1
|
Kornsuthisopon C, Chansaenroj A, Suwittayarak R, Phothichailert S, Usarprom K, Srikacha A, Vimolmangkang S, Phrueksotsai C, Samaranayake LP, Osathanon T. Cannabidiol alleviates LPS-inhibited odonto/osteogenic differentiation in human dental pulp stem cells in vitro. Int Endod J 2025; 58:449-466. [PMID: 39697062 DOI: 10.1111/iej.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
AIM Cannabidiol (CBD), derived from the Cannabis sativa plant, exhibits benefits in potentially alleviating a number of oral and dental pathoses, including pulpitis and periodontal diseases. This study aimed to explore the impact of CBD on several traits of human dental pulp stem cells (hDPSC), such as their proliferation, apoptosis, migration and odonto/osteogenic differentiation. METHODOLOGY hDPSCs were harvested from human dental pulp tissues. The cells were treated with CBD at concentrations of 1.25, 2.5, 5, 10, 25 and 50 μg/mL. Cell responses in terms of cell proliferation, colony-forming unit, cell cycle progression, cell migration, apoptosis and odonto/osteogenic differentiation of hDPSCs were assessed in the normal culture condition and P. gingivalis lipopolysaccharide (LPS)-induced 'inflammatory' milieus. RNA sequencing and proteomic analysis were performed to predict target pathways impacted by CBD. RESULTS CBD minimally affects hDPSCs' behaviour under normal culture growth milieu in normal conditions. However, an optimal concentration of 1.25 μg/mL CBD significantly countered the harmful effects of LPS, indicated by the promoting cell proliferation and restoring the odonto/osteogenic differentiation potential of hDPSCs under LPS-treated conditions. The proteomic analysis demonstrated that several proteins involved in cell proliferation and differentiation were upregulated following CBD exposure, including CCL8, CDC42 and KFL5. RNA sequencing data indicated that CBD upregulated the Notch signalling pathway. In an inhibitory experiment, DAPT, a Notch inhibitor, reduced the effect of CBD-rescued LPS-attenuated mineralization in hDPSCs, suggesting that CBD potentially mediates Notch activation to exert its impact on odonto/osteogenic differentiation of hDPSCs. CONCLUSIONS CBD recovers the proliferation and survival of hDPSCs following exposure to LPS. Additionally, we report that CBD-mediated Notch activation effectively restores the odonto/osteogenic differentiation ability of hDPSCs under inflamed conditions. These results underscore the potential role of CBD as a therapeutic option to enhance dentine regeneration.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ajjima Chansaenroj
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suphalak Phothichailert
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Khunakon Usarprom
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Apicha Srikacha
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chaloemrit Phrueksotsai
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lakshman P Samaranayake
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Yao K, Zhan XY, Feng M, Yang KF, Zhou MS, Jia H. Furin, ADAM, and γ-secretase: Core regulatory targets in the Notch pathway and the therapeutic potential for breast cancer. Neoplasia 2024; 57:101041. [PMID: 39208688 PMCID: PMC11399603 DOI: 10.1016/j.neo.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The activation of the Notch pathway promotes the occurrence and progression of breast cancer. The Notch signal plays different roles in different molecular subtypes of breast cancer. In estrogen receptor-positive (ER+) breast cancer, the Notch pathway regulates the activity of estrogen receptors. In human epidermal growth factor receptor 2-positive (HER2+) breast cancer, crosstalk between Notch and HER2 enhances HER2 signal expression. In triple-negative breast cancer (TNBC), Notch pathway activation is closely linked to tumor invasion and drug resistance. This article offers a comprehensive review of the structural domains, biological functions, and key targets of Notch with a specific focus on the roles of Furin protease, ADAM metalloprotease, and γ-secretase in breast cancer and their potential as therapeutic targets. We discuss the functions and mutual regulatory mechanisms of these proteinases in the Notch pathway as well as other potential targets in the Notch pathway, such as the glycosylation process and key transcription factors. This article also introduces new approaches in the treatment of breast cancer, with a special focus on the molecular characteristics and treatment response differences of different subtypes. We propose that the core regulatory molecules of the Notch pathway may become key targets for development of personalized treatment, which may significantly improve treatment outcomes and prognosis for patients with breast cancer.
Collapse
Affiliation(s)
- Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Xiang-Yi Zhan
- School of Traditional Chinese Medicine, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Shenyang Key Laboratory of Vascular Biology, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China; Science and Experimental Research Center of Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| | - Hui Jia
- Shenyang Key Laboratory of Vascular Biology, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China; School of Traditional Chinese Medicine, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| |
Collapse
|
3
|
Sun Y, Islam S, Michikawa M, Zou K. Presenilin: A Multi-Functional Molecule in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2024; 25:1757. [PMID: 38339035 PMCID: PMC10855926 DOI: 10.3390/ijms25031757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Presenilin, a transmembrane protein primarily known for its role in Alzheimer's disease (AD) as part of the γ-secretase complex, has garnered increased attention due to its multifaceted functions in various cellular processes. Recent investigations have unveiled a plethora of functions beyond its amyloidogenic role. This review aims to provide a comprehensive overview of presenilin's diverse roles in AD and other neurodegenerative disorders. It includes a summary of well-known substrates of presenilin, such as its involvement in amyloid precursor protein (APP) processing and Notch signaling, along with other functions. Additionally, it highlights newly discovered functions, such as trafficking function, regulation of ferritin expression, apolipoprotein E (ApoE) secretion, the interaction of ApoE and presenilin, and the Aβ42-to-Aβ40-converting activity of ACE. This updated perspective underscores the evolving landscape of presenilin research, emphasizing its broader impact beyond established pathways. The incorporation of these novel findings accentuates the dynamic nature of presenilin's involvement in cellular processes, further advancing our comprehension of its multifaceted roles in neurodegenerative disorders. By synthesizing evidence from a range of studies, this review sheds light on the intricate web of presenilin functions and their implications in health and disease.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan;
