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158
| |
Collapse
|
37
|
Lunova M, Zablotskii V, Dempsey NM, Devillers T, Jirsa M, Syková E, Kubinová Š, Lunov O, Dejneka A. Modulation of collective cell behaviour by geometrical constraints. Integr Biol (Camb) 2017; 8:1099-1110. [PMID: 27738682 DOI: 10.1039/c6ib00125d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular and extracellular mechanical forces play a crucial role during tissue growth, modulating nuclear shape and function and resulting in complex collective cell behaviour. However, the mechanistic understanding of how the orientation, shape, symmetry and homogeneity of cells are affected by environmental geometry is still lacking. Here we investigate cooperative cell behaviour and patterns under geometric constraints created by topographically patterned substrates. We show how cells cooperatively adopt their geometry, shape, positioning of the nucleus and subsequent proliferation activity. Our findings indicate that geometric constraints induce significant squeezing of cells and nuclei, cytoskeleton reorganization, drastic condensation of chromatin resulting in a change in the cell proliferation rate and the anisotropic growth of cultures. Altogether, this work not only demonstrates complex non-trivial collective cellular responses to geometrical constraints but also provides a tentative explanation of the observed cell culture patterns grown on different topographically patterned substrates. These findings provide important fundamental knowledge, which could serve as a basis for better controlled tissue growth and cell-engineering applications.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic.
| | - Nora M Dempsey
- Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France and CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Thibaut Devillers
- Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France and CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Eva Syková
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic. and Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, 18221, Czech Republic.
| |
Collapse
|
38
|
Carter R, Sánchez-Corrales YE, Hartley M, Grieneisen VA, Marée AFM. Pavement cells and the topology puzzle. Development 2017; 144:4386-4397. [PMID: 29084800 PMCID: PMC5769637 DOI: 10.1242/dev.157073] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/24/2017] [Indexed: 01/14/2023]
Abstract
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics.
Collapse
Affiliation(s)
- Ross Carter
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Matthew Hartley
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
39
|
Chen D, Aw WY, Devenport D, Torquato S. Structural Characterization and Statistical-Mechanical Model of Epidermal Patterns. Biophys J 2017; 111:2534-2545. [PMID: 27926854 DOI: 10.1016/j.bpj.2016.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
In proliferating epithelia of mammalian skin, cells of irregular polygon-like shapes pack into complex, nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct space (correlation function) and Fourier space (structure factor) of the cell centroids in the early stages of embryonic development show structural directional dependence (statistical anisotropy), which is a reflection of the fact that cells are stretched, which promotes uniaxial growth along the epithelial plane. In the late stages, the patterns tend toward statistically isotropic states, as cells attain global polarization and epidermal growth shifts to produce the skin's outer stratified layers. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-range soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. In contrast with many vertex-based models, our statistical-mechanical model does not explicitly incorporate information about the cell shapes and interfacial energy between cells; nonetheless, our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments, as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. The array of structural descriptors that we deploy enable us to distinguish between normal, mechanically deformed, and pathological skin tissues. Our statistical-mechanical model enables one to generate tissue microstructure at will for further analysis. We also discuss ways in which our model might be extended to better understand morphogenesis (in particular the emergence of planar cell polarity), wound healing, and disease-progression processes in skin, and how it could be applied to the design of synthetic tissues.
Collapse
Affiliation(s)
- Duyu Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey; Department of Physics, Princeton University, Princeton, New Jersey; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey; Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
40
|
López-Sauceda J, Rueda-Contreras MD. A Method to Categorize 2-Dimensional Patterns Using Statistics of Spatial Organization. Evol Bioinform Online 2017; 13:1176934317697978. [PMID: 28469379 PMCID: PMC5395257 DOI: 10.1177/1176934317697978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/31/2017] [Indexed: 11/23/2022] Open
Abstract
We developed a measurement framework of spatial organization to categorize 2-dimensional patterns from 2 multiscalar biological architectures. We propose that underlying shapes of biological entities can be approached using the statistical concept of degrees of freedom, defining it through expansion of area variability in a pattern. To help scope this suggestion, we developed a mathematical argument recognizing the deep foundations of area variability in a polygonal pattern (spatial heterogeneity). This measure uses a parameter called eutacticity. Our measuring platform of spatial heterogeneity can assign particular ranges of distribution of spatial areas for 2 biological architectures: ecological patterns of Namibia fairy circles and epithelial sheets. The spatial organizations of our 2 analyzed biological architectures are demarcated by being in a particular position among spatial order and disorder. We suggest that this theoretical platform can give us some insights about the nature of shapes in biological systems to understand organizational constraints.
