1
|
Silva V, Oliveira L, Gonçalves P. Alteration of aluminium inhibition of synaptosomal (Na+/K+)ATPase by colestipol administration. J Inorg Biochem 2013; 128:208-14. [DOI: 10.1016/j.jinorgbio.2013.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022]
|
2
|
Pérez-Lara A, Ausili A, Aranda FJ, de Godos A, Torrecillas A, Corbalán-García S, Gómez-Fernández JC. Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine. J Phys Chem B 2011; 114:9778-86. [PMID: 20666521 DOI: 10.1021/jp101045p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Curcumin is a polyphenol present in turmeric, a spice widely used in Asian traditional medicine and cooking. It has many and diverse biological effects and is incorporated in cell membranes. This paper describes the mode in which curcumin modulates the physical properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dielaidyl-sn-glycero-3-phosphoetnanolamine (DEPE) multilamellar membranes. Curcumin disordered DPPC membranes at temperatures below T(c) as seen by DSC, FT-IR, (2)H NMR, WAXD, and SAXD. The decrease induced by curcumin in T(c) suggested that it is oriented in the bilayer with its main axis parallel to the acyl chains. Above T(c), too, curcumin introduced disorder as seen by infrared spectroscopy which showed that curcumin also alters the conformation of the polar group of DPPC, increasing the percentage of unhydrated C=O groups, but does not form hydrogen bonds with either the C=O group or the phosphate group of DPPC. Small angle X-ray diffraction showed a notable increase in the repeating spacings as a result of the presence of curcumin, suggesting the formation of a rippled phase. Increasing concentrations of curcumin progressively modified the onset and completion of the phase transition and also DeltaH up to a 6:1 DPPC/curcumin molar ratio. A further increase of curcumin concentration did not produce effects on the transition parameters, suggesting that there is a limit for the solubility of curcumin in DPPC. Additionally, when DEPE was used to test the effect of curcumin on the phospholipid polymorphism, it was found that the temperature at which the H(II) phase is formed decreased, indicating that curcumin favors negative curvature of the membrane, which may be important for explaining its effect on membrane dynamics and on membrane proteins or on proteins which may be activated through membrane insertion.
Collapse
Affiliation(s)
- Angel Pérez-Lara
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Torrecillas A, Aroca-Aguilar JD, Aranda FJ, Gajate C, Mollinedo F, Corbalán-García S, de Godos A, Gómez-Fernández JC. Effects of the anti-neoplastic agent ET-18-OCH3 and some analogs on the biophysical properties of model membranes. Int J Pharm 2006; 318:28-40. [PMID: 16624506 DOI: 10.1016/j.ijpharm.2006.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/08/2006] [Accepted: 03/10/2006] [Indexed: 10/24/2022]
Abstract
The effect of 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (ET-18-OCH(3), edelfosine), and six other analog asymmetric phosholipids on the physical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) model membranes was studied using differential scanning calorimetry (DSC), (31)P-nuclear magnetic resonance ((31)P NMR) and X-ray diffraction. DSC data revealed that, at concentrations of 40mol% and higher, a new type of mixtures with higher T(c) and narrower transitions appeared with all the asymmetric lipids studied. At very high concentrations of these lipids (50-80 mol%), destabilization was observed in the systems probably because of the formation of micelles or small vesicles. In all cases, the asymmetric lipids at concentrations of 40 mol% induced the formation of interdigitated structures in the lamellar gel phase, as deduced from X-ray diffraction. The asymmetric phospholipids were also added to 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) model membranes and DSC data revealed that the lipids primarily affected transition from the lamellar gel (L(beta)) to the lamellar liquid crystalline (L(alpha)) phase in two aspects: the transition temperature was reduced, and the transition itself became broader and smaller. The lamellar liquid crystalline (L(alpha)) to inverted hexagonal phase (H(II)) transition was also affected, as detected by DSC and (31)P NMR data. Increasing concentrations of the asymmetric lipids reduced the formation of inverted hexagonal phases, which were completely inhibited in the case of ET-18-OCH(3). Since these compounds have been shown to have important biological actions through the plasma membrane, these results may help to understand the mechanism of action of these compounds. In addition these asymmetric lipids were tested for their capacity to induce cell apoptosis, and only ET-18-OCH(3) was found to have a clear effect, thus suggesting that the apoptotic effect is not exerted through changes in the biophysical properties of model membranes.