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| |
Collapse
|
4
|
Singh V, Mujwar S, Singh M, Singh T, Ahmad SF. Computational Studies to Understand the Neuroprotective Mechanism of Action Basil Compounds. Molecules 2023; 28:7005. [PMID: 37894484 PMCID: PMC10609097 DOI: 10.3390/molecules28207005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, pose a significant global health challenge, emphasizing the need for novel neuroprotective agents. Basil (Ocimum spp.) has been recognized for its therapeutic potential, and numerous studies have reported neuroprotective effects. In this manuscript, we present a computational protocol to extricate the underlying mechanism of action of basil compounds in neuroprotective effects. Molecular docking-based investigation of the chemical interactions between selected bioactive compounds from basil and key neuroprotective targets, including AChE, GSK3β, γ-secretase, and sirtuin2. Our results demonstrate that basil compound myricerone caffeoyl ester possesses a high affinity of -10.01 and -8.85 kcal/mol against GSK3β and γ-secretase, respectively, indicating their potential in modulating various neurobiological processes. Additionally, molecular dynamics simulations were performed to explore the protein-ligand complexes' stability and to analyze the bound basil compounds' dynamic behavior. This comprehensive computational investigation enlightens the putative mechanistic basis for the neuroprotective effects of basil compounds, providing a rationale for their therapeutic use in neurodegenerative disorders after further experimental validation.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77807, USA;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Singh AK, Prajapati KS, Kumar S. Hesperidin potentially interacts with the catalytic site of gamma-secretase and modifies notch sensitive genes and cancer stemness marker expression in colon cancer cells and colonosphere. J Biomol Struct Dyn 2023; 41:8432-8444. [PMID: 36239003 DOI: 10.1080/07391102.2022.2134213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 10/17/2022]
Abstract
Gamma secretase (GS) produces Notch Intracellular Domain (NICD) by trans-membrane cleavage of notch receptor. The NICD enters the nucleus and activates the notch signaling pathway (NSP) by activating notch-responsive gene transcription. Hyperactivation of NSP is related to cancer aggressiveness, therapy resistance, and poor therapy outcome, and decreased overall disease-free survival in patients. Till date, none of the GS inhibitors (GSI) has been clinically approved due to their toxicity in patients. Thus in the present study, we explored the GS catalytic site binding potential of hesperidin (natural flavone glycoside) and its effect on notch responsive gene expression in HCT-116 cells. Molecular docking, MM-GBSA binding energy calculations, and molecular dynamics (MD) simulation experiments were performed to study the GS catalytic site binding potential of hesperidin. The compound showed better GS catalytic site binding potential at the active site compared to experimentally validated GSI, N-N-(3, 5-Difluorophenacetyl)-L-alanyl-S-phenylglycine t-butyl ester (DAPT) in molecular docking and MM-GBSA experiments. MD simulation results showed that hesperidin forms stable and energetically favorable complex with gamma secretase in comparison to standard inhibitor (DAPT)-GS complex. Further, in vitro experiments showed that hesperidin inhibited cell growth and sphere formation potential in HCT-116 cells. Further, hesperidin treatment altered notch responsive genes (Hes1, Hey1, and E-cad) and cancer stemness/self-renewal markers expression at transcription levels. In conclusion, hesperidin produces toxicity in HCT-116 cells and decreases colonosphere formation by inhibiting transcription of notch signaling pathway target genes and stemness markers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
6
|
Jastrząb B, Szepietowski JC, Matusiak Ł. Hidradenitis suppurativa and follicular occlusion syndrome: Where is the pathogenetic link? Clin Dermatol 2023; 41:576-583. [PMID: 37690621 DOI: 10.1016/j.clindermatol.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The follicular occlusion tetrad complex encompasses several entities (hidradenitis suppurativa, acne conglobata, dissecting cellulitis of the scalp, and pilonidal cyst) that share common clinical features, risk factors, and pathophysiology. Follicular occlusion is a crucial triggering mechanism in the etiology in each of these disorders, leading to development of distinctive skin lesions such as deep-seated nodules, abscesses, comedones, and draining sinuses, often with accompanying scarring. Despite the fact that the follicular occlusion tetrad components manifest multiple similarities, they also exhibit many differences among themselves and require individual approaches and treatment.
Collapse
Affiliation(s)
- Beata Jastrząb
- Department of Dermatology, Venereology, and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology, and Allergology, Wroclaw Medical University, Wroclaw, Poland.
| | - Łukasz Matusiak
- Department of Dermatology, Venereology, and Allergology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
7
|
Patent highlights December 2021-January 2022. Pharm Pat Anal 2022; 11:89-96. [PMID: 35861046 DOI: 10.4155/ppa-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
8
|
Nagel AC, Müller D, Zimmermann M, Preiss A. The Membrane-Bound Notch Regulator Mnr Supports Notch Cleavage and Signaling Activity in Drosophila melanogaster. Biomolecules 2021; 11:1672. [PMID: 34827670 PMCID: PMC8615698 DOI: 10.3390/biom11111672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Notch signaling pathway is pivotal to cellular differentiation. Activation of this pathway involves proteolysis of the Notch receptor and the release of the biologically active Notch intracellular domain, acting as a transcriptional co-activator of Notch target genes. While the regulation of Notch signaling dynamics at the level of ligand-receptor interaction, endocytosis, and transcriptional regulation has been well studied, little is known about factors influencing Notch cleavage. We identified EP555 as a suppressor of the Notch antagonist Hairless (H). EP555 drives expression of CG32521 encoding membrane-bound proteins, which we accordingly rename membrane-bound Notch regulator (mnr). Within the signal-receiving cell, upregulation of Mnr stimulates Notch receptor activation, whereas a knockdown reduces it, without apparent influence on ligand-receptor interaction. We provide evidence that Mnr plays a role in γ-secretase-mediated intramembrane cleavage of the Notch receptor. As revealed by a fly-eye-based reporter system, γ-secretase activity is stimulated by the overexpression of Mnr, and is inhibited by its knockdown. We conclude that Mnr proteins support Notch signaling activity by fostering the cleavage of the Notch receptor. With Mnr, we identified a membrane-bound factor directly augmenting Notch intra-membrane processing, thereby acting as a positive regulator of Notch signaling activity.