Collapse
Affiliation(s)
- Juan López-Sauceda
- National Council of Science and Technology (CONACYT), Mexico City, Mexico.,Department of Information Systems and Computational Sciences, Universidad Autónoma Metropolitana, Unidad Lerma, Lerma de Villada, Estado de Mexico, Mexico
| | - Mara D Rueda-Contreras
- Department of Nanotechnology, Center for Applied Physics and Advanced Technology, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
41
|
Morphometry of organ cultured corneal endothelium using Voronoi segmentation. Cell Tissue Bank 2017; 18:167-183. [DOI: 10.1007/s10561-017-9622-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
42
|
Sánchez-Gutiérrez D, Sáez A, Gómez-Gálvez P, Paradas C, Escudero LM. Rules of tissue packing involving different cell types: human muscle organization. Sci Rep 2017; 7:40444. [PMID: 28071729 PMCID: PMC5223128 DOI: 10.1038/srep40444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/07/2016] [Indexed: 01/16/2023] Open
Abstract
Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the "slow" and "fast" fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist.
Collapse
Affiliation(s)
- Daniel Sánchez-Gutiérrez
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universdad de Sevilla, 41013 Seville, Spain
| | - Aurora Sáez
- Dpto. Teoría de la Señal y Comunicaciones. Universidad de Sevilla, Cmno, de los descubrimientos s/n, 41092, Sevilla, Spain
| | - Pedro Gómez-Gálvez
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universdad de Sevilla, 41013 Seville, Spain
| | - Carmen Paradas
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universdad de Sevilla, 41013 Seville, Spain
| | - Luis M. Escudero
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universdad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
43
|
Martin E, Ouellette MH, Jenna S. Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes. J Cell Biol 2016; 215:483-498. [PMID: 27821782 PMCID: PMC5119937 DOI: 10.1083/jcb.201604015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 01/13/2023] Open
Abstract
The antagonism between the GTPases Rac1 and RhoA controls cell-to-cell heterogeneity in isogenic populations of cells in vitro and epithelial morphogenesis in vivo. Its involvement in the regulation of cell-to-cell heterogeneity during epidermal morphogenesis has, however, never been addressed. We used a quantitative cell imaging approach to characterize epidermal morphogenesis at a single-cell level during early elongation of Caenorhabditis elegans embryos. This study reveals that a Rac1-like pathway, involving the Rac/Cdc42 guanine-exchange factor β-PIX/PIX-1 and effector PAK1/PAK-1, and a RhoA-like pathway, involving ROCK/LET-502, control the remodeling of apical junctions and the formation of basolateral protrusions in distinct subsets of hypodermal cells. In these contexts, protrusions adopt lamellipodia or an amoeboid morphology. We propose that lamella formation may reduce tension building at cell-cell junctions during morphogenesis. Cell-autonomous antagonism between these pathways enables cells to switch between Rac1- and RhoA-like morphogenetic programs. This study identifies the first case of cell-to-cell heterogeneity controlled by Rac1/RhoA antagonism during epidermal morphogenesis.