Collapse
Affiliation(s)
- Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Universidad de Murcia, Apartado de Correos 4021, E-30080 Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cornelius F, Turner N, Christensen HRZ. Modulation of Na,K-ATPase by phospholipids and cholesterol. II. Steady-state and presteady-state kinetics. Biochemistry 2003; 42:8541-9. [PMID: 12859201 DOI: 10.1021/bi034532e] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of phospholipid acyl chain length (n(c)) and cholesterol on several partial reactions of Na,K-ATPase reconstituted into liposomes of defined lipid composition are described. This regards the E(1)/E(2) equilibrium, the phosphoenzyme level, and the K(+)-deocclusion reaction. In addition, the lipid effects on some steady-state properties were investigated. Finally, the effects of cholesterol on the temperature sensitivity of the phosphorylation and spontaneous dephosphorylation reactions were investigated. The fatty acid and cholesterol composition of the native Na,K-ATPase membrane preparation showed a remarkable similarity to the lipid composition known to support maximum hydrolytic capacity as determined from in vitro experiments. The main rate-determining step of the Na,K-ATPase reaction, the E(2) --> E(1) reaction, as well as several other partial reactions were accelerated by cholesterol. This regards the phosphorylation by ATP as well as the E(1) - P --> E(2)-P reaction. Moreover, cholesterol shifted the E(1)/E(2) equilibrium toward the E(1) conformation and increased the K(+)-deocclusion rate. Finally, cholesterol significantly affected the temperature sensitivity of the spontaneous dephosphorylation reaction and the phosphorylation by ATP. The effects of cholesterol were not completely equivalent to those induced by increasing the phospholipid acyl chain length, indicating that the cholesterol effects are not entirely caused by increasing the hydrophobic bilayer thickness, which indicates an additional mechanism of action on the Na,K-ATPase.
Collapse
Affiliation(s)
- Flemming Cornelius
- Department of Biophysics, University of Aarhus, Ole Worms Allé 185, DK-8000, Denmark.
| | | | | |
Collapse
|
5
|
Armstrong DL, Borchardt DB, Zidovetzki R. Synergistic perturbation of phosphatidylcholine/sphingomyelin bilayers by diacylglycerol and cholesterol. Biochem Biophys Res Commun 2002; 296:806-12. [PMID: 12200119 DOI: 10.1016/s0006-291x(02)00946-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The perturbations induced by second messenger diacylglycerols (DAGs) into bovine brain phosphatidylcholine (BBPC) bilayers in the presence or absence of bovine brain sphingomyelin (SM) and/or cholesterol were studied by (2)H NMR. Addition of 15 mol% DAG to BBPC bilayers did not induce non-bilayer lipid phases in the temperature range 30-60 degrees C. Similar measurements performed in the presence of cholesterol revealed that cholesterol progressively destabilizes PC bilayers with respect to DAG-induced perturbations. Thus, at 40 mol% cholesterol, addition of 15 mol% DAG induced the formation of non-bilayer (isotropic and inverted hexagonal) phases at 60 degrees C. Whereas some lateral separation of the bilayers into domains of different cholesterol contents was observed in BBPC/cholesterol membranes, such a lateral heterogeneity was greatly facilitated by the addition of SM. Since both a tendency to form non-bilayer lipid phases and lateral heterogeneity of the membranes are associated with increased activation of a number of membrane-associated enzymes, our results suggest that SM- and cholesterol-enriched regions of biological membranes (rafts) provide an environment with increased sensitivity to the generation of lipid second messengers and modified transmembrane signal transduction properties.