Collapse
Affiliation(s)
- Anja C. Nagel
- Department of General Genetics 190g, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (D.M.); (M.Z.); (A.P.)
| | | | | | | |
Collapse
|
9
|
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin Cancer Biol 2021; 85:95-106. [PMID: 33862222 DOI: 10.1016/j.semcancer.2021.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| |
Collapse
|
10
|
Yamamoto S. Making sense out of missense mutations: Mechanistic dissection of Notch receptors through structure-function studies in Drosophila. Dev Growth Differ 2020; 62:15-34. [PMID: 31943162 DOI: 10.1111/dgd.12640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Notch signaling is involved in the development of almost all organ systems and is required post-developmentally to modulate tissue homeostasis. Rare variants in Notch signaling pathway genes are found in patients with rare Mendelian disorders, while unique or recurrent somatic mutations in a similar set of genes are identified in cancer. The human genome contains four genes that encode Notch receptors, NOTCH1-4, all of which are linked to genetic diseases and cancer. Although some mutations have been classified as clear loss- or gain-of-function alleles based on cellular or rodent based assay systems, the functional consequence of many variants/mutations in human Notch receptors remain unknown. In this review, I will first provide an overview of the domain structure of Notch receptors and discuss how each module is known to regulate Notch signaling activity in vivo using the Drosophila Notch receptor as an example. Next, I will introduce some interesting mutant alleles that have been isolated in the fly Notch gene over the past > 100 years of research and discuss how studies of these mutations have facilitated the understanding of Notch biology. By identifying unique alleles of the fly Notch gene through forward genetic screens, mapping their molecular lesions and characterizing their phenotypes in depth, one can begin to unravel new mechanistic insights into how different domains of Notch fine-tune signaling output. Such information can be useful in deciphering the functional consequences of rare variants/mutations in human Notch receptors, which in turn can influence disease management and therapy.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.,Department of Neuroscience, BCM, Houston, TX, USA.,Program in Developmental Biology, BCM, Houston, TX, USA.,Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
11
|
Hsu CH, Liou GG, Jiang YJ. Nicastrin Deficiency Induces Tyrosinase-Dependent Depigmentation and Skin Inflammation. J Invest Dermatol 2019; 140:404-414.e13. [PMID: 31437444 DOI: 10.1016/j.jid.2019.07.702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Skin depigmentation diseases, such as vitiligo, are pigmentation disorders that often destroy melanocytes. However, their pathological mechanisms remain unclear, and therefore, promising treatments or prevention has been lacking. Here, we demonstrate that a zebrafish insertional mutant showing a significant reduction of nicastrin transcript possesses melanosome maturation defect, Tyrosinase-dependent mitochondrial swelling, and melanophore cell death. The depigmentation phenotypes are proven to be a result of γ-secretase inactivation. Furthermore, live imaging demonstrates that macrophages are recruited to and can phagocytose melanophore debris. Thus, we characterize a potential zebrafish depigmentation disease model, a nicastrinhi1384 mutant, which can be used for further treatment or drug development of diseases related to skin depigmentation and/or inflammation.
Collapse
Affiliation(s)
- Chia-Hao Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
12
|
Scilabra SD, Pigoni M, Pravatá V, Schätzl T, Müller SA, Troeberg L, Lichtenthaler SF. Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor. Sci Rep 2018; 8:14697. [PMID: 30279425 PMCID: PMC6168507 DOI: 10.1038/s41598-018-32910-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 08/06/2018] [Indexed: 01/21/2023] Open
Abstract
The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting different classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, different approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall effects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual effect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identified shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifications in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1.
Collapse
Affiliation(s)
- Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.
| | - Martina Pigoni
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Veronica Pravatá
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Tobias Schätzl
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| |
Collapse
|
13
|
Clemente N, Abdine A, Ubarretxena-Belandia I, Wang C. Coupled Transmembrane Substrate Docking and Helical Unwinding in Intramembrane Proteolysis of Amyloid Precursor Protein. Sci Rep 2018; 8:12411. [PMID: 30120254 PMCID: PMC6098081 DOI: 10.1038/s41598-018-30015-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/23/2018] [Indexed: 12/03/2022] Open
Abstract
Intramembrane-cleaving proteases (I-CLiPs) play crucial roles in physiological and pathological processes, such as Alzheimer’s disease and cancer. However, the mechanisms of substrate recognition by I-CLiPs remain poorly understood. The aspartic I-CLiP presenilin is the catalytic subunit of the γ-secretase complex, which releases the amyloid-β peptides (Aβs) through intramembrane proteolysis of the transmembrane domain of the amyloid precursor protein (APPTM). Here we used solution NMR to probe substrate docking of APPTM to the presenilin homologs (PSHs) MCMJR1 and MAMRE50, which cleaved APPTM in the NMR tube. Chemical shift perturbation (CSP) showed juxtamembrane regions of APPTM mediate its docking to MCMJR1. Binding of the substrate to I-CLiP decreased the magnitude of amide proton chemical shifts δH at the C-terminal half of the substrate APPTM, indicating that the docking to the enzyme weakens helical hydrogen bonds and unwinds the substrate transmembrane helix around the initial ε-cleavage site. The APPTM V44M substitution linked to familial AD caused more CSP and helical unwinding around the ε-cleavage site. MAMRE50, which cleaved APPTM at a higher rate, also caused more CSP and helical unwinding in APPTM than MCMJR1. Our data suggest that docking of the substrate transmembrane helix and helical unwinding is coupled in intramembrane proteolysis and FAD mutation modifies enzyme/substrate interaction, providing novel insights into the mechanisms of I-CLiPs and AD drug discovery.
Collapse
Affiliation(s)
- Nicolina Clemente
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - Alaa Abdine
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Biofisika Institute (CSIC, UPV/EHU), Universidad del País Vasco (UPV/EHU), E-48940, Leioa, Spain
| | - Chunyu Wang
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA. .,Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA.