Collapse
Affiliation(s)
- Emmanuel Martin
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Marie-Hélène Ouellette
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Sarah Jenna
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
44
|
Archetti M. Cooperation among cancer cells as public goods games on Voronoi networks. J Theor Biol 2016; 396:191-203. [DOI: 10.1016/j.jtbi.2016.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/13/2016] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
|
45
|
Sánchez-Gutiérrez D, Tozluoglu M, Barry JD, Pascual A, Mao Y, Escudero LM. Fundamental physical cellular constraints drive self-organization of tissues. EMBO J 2016; 35:77-88. [PMID: 26598531 PMCID: PMC4718000 DOI: 10.15252/embj.201592374] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023] Open
Abstract
Morphogenesis is driven by small cell shape changes that modulate tissue organization. Apical surfaces of proliferating epithelial sheets have been particularly well studied. Currently, it is accepted that a stereotyped distribution of cellular polygons is conserved in proliferating tissues among metazoans. In this work, we challenge these previous findings showing that diverse natural packed tissues have very different polygon distributions. We use Voronoi tessellations as a mathematical framework that predicts this diversity. We demonstrate that Voronoi tessellations and the very different tissues analysed share an overriding restriction: the frequency of polygon types correlates with the distribution of cell areas. By altering the balance of tensions and pressures within the packed tissues using disease, genetic or computer model perturbations, we show that as long as packed cells present a balance of forces within tissue, they will be under a physical constraint that limits its organization. Our discoveries establish a new framework to understand tissue architecture in development and disease.
Collapse
Affiliation(s)
- Daniel Sánchez-Gutiérrez
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Melda Tozluoglu
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Luis M Escudero
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
46
|
Broaders KE, Cerchiari AE, Gartner ZJ. Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances. Integr Biol (Camb) 2015; 7:1611-21. [PMID: 26507156 PMCID: PMC4666816 DOI: 10.1039/c5ib00240k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Epithelial sheets fold into complex topographies that contribute to their function in vivo. Cells can sense and respond to substrate topography in their immediate vicinity by modulating their interfacial mechanics, but the extent to which these mechanical properties contribute to their ability to sense substrate topography across length scales larger than a single cell has not been explored in detail. To study the relationship between the interfacial mechanics of single cells and their collective behavior as tissues, we grew cell-sheets on substrates engraved with surface features spanning macroscopic length-scales. We found that many epithelial cell-types sense and respond to substrate topography, even when it is locally nearly planar. Cells clear or detach from regions of local negative curvature, but not from regions with positive or no curvature. We investigated this phenomenon using a finite element model where substrate topography is coupled to epithelial response through a balance of tissue contractility and adhesive forces. The model correctly predicts the focal sites of cell-clearing and epithelial detachment. Furthermore, the model predicts that local tissue response to substrate curvature is a function of the surrounding topography of the substrate across long distances. Analysis of cell-cell and cell-substrate contact angles suggests a relationship between these single-cell interfacial properties, epithelial interfacial properties, and collective epithelial response to substrate topography. Finally, we show that contact angles change upon activation of oncogenes or inhibition of cell-contractility, and that these changes correlate with collective epithelial response. Our results demonstrate that in mechanically integrated epithelial sheets, cell contractility can be transmitted through multiple cells and focused by substrate topography to affect a behavioral response at distant sites.
Collapse
Affiliation(s)
- Kyle E. Broaders
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Alec E. Cerchiari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
47
|
Zhang H, Sinclair R. Namibian fairy circles and epithelial cells share emergent geometric order. ECOLOGICAL COMPLEXITY 2015. [DOI: 10.1016/j.ecocom.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Azzag K, Chelin Y, Rousset F, Le Goff E, Martinand-Mari C, Martinez AM, Maurin B, Daujat-Chavanieu M, Godefroy N, Averseng J, Mangeat P, Baghdiguian S. The non-proliferative nature of ascidian folliculogenesis as a model of highly ordered cellular topology distinct from proliferative epithelia. PLoS One 2015; 10:e0126341. [PMID: 26000769 PMCID: PMC4441440 DOI: 10.1371/journal.pone.0126341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/01/2015] [Indexed: 11/18/2022] Open
Abstract
Previous studies have addressed why and how mono-stratified epithelia adopt a polygonal topology. One major additional, and yet unanswered question is how the frequency of different cell shapes is achieved and whether the same distribution applies between non-proliferative and proliferative epithelia. We compared different proliferative and non-proliferative epithelia from a range of organisms as well as Drosophila melanogaster mutants, deficient for apoptosis or hyperproliferative. We show that the distribution of cell shapes in non-proliferative epithelia (follicular cells of five species of tunicates) is distinctly, and more stringently organized than proliferative ones (cultured epithelial cells and Drosophila melanogaster imaginal discs). The discrepancy is not supported by geometrical constraints (spherical versus flat monolayers), number of cells, or apoptosis events. We have developed a theoretical model of epithelial morphogenesis, based on the physics of divided media, that takes into account biological parameters such as cell-cell contact adhesions and tensions, cell and tissue growth, and which reproduces the effects of proliferation by increasing the topological heterogeneity observed experimentally. We therefore present a model for the morphogenesis of epithelia where, in a proliferative context, an extended distribution of cell shapes (range of 4 to 10 neighbors per cell) contrasts with the narrower range of 5-7 neighbors per cell that characterizes non proliferative epithelia.