Collapse
Affiliation(s)
- Don L Armstrong
- Department of Cell Biology and Neuroscience, College of Natural and Agricultural Sciences, University of California, 1306/1303 Spieth, Riverside, CA 92521, USA
| | | | | |
Collapse
|
6
|
Chicano JJ, Ortiz A, Teruel JA, Aranda FJ. Organotin compounds promote the formation of non-lamellar phases in phosphatidylethanolamine membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:70-81. [PMID: 11750266 DOI: 10.1016/s0005-2736(01)00426-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Organotin compounds are important contaminants in the environment. They are membrane active molecules with broad biological toxicity. We have studied the interaction of tri-n-butyltin chloride and tri-n-phenyltin chloride with model membranes composed of different phosphatidylethanolamines using differential scanning calorimetry, X-ray diffraction, 31P-nuclear magnetic resonance and infrared spectroscopy. Organotin compounds laterally segregate in phosphatidylethanolamine membranes without affecting the shape and position of the lamellar gel to lamellar liquid-crystalline phase transition thermogram of the phospholipid. This is in contrast with their reported effect on phosphatidylcholine membranes [Chicano et al. (2001) Biochim. Biophys. Acta 1510, 330-341] and emphasises the importance of the nature of the lipid headgroup in determining how the behaviour of lipid molecules is affected by these toxicants. Interestingly, we have found that organotin compounds disrupt the pattern of hydrogen-bonding in the interfacial region of dielaidoylphosphatidylethanolamine membranes and have the ability to promote the formation of hexagonal H(II) structures in this system. These results open the possibility that some of the specific toxic effects of organotin compounds might be exerted through the alteration of membrane function produced by their interaction with the lipidic component of the membrane.
Collapse
Affiliation(s)
- José J Chicano
- Departamento de Bioquímica y Biología Molecular 'A', Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | | | | | | |
Collapse
|
7
|
Cornelius F. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry 2001; 40:8842-51. [PMID: 11467945 DOI: 10.1021/bi010541g] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of phospholipid acyl chain length (n(c)), degree of acyl chain saturation, and cholesterol on Na,K-ATPase reconstituted into liposomes of defined lipid composition are described. The optimal acyl chain length of monounsaturated phosphatidylcholine in the absence of cholesterol was found to be 22 but decreased to 18 in the presence of 40 mol % cholesterol. This indicates that the hydrophobic matching of the lipid bilayer and the transmembrane hydrophobic core of the membrane protein is a crucial parameter in supporting optimal Na,K-ATPase activity. In addition, the increased bilayer order induced by both cholesterol and saturated phospholipids could be important for the conformational mobility of the Na,K-ATPase changing the distribution of conformations. Lipid fluidity was important for several parameters of reconstitution, e.g., the amount of protein inserted and the orientation in the liposomes. The temperature dependence of the Na,K-ATPase as well of the Na-ATPase reactions depends both on phospholipid acyl chain length and on cholesterol. Cholesterol increased significantly both the enthalpy of activation and entropy of activation for Na,K-ATPase activity and Na-ATPase activity of Na,K-ATPase reconstituted with monounsaturated phospholipids. In the presence of cholesterol the free energy of activation was minimum at a lipid acyl chain length of 18, the same that supported maximum turnover. In the case of ATPase reconstituted without cholesterol, the minimum free energy of activation and the maximum turnover both shifted to longer acyl chain lengths of about 22.
Collapse
Affiliation(s)
- F Cornelius
- Department of Biophysics, University of Aarhus, DK-8000 Denmark.
| |
Collapse
|
8
|
Massey JB. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:167-84. [PMID: 11342156 DOI: 10.1016/s0005-2736(00)00344-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.
Collapse
Affiliation(s)
- J B Massey
- Department of Medicine, Baylor College of Medicine, The Methodist Hospital, 6565 Fannin Street, M.S. A-601, Houston, TX 77030, USA.
| |
Collapse
|
9
|
White GF, Racher KI, Lipski A, Hallett FR, Wood JM. Physical properties of liposomes and proteoliposomes prepared from Escherichia coli polar lipids. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1468:175-86. [PMID: 11018662 DOI: 10.1016/s0005-2736(00)00255-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reconstituted proteoliposomes serve as experimental systems for the study of membrane enzymes. Osmotic shifts and other changes in the solution environment may influence the structures and membrane properties of phospholipid vesicles (including liposomes, proteoliposomes and biological membrane vesicles) and hence the activities of membrane-associated proteins. Polar lipid extracts from Escherichia coli are commonly used in membrane protein reconstitution. The solution environment influenced the phase transition temperature and the diameter of liposomes and proteoliposomes prepared from E. coli polar lipid by extrusion. Liposomes prepared from E. coli polar lipids differed from dioleoylphosphatidylglycerol liposomes in Young's elastic modulus, yield point for solute leakage and structural response to osmotic shifts, the latter indicated by static light scattering spectroscopy. At high concentrations, NaCl caused aggregation of E. coli lipid liposomes that precluded detailed interpretation of light scattering data. Proteoliposomes and liposomes prepared from E. coli polar lipids were similar in size, yield point for solute leakage and structural response to osmotic shifts imposed with sucrose as osmolyte. These results will facilitate studies of bacterial enzymes implicated in osmosensing and of other enzymes that are reconstituted in E. coli lipid vesicles.