| |
Collapse
|
14
|
Hussain M, Xu C, Ahmad M, Yang Y, Lu M, Wu X, Tang L, Wu X. Notch Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Mol Pharmacol 2017; 92:676-693. [PMID: 29025966 DOI: 10.1124/mol.117.110254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
Lung development is mediated by assorted signaling proteins and orchestrated by complex mesenchymal-epithelial interactions. Notch signaling is an evolutionarily conserved cell-cell communication mechanism that exhibits a pivotal role in lung development. Notably, both aberrant expression and loss of regulation of Notch signaling are critically linked to the pathogenesis of various lung diseases, in particular, pulmonary fibrosis, lung cancer, pulmonary arterial hypertension, and asthmatic airway remodeling; implying that precise regulation of intensity and duration of Notch signaling is imperative for appropriate lung development. Moreover, evidence suggests that Notch signaling links embryonic lung development and asthmatic airway remodeling. Herein, we summarized all-recent advances associated with the mechanistic role of Notch signaling in lung development, consequences of aberrant expression or deletion of Notch signaling in linking early-impaired lung development and asthmatic airway remodeling, and all recently investigated potential therapeutic strategies to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Chengyun Xu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Mashaal Ahmad
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Youping Yang
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Meiping Lu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Xiling Wu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Lanfang Tang
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Ximei Wu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| |
Collapse
|
15
|
Ajima R, Suzuki E, Saga Y. Pofut1 point-mutations that disrupt O-fucosyltransferase activity destabilize the protein and abolish Notch1 signaling during mouse somitogenesis. PLoS One 2017; 12:e0187248. [PMID: 29095923 PMCID: PMC5667770 DOI: 10.1371/journal.pone.0187248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/17/2017] [Indexed: 01/20/2023] Open
Abstract
The segmental pattern of the vertebrate body is established via the periodic formation of somites from the presomitic mesoderm (PSM). This periodical process is controlled by the cyclic and synchronized activation of Notch signaling in the PSM. Protein O-fucosyltransferase1 (Pofut1), which transfers O-fucose to the EGF domains of the Notch1 receptor, is indispensable for Notch signaling activation. The Drosophila homologue Ofut1 was reported to control Notch localization via two different mechanisms, working as a chaperone for Notch or as a regulator of Notch endocytosis. However, these were found to be independent of O-fucosyltransferase activity because the phenotypes were rescued by Ofut1 mutants lacking O-fucosyltransferase activity. Pofut1 may also be involved in the Notch receptor localization in mice. However, the contribution of enzymatic activity of Pofut1 to the Notch receptor dynamics remains to be elucidated. In order to clarify the importance of the O-fucosyltransferase activity of Pofut1 for Notch signaling activation and the protein localization in the PSM, we established mice carrying point mutations at the 245th a.a. or 370-372th a.a., highly conserved amino-acid sequences whose mutations disrupt the O-fucosyltransferase activity of both Drosophila Ofut1 and mammalian Pofut1, with the CRISPR/Cas9 mediated genome-engineering technique. Both mutants displayed the same severely perturbed somite formation and Notch1 subcellular localization defects as the Pofut1 null mutants. In the mutants, Pofut1 protein, but not RNA, became undetectable by E9.5. Furthermore, both wild-type and mutant Pofut1 proteins were degraded through lysosome dependent machinery. Pofut1 protein loss in the point mutant embryos caused the same phenotypes as those observed in Pofut1 null embryos.
Collapse
Affiliation(s)
- Rieko Ajima
- Mammalian Development Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Mouse Research Supporting Unit, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- * E-mail: (RA); (YS)
| | - Emiko Suzuki
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Gene Network Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Mouse Research Supporting Unit, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (RA); (YS)
| |
Collapse
|
16
|
Deatherage CL, Lu Z, Kroncke BM, Ma S, Smith JA, Voehler MW, McFeeters RL, Sanders CR. Structural and biochemical differences between the Notch and the amyloid precursor protein transmembrane domains. SCIENCE ADVANCES 2017; 3:e1602794. [PMID: 28439555 PMCID: PMC5389784 DOI: 10.1126/sciadv.1602794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/13/2017] [Indexed: 05/11/2023]
Abstract
γ-Secretase cleavage of the Notch receptor transmembrane domain is a critical signaling event for various cellular processes. Efforts to develop inhibitors of γ-secretase cleavage of the amyloid-β precursor C99 protein as potential Alzheimer's disease therapeutics have been confounded by toxicity resulting from the inhibition of normal cleavage of Notch. We present biochemical and structural data for the combined transmembrane and juxtamembrane Notch domains (Notch-TMD) that illuminate Notch signaling and that can be compared and contrasted with the corresponding traits of C99. The Notch-TMD and C99 have very different conformations, adapt differently to changes in model membrane hydrophobic span, and exhibit different cholesterol-binding properties. These differences may be exploited in the design of agents that inhibit cleavage of C99 while allowing Notch cleavage.
Collapse
Affiliation(s)
- Catherine L. Deatherage
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Brett M. Kroncke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Sirui Ma
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jarrod A. Smith
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Markus W. Voehler
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Robert L. McFeeters
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Corresponding author.
| |
Collapse
|
17
|
Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, Kelly JR, Haakmeester C, Srijemac R, Wilson AZ, Kerr J, Frazier MA, Kroon EJ, D'Amour KA. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo. Stem Cells Transl Med 2015; 4:1214-22. [PMID: 26304037 DOI: 10.5966/sctm.2015-0079] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%-80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%-89% endocrine cells, of which approximately 40%-50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%-98% endocrine cells and 1%-3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. SIGNIFICANCE Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin-producing cells in vitro and a new protocol for producing the cells, representing another potential cell source for a diabetes cell therapy. These cells can be loaded into a protective device that is implanted under the skin. The device is designed to protect the cells from immune rejection by the implant recipient. The implant can engraft and respond to glucose by secreting insulin, thus potentially replacing the β cells lost in patients with T1D.
Collapse
|
18
|
Liu Z, Brunskill E, Varnum-Finney B, Zhang C, Zhang A, Jay PY, Bernstein I, Morimoto M, Kopan R. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis. Development 2015; 142:2452-63. [PMID: 26062937 DOI: 10.1242/dev.125492] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/02/2015] [Indexed: 12/26/2022]
Abstract
Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals.
Collapse
Affiliation(s)
- Zhenyi Liu
- SAGE Labs, A Horizon Discovery Group Company, St Louis, MO 63146, USA
| | - Eric Brunskill
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Barbara Varnum-Finney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chi Zhang
- Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew Zhang
- University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Patrick Y Jay
- Departments of Pediatrics and Genetics, Washington University, St Louis, MO 63110, USA
| | - Irv Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Mitsuru Morimoto
- Lung Development and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Raphael Kopan
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Mittal S, Sharma A, Balaji SA, Gowda MC, Dighe RR, Kumar RV, Rangarajan A. Coordinate hyperactivation of Notch1 and Ras/MAPK pathways correlates with poor patient survival: novel therapeutic strategy for aggressive breast cancers. Mol Cancer Ther 2014; 13:3198-3209. [PMID: 25253780 PMCID: PMC4258404 DOI: 10.1158/1535-7163.mct-14-0280] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1(high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module.
Collapse
Affiliation(s)
- Suruchi Mittal
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Ankur Sharma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sai A. Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Manju C Gowda
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Rajan R. Dighe
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rekha V. Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
20
|
Kopan R, Chen S, Liu Z. Alagille, Notch, and robustness: why duplicating systems does not ensure redundancy. Pediatr Nephrol 2014; 29:651-7. [PMID: 24271660 PMCID: PMC3951435 DOI: 10.1007/s00467-013-2661-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
The mammalian kidney forms from several populations of progenitors that only persist during embryogenesis. The epithelial nephron progenitors reside in the cap mesenchyme (CM), whereas mesangial and endothelial cell progenitors reside in the neighboring stromal mesenchyme (SM). After a ureteric bud (UB) signal induces mesenchymal to epithelial transition of some CM cells, they form a nascent epithelial ball (a renal vesicle, or RV) that requires signals mediated by Notch receptors to separate proximal from distal fates. Two Notch receptors (Notch1 and Notch2) and two ligands (Jagged1 and Delta1) are expressed in the RV. Notably, instead of providing sufficient redundancy to ensure that losing any one allele will be inconsequential to human health, a reduction in the dose of one ligand (Jagged1) or one receptor (Notch2) is causally associated with a rare developmental syndrome (Alagille syndrome, or ALGS) affecting eye, kidney, liver, and craniofacial development. Here we discuss our current understanding of the molecular basis for the nonredundant role of Notch2 in this process, and the avenue for new therapeutic strategies that these insights provide.