Collapse
Affiliation(s)
- Karim Azzag
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Institut des Sciences de l’Evolution (ISE-M), CNRS, Montpellier, France
| | - Yoann Chelin
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Laboratoire de Mécanique et Génie Civil (LMGC), CNRS, Montpellier, France
| | - François Rousset
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Institut des Sciences de l’Evolution (ISE-M), CNRS, Montpellier, France
| | - Emilie Le Goff
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Institut des Sciences de l’Evolution (ISE-M), CNRS, Montpellier, France
| | - Camille Martinand-Mari
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Institut des Sciences de l’Evolution (ISE-M), CNRS, Montpellier, France
| | - Anne-Marie Martinez
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Institut de Génétique Humaine (IGH), CNRS, Montpellier, France
| | - Bernard Maurin
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Laboratoire de Mécanique et Génie Civil (LMGC), CNRS, Montpellier, France
| | - Martine Daujat-Chavanieu
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- INSERM U1040, Montpellier, France
- CHU Montpellier, Institut de Biothérapie, Montpellier, France
| | - Nelly Godefroy
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Institut des Sciences de l’Evolution (ISE-M), CNRS, Montpellier, France
| | - Julien Averseng
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Laboratoire de Mécanique et Génie Civil (LMGC), CNRS, Montpellier, France
| | - Paul Mangeat
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), CNRS, Montpellier, France
| | - Stephen Baghdiguian
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
- Institut des Sciences de l’Evolution (ISE-M), CNRS, Montpellier, France
| |
Collapse
|
49
|
Moretto M, Minelli A, Fusco G. Cell size versus body size in geophilomorph centipedes. Naturwissenschaften 2015; 102:16. [PMID: 25809818 DOI: 10.1007/s00114-015-1269-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
Variation in animal body size is the result of a complex interplay between variation in cell number and cell size, but the latter has seldom been considered in wide-ranging comparative studies, although distinct patterns of variation have been described in the evolution of different lineages. We investigated the correlation between epidermal cell size and body size in a sample of 29 geophilomorph centipede species, representative of a wide range of body sizes, from 6 mm dwarf species to gigantic species more than 200 mm long, exploiting the marks of epidermal cells on the overlying cuticle in the form of micro-sculptures called scutes. We found conspicuous and significant variation in average scute area, both between suprageneric taxa and between genera, while the within-species range of variation is comparatively small. This supports the view that the average epidermal cell size is to some extent taxon specific. However, regression analyses show that neither body size nor the number of leg-bearing segments explain this variation, which suggests that cell size is not an usual target of change for body size evolution in this group of arthropods, although there is evidence of its correlation with other morphological variables, like cuticle thickness. Scute sizes of miniaturized geophilomorph species are well within the range of the lineage to which the species belong, suggesting recent evolutionary transitions to smaller body size.
Collapse
Affiliation(s)
- Marco Moretto
- Department of Biology, University of Padova, Padova, Italy
| | | | | |
Collapse
|
50
|
Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer. Proc Natl Acad Sci U S A 2015; 112:1833-8. [PMID: 25624490 DOI: 10.1073/pnas.1414653112] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the "tragedy of the commons," which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors.
Collapse
|