Collapse
Affiliation(s)
- G F White
- Department of Physics, University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
10
|
Grau A, Ortiz A, de Godos A, Gómez-Fernández JC. A biophysical study of the interaction of the lipopeptide antibiotic iturin A with aqueous phospholipid bilayers. Arch Biochem Biophys 2000; 377:315-23. [PMID: 10845709 DOI: 10.1006/abbi.2000.1791] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iturin A is a lipopeptide extracted from the culture media of Bacillus subtilis which shows a strong antifungal action. The interaction of iturin A with multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) induced structures which did not sediment during centrifugation. Electron microscopy after negative staining showed that, at 30 mol%, iturin A/DMPC vesicles were visible but smaller than those formed by pure DMPC. Thermograms of DMPC/iturinA obtained after differential scanning calorimetry, at low concentrations of iturin A, were interpreted as indicating the presence of two laterally separated phases, one formed by pure phospholipid and the other by lipopeptide-phospholipid complexes, these two separated phases being already detected even at low concentrations such as 2 mol%. Fluorescence quenching experiments showed that the D-Tyr residue of the lipopeptide was fully accessible to the aqueous medium, indicating that the polar part of iturin A is located outside of the membrane hydrophobic palisade. It was concluded that the membrane barrier properties are likely to be damaged in the area where the lipid complexes are accumulated, due to structural fluctuations, and this may be one of the bases of its biological activity. Iturin-A was also able to greatly destabilize dielaidoylphosphatidylethanolamine (DEPE) membranes in the fluid form, producing a new structure which had a poor correlation in X-ray diffraction, and in 31P NMR spectroscopy gave rise to a spectrum containing a double isotropic signal. Iturin A was shown to induce DEPE to adopt phases other than H(II) inverted hexagonal, underlining that this lipopeptide is capable of modifying the curvature of the membrane, which may also be important in explaining the tendency of iturin A to create small vesicles and which may be another of the bases of its biological activity.
Collapse
Affiliation(s)
- A Grau
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Universidad de Murcia, Spain
| | | | | | | |
Collapse
|
11
|
García-García J, Micol V, de Godos A, Gómez-Fernández JC. The cancer chemopreventive agent resveratrol is incorporated into model membranes and inhibits protein kinase C alpha activity. Arch Biochem Biophys 1999; 372:382-8. [PMID: 10600179 DOI: 10.1006/abbi.1999.1507] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resveratrol is a phytoalexin found in grapes and other foods that cancer chemopreventive and other biological activities have been attributed recently. We report that resveratrol is able to incorporate itself into model membranes in a location that is inaccessible to the fluorescence quencher, acrylamide. Differential scanning calorimetry revealed that resveratrol considerably affected the gel to liquid-crystalline phase transition of multilamellar vesicles made of phosphatidylcholine/phosphatidylserine and increased the temperature at which the fluid lamellar to H(II) inverted hexagonal transition took place in multilamellar vesicles made of 1,2-dielaidoyl-sn-phosphatidylethanolamine. Such a transition totally disappeared at 2.5 mM of resveratrol (resveratrol/lipid molar ratio of 2:1). This effect on 1, 2-dielaidoyl-sn-phosphatidylethanolamine polymorphism was confirmed through (31)P-NMR, which showed that an isotropic peak appeared at high temperature instead of the H(II)-characteristic peak of 42 mM of resveratrol (resveratrol/lipid molar ratio of 1.5:1). Finally, resveratrol inhibited PKCalpha when activated by phosphatidylcholine/phosphatidylserine vesicles with an IC(50) of 30 microM, whereas when the enzyme was activated by Triton X-100 micelles the IC(50) was 300 microM. These results indicate that the inhibition of PKCalpha by resveratrol can be mediated, at least partially, by membrane effects exerted near the lipid-water interface.