Collapse
Affiliation(s)
- Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH, 45229-3039, USA,
| | | | | |
Collapse
|
21
|
Gudey SK, Sundar R, Mu Y, Wallenius A, Zang G, Bergh A, Heldin CH, Landström M. TRAF6 stimulates the tumor-promoting effects of TGFβ type I receptor through polyubiquitination and activation of presenilin 1. Sci Signal 2014; 7:ra2. [PMID: 24399296 DOI: 10.1126/scisignal.2004207] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-β (TGFβ) can be both a tumor promoter and suppressor, although the mechanisms behind the protumorigenic switch remain to be fully elucidated. The TGFβ type I receptor (TβRI) is proteolytically cleaved in the ectodomain region. Cleavage requires the combined activities of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and TNF-α-converting enzyme (TACE). The cleavage event occurs selectively in cancer cells and generates an intracellular domain (ICD) of TβRI, which enters the nucleus to mediate gene transcription. Presenilin 1 (PS1), a γ-secretase catalytic core component, mediates intramembrane proteolysis of transmembrane receptors, such as Notch. We showed that TGFβ increased both the abundance and activity of PS1. TRAF6 recruited PS1 to the TβRI complex and promoted lysine-63-linked polyubiquitination of PS1, which activated PS1. Furthermore, PS1 cleaved TβRI in the transmembrane domain between valine-129 and isoleucine-130, and ICD generation was inhibited when these residues were mutated to alanine. We also showed that, after entering the nucleus, TβRI-ICD bound to the promoter and increased the transcription of the gene encoding TβRI. The TRAF6- and PS1-induced intramembrane proteolysis of TβRI promoted TGFβ-induced invasion of various cancer cells in vitro. Furthermore, when a mouse xenograft model of prostate cancer was treated with the γ-secretase inhibitor DBZ {(2S)-2-[2-(3,5-difluorophenyl)-acetylamino]-N-(5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl)-propionamide}, generation of TβRI-ICD was prevented, transcription of the gene encoding the proinvasive transcription factor Snail1 was reduced, and tumor growth was inhibited. These results suggest that γ-secretase inhibitors may be useful for treating aggressive prostate cancer.
Collapse
Affiliation(s)
- Shyam Kumar Gudey
- 1Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Notch signaling is probably the most widely used intercellular communication pathway. The Notch mutant in the fruit fly Drosophila melanogaster was isolated about 100 years ago at the dawn of genetics. Since then, research on Notch and its related genes in flies, worms, mice, and human has led to the establishment of an evolutionarily conserved signaling pathway, the Notch signaling pathway. In the past few decades, molecular cloning of the Notch signaling components as well as genetic, cell biological, biochemical, structural, and bioinformatic approaches have uncovered the basic molecular logic of the pathway. In addition, genetic screens and systems approaches have led to the expansion of the list of genes that interact and fine-tune the pathway in a context specific manner. Furthermore, recent human genetic and genomic studies have led to the discovery that Notch plays a role in numerous diseases such as congenital disorders, stroke, and especially cancer. Pharmacological studies are actively pursuing key components of the pathway as drug targets for potential therapy. In this chapter, we will provide a brief historical overview of Notch signaling research and discuss the basic principles of Notch signaling, focusing on the unique features of this pathway when compared to other signaling pathways. Further studies to understand and manipulate Notch signaling in vivo in model organisms and in clinical settings will require a combination of a number of different approaches that are discussed throughout this book.
Collapse
|
23
|
Jayadev S, Case A, Alajajian B, Eastman AJ, Möller T, Garden GA. Presenilin 2 influences miR146 level and activity in microglia. J Neurochem 2013; 127:592-9. [PMID: 23952003 DOI: 10.1111/jnc.12400] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/02/2013] [Accepted: 08/09/2013] [Indexed: 01/02/2023]
Abstract
Microglia, the resident innate immune cells of the CNS, are the primary defenders against microbes and critical to CNS remodeling. Dysregulation of microglial behavior can lead to unchecked pro-inflammatory activity and subsequent neurodegeneration. The molecular mechanisms leading to chronic inflammation and microglial dysfunction in neurodegenerative diseases are not well-understood. It is known that patients with Presenilin 2 (PS2) mutations develop autosomal dominant Alzheimer disease. We have shown that a lack of normal PS2 function is associated with exaggerated microglia pro-inflammatory responses in vitro. To identify pathways by which PS2 regulates microglia and determine how PS2 dysfunction may lead to altered inflammatory pathways, we pursued an unbiased array approach to assess differential expression of microRNAs between murine PS2 knockout (KO) and wild-type microglia. We identified miR146, a negative regulator of monocyte pro-inflammatory response, as constitutively down-regulated in PS2 KO microglia. Consistent with a state of miR146 suppression, we found that PS2 KO microglia express higher levels of the miR146 target protein interleukin-1 receptor-associated kinase-1, and have increased NFκB transcriptional activity. We hypothesize that PS2 impacts microglial responses through modulation of miR146a. PS2 dysfunction, through aging or mutation, may contribute to neurodegeneration by influencing the pro-inflammatory behavior of microglia. Presenilin 2 (PS2), a membrane associated protease, has been implicated in the pathogenesis of Alzheimer disease. We have previously shown that PS2 plays an important role in curbing the proinflammatory response in microglia. Here, we report the novel finding that PS2 participates in maintaining the basal and cytokine induced expression of the innate immunity regulating microRNA, miR146. These data suggest one mechanism by which PS2 works to reign in proinflammatory microglial behavior and that PS2 dysfunction or deficiency could thus result in unchecked proinflammatory activation contributing to neurodegeneration.
Collapse
Affiliation(s)
- Suman Jayadev
- Department of Neurology, University of Washington Medical Center, Seattle, Washington, USA
| | | | | | | | | | | |
Collapse
|
24
|
Houri N, Huang KC, Nalbantoglu J. The Coxsackievirus and Adenovirus Receptor (CAR) undergoes ectodomain shedding and regulated intramembrane proteolysis (RIP). PLoS One 2013; 8:e73296. [PMID: 24015300 PMCID: PMC3756012 DOI: 10.1371/journal.pone.0073296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
The Coxsackievirus and Adenovirus Receptor (CAR) is a cell adhesion molecule originally characterized as a virus receptor but subsequently shown to be involved in physiological processes such as neuronal and heart development, epithelial tight junction integrity, and tumour suppression. Proteolysis of cell adhesion molecules and a wide variety of other cell surface proteins serves as a mechanism for protein turnover and, in some cases, cell signaling. Metalloproteases such as A Disintegrin and Metalloprotease (ADAM) family members cleave cell surface receptors to release their substrates' ectodomains, while the presenilin/ɣ-secretase complex mediates regulated intramembrane proteolysis (RIP), releasing intracellular domain fragments from the plasma membrane. In the case of some substrates such as Notch and amyloid precursor protein (APP), the released intracellular domains enter the nucleus to modulate gene expression. We report that CAR ectodomain is constitutively shed from glioma cells and developing neurons, and is also shed when cells are treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. We identified ADAM10 as a sheddase of CAR using assays involving shRNA knockdown and rescue, overexpression of wild-type ADAM10 and inhibition of ADAM10 activity by addition of its prodomain. In vitro peptide cleavage, mass spectrometry and mutagenesis revealed the amino acids M224 to L227 of CAR as the site of ADAM10-mediated ectodomain cleavage. CAR also undergoes RIP by the presenilin/γ-secretase complex, and the intracellular domain of CAR enters the nucleus. Ectodomain shedding is a prerequisite for RIP of CAR. Thus, CAR belongs to the increasing list of cell surface molecules that undergo ectodomain shedding and that are substrates for ɣ-secretase-mediated RIP.
Collapse
Affiliation(s)
- Nadia Houri
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Kuo-Cheng Huang
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Josephine Nalbantoglu
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
Jagged-1 juxtamembrane region: biochemical characterization and cleavage by ADAM17 (TACE) catalytic domain. Biochem Biophys Res Commun 2013; 432:666-71. [PMID: 23416080 DOI: 10.1016/j.bbrc.2013.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 12/19/2022]
Abstract
Ectodomain shedding of membrane receptors and ligands carried out by ADAMs (A disintegrin and metalloprotease) plays a major role in several signaling pathways, including Notch. The grounds of substrate recognition, however, are poorly understood. We demonstrate that a recombinant protein corresponding to the juxtamembrane region of Jagged-1, one of the Notch ligands, behaves as a structured module and is cleaved by ADAM17 catalytic domain at E1054. A short synthetic peptide is cleaved at the same site but at a much higher rate, implying that the structure of the cleavage site in the native protein is a key determinant for substrate recognition. We also show that an Alagille syndrome-associated mutation near E1054 increases the cleavage rate, which suggests that this mutation may lead to an unbalance in Notch signaling due to a higher level of Jagged-1 shedding.
Collapse
|
26
|
Liu X, Zhao X, Zeng X, Bossers K, Swaab DF, Zhao J, Pei G. β-arrestin1 regulates γ-secretase complex assembly and modulates amyloid-β pathology. Cell Res 2012. [PMID: 23208420 PMCID: PMC3587707 DOI: 10.1038/cr.2012.167] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease in which the γ-secretase-mediated amyloid-β (Aβ) pathology plays an important role. We found that a multifunctional protein, β-arrestin1, facilitated the formation of NCT/APH-1 (anterior pharynx-defective phenotype 1) precomplex and mature γ-secretase complex through its functional interaction with APH-1. Deficiency of β-arrestin1 or inhibition of binding of β-arrestin1 with APH-1 by small peptides reduced Aβ production without affecting Notch processing. Genetic ablation of β-arrestin1 diminished Aβ pathology and behavioral deficits in transgenic AD mice. Moreover, in brains of sporadic AD patients and transgenic AD mice, the expression of β-arrestin1 was upregulated and correlated well with neuropathological severity and senile Aβ plaques. Thus, our study identifies a regulatory mechanism underlying both γ-secretase assembly and AD pathogenesis, and indicates that specific reduction of Aβ pathology can be achieved by regulation of the γ-secretase assembly.
Collapse
Affiliation(s)
- Xiaosong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Roozen PPC, Brugman MH, Staal FJT. Differential requirements for Wnt and Notch signaling in hematopoietic versus thymic niches. Ann N Y Acad Sci 2012; 1266:78-93. [PMID: 22901260 DOI: 10.1111/j.1749-6632.2012.06626.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
All blood cells are derived from multipotent stem cells, the so-called hematopoietic stem cells (HSCs), that in adults reside in the bone marrow. Most types of blood cells also develop there, with the notable exception of T lymphocytes that develop in the thymus. For both HSCs and developing T cells, interactions with the surrounding microenvironment are critical in regulating maintenance, differentiation, apoptosis, and proliferation. Such specialized regulatory microenvironments are referred to as niches and provide both soluble factors as well as cell-cell interactions between niche component cells and blood cells. Two pathways that are critical for early T cell development in the thymic niche are Wnt and Notch signaling. These signals also play important but controversial roles in the HSC niche. Here, we review the differences and similarities between the thymic and hematopoietic niches, with particular focus on Wnt and Notch signals, as well as the latest insights into regulation of these developmentally important pathways.
Collapse
Affiliation(s)
- Paul P C Roozen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
28
|
Cameron DJ, Galvin C, Alkam T, Sidhu H, Ellison J, Luna S, Ethell DW. Alzheimer's-related peptide amyloid-β plays a conserved role in angiogenesis. PLoS One 2012; 7:e39598. [PMID: 22792182 PMCID: PMC3392248 DOI: 10.1371/journal.pone.0039598] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease research has been at an impasse in recent years with lingering questions about the involvement of Amyloid-β (Aβ). Early versions of the amyloid hypothesis considered Aβ something of an undesirable byproduct of APP processing that wreaks havoc on the human neocortex, yet evolutionary conservation--over three hundred million years--indicates this peptide plays an important biological role in survival and reproductive fitness. Here we describe how Aβ regulates blood vessel branching in tissues as varied as human umbilical vein and zebrafish hindbrain. High physiological concentrations of Aβ monomer induced angiogenesis by a conserved mechanism that blocks γ-secretase processing of a Notch intermediate, NEXT, and reduces the expression of downstream Notch target genes. Our findings allude to an integration of signaling pathways that utilize γ-secretase activity, which may have significant implications for our understanding of Alzheimer's pathogenesis vis-à-vis vascular changes that set the stage for ensuing neurodegeneration.