Collapse
Affiliation(s)
- J García-García
- Edificio de Veterinaria, Universidad de Murcia, Apartado Postal 4021, Murcia, E-30080, Spain
| | | | | | | |
Collapse
|
12
|
Huang HW, Goldberg EM, Zidovetzki R. Ceramides modulate protein kinase C activity and perturb the structure of Phosphatidylcholine/Phosphatidylserine bilayers. Biophys J 1999; 77:1489-97. [PMID: 10465759 PMCID: PMC1300436 DOI: 10.1016/s0006-3495(99)76996-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We studied the effects of natural ceramide and a series of ceramide analogs with different acyl chain lengths on the activity of rat brain protein kinase C (PKC) and on the structure of bovine liver phosphatidylcholine (BLPC)/dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylserine (DPPS) (3:1:1 molar ratio) bilayers using (2)H-NMR and specific enzymatic assays in the absence or presence of 7.5 mol % diolein (DO). Only a slight activation of PKC was observed upon addition of the short-chain ceramide analogs (C(2)-, C(6)-, or C(8)-ceramide); natural ceramide or C(16)-ceramide had no effect. In the presence of 7.5 mol % DO, natural ceramide and C(16)-ceramide analog slightly attenuated DO-enhanced PKC activity. (2)H-NMR results demonstrated that natural ceramide and C(16)-ceramide induced lateral phase separation of gel-like and liquid crystalline domains in the bilayers; however, this type of membrane perturbation has no direct effect on PKC activity. The addition of both short-chain ceramide analogs and DO had a synergistic effect in activating PKC, with maximum activity observed with 20 mol % C(6)-ceramide and 15 mol % DO. Further increases in C(6)-ceramide and/or DO concentrations led to decreased PKC activity. A detailed (2)H-NMR investigation of the combined effects of C(6)-ceramide and DO on lipid bilayer structure showed a synergistic effect of these two reagents to increase membrane tendency to adopt nonbilayer structures, resulting in the actual presence of such structures in samples exceeding 20 mol % ceramide and 15 mol % DO. Thus, the increased tendency to form nonbilayer lipid phases correlates with increased PKC activity, whereas the actual presence of such phases reduced the activity of the enzyme. Moreover, the results show that short-chain ceramide analogs, widely used to study cellular effects of ceramide, have biological effects that are not exhibited by natural ceramide.
Collapse
Affiliation(s)
- H W Huang
- Department of Biology, University of California, Riverside, California 92521 USA
| | | | | |
Collapse
|
13
|
Sánchez-Piñera P, Aranda FJ, Micol V, de Godos A, Gómez-Fernández JC. Modulation of polymorphic properties of dielaidoylphosphatidylethanolamine by the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:202-10. [PMID: 10082796 DOI: 10.1016/s0005-2736(99)00003-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The capacity of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine (ET-18-OCH3) to modulate the polymorphic properties of dielaidoylphosphatidylethanolamine has been studied using biophysical techniques. Differential scanning calorimetry showed that ET-18-OCH3 depresses the onset of the Lbeta to Lalpha phase transition, decreasing also DeltaH of the transition. At the same time, the onset of the transition from Lalpha to inverted hexagonal HII phase was gradually increased as the ether lipid concentration was increased, totally disappearing at concentrations higher than 5 mol%. Small-angle X-ray diffraction and 31P-NMR confirmed that ET-18-OCH3 induced that the appearance of the inverted hexagonal HII phase was shifted towards higher temperatures completely disappearing at concentrations higher than 5 mol%. These results were used to elaborate a partial phase diagram and they were discussed as a function of the molecular action of ET-18-OCH3.