Collapse
Affiliation(s)
- D. Joshua Cameron
- Molecular Neurobiology, Western University of Health Sciences, Pomona, California, United States of America
- College of Optometry, Western University of Health Sciences, Pomona, California, United States of America
| | - Cooper Galvin
- Molecular Neurobiology, Western University of Health Sciences, Pomona, California, United States of America
| | - Tursun Alkam
- Molecular Neurobiology, Western University of Health Sciences, Pomona, California, United States of America
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Harpreet Sidhu
- Molecular Neurobiology, Western University of Health Sciences, Pomona, California, United States of America
| | - John Ellison
- Molecular Neurobiology, Western University of Health Sciences, Pomona, California, United States of America
| | - Salvadore Luna
- Molecular Neurobiology, Western University of Health Sciences, Pomona, California, United States of America
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Douglas W. Ethell
- Molecular Neurobiology, Western University of Health Sciences, Pomona, California, United States of America
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| |
Collapse
|
29
|
Han J, Shen Q. Targeting γ-secretase in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2012; 4:83-90. [PMID: 24367196 DOI: 10.2147/bctt.s26437] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
γ-secretase complexes are multisubunit protease complexes that perform the intramembrane cleavage of more than 60 type-I transmembrane proteins, including Notch receptors. Since dysregulated Notch signaling has been implicated in the tumorigenesis and progression of breast cancer, small molecule γ-secretase inhibitors (GSIs) are being tested for their therapeutic potential in breast cancer treatment in several clinical trials. Here, the structure of γ-secretase complex and the development of GSIs are briefly reviewed, the roles of Notch and several other γ-secretase substrates in breast cancer are discussed, and the difference between γ-secretase inhibition and Notch inhibition, as well as the side effects associated with GSIs, are described. A better understanding of molecular mechanisms that affect the responsiveness of breast cancer to GSI might help to develop strategies to enhance the antitumor activity and, at the same time, alleviate the side effects of GSI.
Collapse
Affiliation(s)
- Jianxun Han
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
| | - Qiang Shen
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Andersson ER. The role of endocytosis in activating and regulating signal transduction. Cell Mol Life Sci 2012; 69:1755-71. [PMID: 22113372 PMCID: PMC11114983 DOI: 10.1007/s00018-011-0877-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023]
Abstract
Endocytosis is increasingly understood to play crucial roles in most signaling pathways, from determining which signaling components are activated, to how the signal is subsequently transduced and/or terminated. Whether a receptor-ligand complex is internalized via a clathrin-dependent or clathrin-independent endocytic route, and the complexes' subsequent trafficking through specific endocytic compartments, to then be recycled or degraded, has profound effects on signaling output. This review discusses the roles of endocytosis in three markedly different signaling pathways: the Wnt, Notch, and Eph/Ephrin pathways. These offer fundamentally different signaling systems: (1) diffusible ligands inducing signaling in one cell, (2) membrane-tethered ligands inducing signaling in a contacting receptor cell, and (3) bi-directional receptor-ligand signaling in two contacting cells. In each of these systems, endocytosis controls signaling in fascinating ways, and comparison of their similarities and dissimilarities will help to expand our understanding of endocytic control of signal transduction across multiple signaling pathways.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77, Stockholm, Sweden.
| |
Collapse
|
31
|
Chau DM, Crump CJ, Villa JC, Scheinberg DA, Li YM. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of γ-secretase. J Biol Chem 2012; 287:17288-17296. [PMID: 22461631 DOI: 10.1074/jbc.m111.300483] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilin-1 (PS1) is the catalytic subunit of γ-secretase, and mutations in this protein cause familial Alzheimer Disease (FAD). However, little is known about how these mutations affect the active site of γ-secretase. Here, we show that PS1 mutations alter the S2 subsite within the active site of γ-secretase using a multiple photoaffinity probe approach called "photophore walking." Moreover, we developed a unique in vitro assay with a biotinylated recombinant Notch1 substrate and demonstrated that PS1 FAD mutations directly and significantly reduced γ-secretase activity for Notch1 cleavage. Substitution of the Notch Cys-1752 residue, which interacts with the S2 subsite, with Val, Met, or Ile has little effect on wild-type PS1 but leads to more efficient substrates for mutant PS1s. This study indicates that alteration of this S2 subsite plays an important role in determining the activity and specificity of γ-secretase for APP and Notch1 processing, which provides structural basis and insights on how certain PS1 FAD mutations lead to AD pathogenesis.
Collapse
Affiliation(s)
- De-Ming Chau
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 and the Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY 10021
| | - Christina J Crump
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 and the Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY 10021
| | - Jennifer C Villa
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 and the Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY 10021
| | - David A Scheinberg
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 and the Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY 10021
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 and the Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, NY 10021.
| |
Collapse
|
32
|
Cook N, Frese KK, Bapiro TE, Jacobetz MA, Gopinathan A, Miller JL, Rao SS, Demuth T, Howat WJ, Jodrell DI, Tuveson DA. Gamma secretase inhibition promotes hypoxic necrosis in mouse pancreatic ductal adenocarcinoma. J Exp Med 2012; 209:437-44. [PMID: 22351932 PMCID: PMC3302221 DOI: 10.1084/jem.20111923] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/23/2012] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease that is refractory to medical intervention. Notch pathway antagonism has been shown to prevent pancreatic preneoplasia progression in mouse models, but potential benefits in the setting of an established PDA tumor have not been established. We demonstrate that the gamma secretase inhibitor MRK003 effectively inhibits intratumoral Notch signaling in the KPC mouse model of advanced PDA. Although MRK003 monotherapy fails to extend the lifespan of KPC mice, the combination of MRK003 with the chemotherapeutic gemcitabine prolongs survival. Combination treatment kills tumor endothelial cells and synergistically promotes widespread hypoxic necrosis. These results indicate that the paucivascular nature of PDA can be exploited as a therapeutic vulnerability, and the dual targeting of the tumor endothelium and neoplastic cells by gamma secretase inhibition constitutes a rationale for clinical translation.
Collapse
Affiliation(s)
- Natalie Cook
- Cancer Research UK Cambridge Research Institute, Robinson Way, Cambridge CB2 0RE, England, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Katanaev VL, Kryuchkov MV. The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. BIOCHEMISTRY (MOSCOW) 2012; 76:1556-81. [DOI: 10.1134/s0006297911130116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Majmundar AJ, Skuli N, Mesquita RC, Kim MN, Yodh AG, Nguyen-McCarty M, Simon MC. O(2) regulates skeletal muscle progenitor differentiation through phosphatidylinositol 3-kinase/AKT signaling. Mol Cell Biol 2012; 32:36-49. [PMID: 22006022 PMCID: PMC3255700 DOI: 10.1128/mcb.05857-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/09/2011] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle stem/progenitor cells, which give rise to terminally differentiated muscle, represent potential therapies for skeletal muscle diseases. Delineating the factors regulating these precursors will facilitate their reliable application in human muscle repair. During embryonic development and adult regeneration, skeletal muscle progenitors reside in low-O(2) environments before local blood vessels and differentiated muscle form. Prior studies established that low O(2) levels (hypoxia) maintained muscle progenitors in an undifferentiated state in vitro, although it remained unclear if progenitor differentiation was coordinated with O(2) availability in vivo. In addition, the molecular signals linking O(2) to progenitor differentiation are incompletely understood. Here we show that the muscle differentiation program is repressed by hypoxia in vitro and ischemia in vivo. Surprisingly, hypoxia can significantly impair differentiation in the absence of hypoxia-inducible factors (HIFs), the primary developmental effectors of O(2). In order to maintain the undifferentiated state, low O(2) levels block the phosphatidylinositol 3-kinase/AKT pathway in a predominantly HIF1α-independent fashion. O(2) deprivation affects AKT activity by reducing insulin-like growth factor I receptor sensitivity to growth factors. We conclude that AKT represents a key molecular link between O(2) and skeletal muscle differentiation.
Collapse
Affiliation(s)
- Amar J. Majmundar
- Abramson Family Cancer Research Institute
- Department of Cell and Developmental Biology
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute
- Department of Cell and Developmental Biology
| | - Rickson C. Mesquita
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meeri N. Kim
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - M. Celeste Simon
- Abramson Family Cancer Research Institute
- Department of Cell and Developmental Biology
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
McCarty MF. Metformin may antagonize Lin28 and/or Lin28B activity, thereby boosting let-7 levels and antagonizing cancer progression. Med Hypotheses 2011; 78:262-9. [PMID: 22129484 DOI: 10.1016/j.mehy.2011.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/26/2011] [Indexed: 12/15/2022]
Abstract
Cancer cells with stem cell characteristics are harbored by most tumors, and are characterized by epithelial-mesenchymal transition (EMT) - which promotes invasive growth and metastasis - chemoresistance, and the capacity to reconstitute new tumors. Hence, the control or destruction of cancer stem cells should be a major goal of cancer management. The let-7 family of microRNAs has cancer suppressor activity, and recent evidence suggests that markedly reduced levels of let-7 are not only a typical feature of cancer stem cells, but may be largely responsible for cancer stemness. It is therefore particularly intriguing that metformin, a diabetes drug thought to have potential in the prevention and treatment of cancer, has recently been found to oppose cancer cell stemness, to markedly potentiate chemotherapeutic control of cancer in mouse xenograft models, and to notably boost let-7a levels in cancer stem cells. It is proposed that this latter effect of metformin may reflect AMPK-mediated inhibition of the expression or activity of Lin28/Lin28A, proteins which act post-transcriptionally to decrease the levels of all let-7 family members. The transcription of Lin28B is promoted by NF-kappaB and by Myc; hence, practical measures which antagonize NF-kappaB or Myc activity may complement the utility of metformin for boosting let-7 expression and controlling cancer stemness; salsalate, antioxidants, tyrosine kinase and cox-2 inhibitors, ribavirin, vitamin D, gamma-secretase inhibitors (when available), and parenteral curcumin may have some utility in this regard. Although the impact of histone deacetylase inhibitors on let-7 expression has not been assessed, there is reason to suspect that these drugs might complement let-7's impact on chemoresistance, EMT, and stemness. Multifocal strategies centering on metformin may have considerable potential for reversing cancer stemness and rendering advanced cancers more susceptible to long term control.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
36
|
Physiological functions of the amyloid precursor protein secretases ADAM10, BACE1, and Presenilin. Exp Brain Res 2011; 217:331-41. [DOI: 10.1007/s00221-011-2952-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/07/2011] [Indexed: 12/16/2022]
|
37
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 725] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
38
|
Acosta H, López SL, Revinski DR, Carrasco AE. Notch destabilises maternal beta-catenin and restricts dorsal-anterior development in Xenopus. Development 2011; 138:2567-79. [PMID: 21610033 DOI: 10.1242/dev.061143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The blastula chordin- and noggin-expressing centre (BCNE) is the predecessor of the Spemann-Mangold's organiser and also contains the precursors of the brain. This signalling centre comprises animal-dorsal and marginal-dorsal cells and appears as a consequence of the nuclear accumulation of β-catenin on the dorsal side. Here, we propose a role for Notch that was not previously explored during early development in vertebrates. Notch initially destabilises β-catenin in a process that does not depend on its phosphorylation by GSK3. This is important to restrict the BCNE to its normal extent and to control the size of the brain.
Collapse
Affiliation(s)
- Helena Acosta
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 3, 1121 Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
39
|
Nawabi H, Castellani V. Axonal commissures in the central nervous system: how to cross the midline? Cell Mol Life Sci 2011; 68:2539-53. [PMID: 21538161 PMCID: PMC11114790 DOI: 10.1007/s00018-011-0691-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 01/02/2023]
Abstract
Organisms with bilateral symmetry elaborate patterns of neuronal projections connecting both sides of the central nervous system at all levels of the neuraxis. During development, these so-called commissural projections navigate across the midline to innervate their contralateral targets. Commissural axon pathfinding has been extensively studied over the past years and turns out to be a highly complex process, implicating modulation of axon responsiveness to the various guidance cues that instruct axon trajectories towards, within and away from the midline. Understanding the molecular mechanisms allowing these switches of response to take place at the appropriate time and place is a major challenge for current research. Recent work characterized several instructive processes controlling the spatial and temporal fine-tuning of the guidance molecular machinery. These findings illustrate the molecular strategies by which commissural axons modulate their sensitivity to guidance cues during midline crossing and show that regulation at both transcriptional and post-transcriptional levels are crucial for commissural axon guidance.
Collapse
Affiliation(s)
- Homaira Nawabi
- F.M. Kirby Neurobiology Center, Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
40
|
Hu J, Xue Y, Lee S, Ha Y. The crystal structure of GXGD membrane protease FlaK. Nature 2011; 475:528-31. [PMID: 21765428 DOI: 10.1038/nature10218] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/18/2011] [Indexed: 11/09/2022]
Abstract
The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 Å resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.
Collapse
Affiliation(s)
- Jian Hu
- Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|