Collapse
Affiliation(s)
- P Sánchez-Piñera
- Departamento de Bioquímica y Biología Molecular 'A', Facultad de Veterinaria, Universidad de Murcia, Apartado de Correos 4021, E-30080, Murcia, Spain
| | | | | | | | | |
Collapse
|
14
|
Abstract
1. 1,2-Diacyl-sn-glycerols (DAG) are minor components of cell membranes (about 1 mole% of the lipids) and yet they are potent regulators of both the physical properties of the lipid bilayer and the catalytic behaviour of several membrane-related enzymes. 2. In the pure state DAG's present a considerable polymorphism, with several crystalline phases in addition to the neat fluid phase. The most stable crystalline phase is the so-called beta' phase, a monoclinic crystalline form with orthorhombic perpendicular subcell chain packing, in which both acyl chains lie parallel to each other in a hairpinlike configuration about the sn-1 and sn-2 glycerol carbon atoms. The molecules are organized in a bilayer, with the glycerol backbone roughly parallel to the plane of the bilayer, and the acyl chains tilted at approximately 60 degrees with respect to that plane. Acyl chain unsaturation, and particularly a single cis unsaturation, impairs chain packing in mixed-chain DAG's, and this results in an increased number of metastable crystalline phases. 3. DAG's mix with phospholipids in fluid bilayers when their melting temperature is below or close enough to the melting temperature of the bilayer system. When incorporated in phospholipid bilayers, the conformation of DAG is such that the glycerol backbone is nearly perpendicular to the bilayer, with the sn-1 chain extending from the glycerol Cl carbon into the hydrophobic matrix of the bilayer and the sn-2 chain first extending parallel to the bilayer surface, then making a 90 degrees bend at the position of the sn-1 carbonyl to become parallel to the sn-1 chain. DAG's are located in phospholipid bilayers about two CH2 units deeper than the adjacent phospholipids. DAG's mix nonideally with phospholipids, giving rise to in-plane separations of DAG-rich and -poor domains, even in the fluid state. DAG molecules also increase the separation between phospholipid headgroups, and decrease the hydration of the bilayer surface. Also, because the transversal section of the DAG headgroup is small when compared to that of the acyl chains, DAG favours the (negative) curvature of the lipid monolayers, and DAG-phospholipid mixtures tend to convert into inverted nonlamellar hexagonal or cubic phases. 4. A number of membrane enzyme activities are modulated (activated) by DAG, most notably protein kinase C, phospholipases and other enzymes of lipid metabolism. Protein kinase C activation (and perhaps that of other enzymes as well) occurs as the combined result of a number of DAG-induced modifications of lipid bilayers that include: changes in lipid headgroup conformation, interspacing and hydration, changes in the bilayer propensity to form inverted nonlamellar phases, and lateral phase separations of DAG-rich and -poor domains. Among the DAG-activated enzymes, phospholipases C show the peculiarity of yielding the activator DAG as their reaction product, and this allows the self-induced transition from a low- to a high-activity status. 5. DAG's induce or enhance membrane fusion in a number of ways, mainly through partial dehydration of the bilayer surface, increase in lipid monolayer curvature and perhaps lateral phase separation. DAG-increased fusion rates have been demonstrated in several instances of cation-induced fusion of model membranes, as well as in Ca(2+)-induced fusion of chromaffin granules with plasma membrane vesicles. Also phospholipase C has been shown to induce vesicle aggregation and fusion through the catalytic generation of DAG in the bilayers. A rather general property of DAG is that it promotes vesicular or interparticle aggregation. 6. In the living cell, DAG is often generated through phospholipid degradation in response to an extracellular agonist binding a specific receptor in the cell surface. DAG is said to act as an intracellular second messenger. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- F M Goñi
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | |
Collapse
|
15
|
Abstract
Non-lamellar-forming lipids play an important role in determining the physical properties of membranes. They affect the activity of membrane proteins and peptides. In addition, peptides which lyse membranes as well as those which promote membrane fusion facilitate the formation of non-lamellar phases, either micelles, cubic or hexagonal phases. The relationship of these diverse effects on membrane curvature is discussed in relation to the function of certain peptides and proteins. Specific examples of ionophoric peptides, cytotoxic peptides and viral fusion peptides are given. In addition, we compare the modulation of the rate of photoisomerisation of an integral membrane protein, rhodopsin, by non-lamellar-forming lipids with the effects of these lipids on an amphitropic protein, protein kinase C. Among these diverse systems it is frequently observed that the modulation of biological activity can be described in terms of the effect of the peptide or protein on the relative stability of lamellar and non-lamellar structures.
Collapse
Affiliation(s)
- R M Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ont. L8N 3Z5, Canada.
| |
Collapse
|