1
|
de Cássia Bisio M, Dos Santos EM, Santos CA, Chahad-Ehlers S, de Brito RA. Molecular evolution and genetic diversity of defective chorion 1 in Anastrepha fraterculus and Anastrepha obliqua (Diptera, Tephritidae). Dev Genes Evol 2024; 234:153-171. [PMID: 39509071 DOI: 10.1007/s00427-024-00723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The family Tephritidae comprises numerous fruit fly species, some of which are economically significant, such as several in the genus Anastrepha. Most pest species in this genus belong to the fraterculus group, characterized by closely related species that are difficult to differentiate due to recent divergence and gene flow. Identifying genetic markers for their study is paramount for understanding the group's evolution and eventual phytosanitary control. Because there is variation in eggshell morphology among species in the genus, the study of the rapidly evolving defective chorion 1 (dec-1) gene, which is crucial for chorion formation and reproduction, could provide relevant information for Anastrepha differentiation. We compared transcriptome sequences of dec-1 from two of the most important pest species in the genus, Anastrepha fraterculus and Anastrepha obliqua to dec-1 sequences from Anastrepha ludens, which was used for structure prediction. Furthermore, we amplified a conserved exon across populations of these species. These data revealed three alternative transcripts in A. fraterculus and A. obliqua, consistent with patterns found in other Tephritidae; we obtained orthologous sequences for these other tephritids from NCBI to investigate patterns of selection affecting this gene at different hierarchical levels using different methods. These analyses show a general pattern of purifying selection across the whole gene and throughout its history at different hierarchical levels, from populations to more distantly related species. That notwithstanding, we still found evidence of positive and episodic diversifying selection at different levels. Different parts of the gene have shown distinct evolutionary rates, which were associated with the diverse proproteins produced by posttranslational changes of DEC-1, with proproteins that are incorporated in the chorion earlier in egg formation being in general more conserved than others that are incorporated later. This correlation appears more evident in certain lineages, including the branch that separates Anastrepha, as well as other internal branches that differentiate species within the genus. Our data showed that this gene shows remarkable variation across its different exons, which has proven to be informative at different evolutionary levels. These changes hold promise not only for studying differentiation in Anastrepha but also for the eventual management of selected pest species.
Collapse
Affiliation(s)
- Mariana de Cássia Bisio
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Edyane Moraes Dos Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Camilla Alves Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências - Universidade de São Paulo., São Paulo, SP, 05508-090, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil
| | - Reinaldo Alves de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Via Washington Luis Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
2
|
Valina AA, Siniukova VA, Belashova TA, Kanapin AA, Samsonova AA, Masharsky AE, Lykholay AN, Galkina SA, Zadorsky SP, Galkin AP. Amyloid Fibrils of the s36 Protein Modulate the Morphogenesis of Drosophila melanogaster Eggshell. Int J Mol Sci 2024; 25:12499. [PMID: 39684212 DOI: 10.3390/ijms252312499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Drosophila melanogaster is the oldest classic model object in developmental genetics. It may seem that various structures of the fruit fly at all developmental stages have been well studied and described. However, recently we have shown that some specialized structures of the D. melanogaster eggshell contain an amyloid fibril network. Here, we demonstrate that this amyloid network is formed by the chorionic protein s36. The s36 protein colocalizes with the amyloid-specific dyes Congo Red and Thioflavin S in the micropyle, dorsal appendages, and pillars. The fibrils of s36 obtained from the eggs demonstrate amyloid properties. In the context of the CG33223 gene deletion, the s36 protein is produced but is not detected in the eggshell. The absence of amyloid fibrils of s36 in the eggshell disrupts the endochorion morphology and blocks the development of the micropyle, dorsal appendages, and pillars, leading to sterility. Our data show for the first time that amyloid fibrils are essential for morphogenesis modulation. We suggest that attachment of follicle cells to the s36 extracellular fibrils triggers signaling to enable subsequent cellular divisions needed for building the specialized eggshell structures.
Collapse
Affiliation(s)
- Anna A Valina
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| | - Vera A Siniukova
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| | - Tatyana A Belashova
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| | - Alexander A Kanapin
- Center for Computational Biology, Peter the Great St. Petersburg Polytechnic University, Polytehnicheskaya Str. 29, 195251 St. Petersburg, Russia
| | - Anastasia A Samsonova
- Center for Computational Biology, Peter the Great St. Petersburg Polytechnic University, Polytehnicheskaya Str. 29, 195251 St. Petersburg, Russia
| | - Alexey E Masharsky
- The "Bio-Bank" Resource Center, Research Park of St. Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| | - Anna N Lykholay
- Research Resource Center "Molecular and Cell Technologies", Research Park of St. Petersburg State University, Botanicheskaya Str. 17, Petergof, 198504 St. Petersburg, Russia
| | - Svetlana A Galkina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| | - Sergey P Zadorsky
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| | - Alexey P Galkin
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Miao YH, Dou WH, Liu J, Huang DW, Xiao JH. Single-cell transcriptome sequencing reveals that Wolbachia induces gene expression changes in Drosophila ovary cells to favor its own maternal transmission. mBio 2024; 15:e0147324. [PMID: 39194189 PMCID: PMC11481584 DOI: 10.1128/mbio.01473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.
Collapse
Affiliation(s)
- Yun-heng Miao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei-hao Dou
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-wei Huang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jin-hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Jaglarz MK, Kuziak A, Jankowska W. The pattern of the follicle cell diversification in ovarian follicles of the true fruit flies, Tephritidae. J Anat 2024; 245:643-657. [PMID: 38817113 PMCID: PMC11424825 DOI: 10.1111/joa.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
In flies (Diptera), the ovary displays several distinct patterns of the follicular epithelium formation and diversification. Two main patterns have been identified in the true flies or Brachycera, namely the Rhagio type and the Drosophila type. These patterns align with the traditional division of Brachycera into Orthorrhapha and Cyclorrhapha. However, studies of the follicular epithelium morphogenesis in cyclorrhaphans other than Drosophila are scarce. We characterise the developmental changes associated with the emergence of follicle cell (FC) diversity in two cyclorrhaphans belonging to the family Tephritidae (Brachycera, Cyclorrhapha). Our analysis revealed that the diversification of FCs in these species shows characteristics of both the Rhagio and Drosophila types. First, a distinct cluster of FCs, consisting of polar cells and border-like cells, differentiates at the posterior pole of the ovarian follicle. This feature is unique to the Rhagio type and has only been reported in species representing the Orthorrhapha group. Second, morphological criteria have identified a significantly smaller number of subpopulations of FCs than in Drosophila. Furthermore, while the general pattern of FC migration is similar to that of Drosophila, the distinctive migration of the anterior-dorsal FCs is absent. In the studied tephritids, the migration of the anterior polar cell/border cell cluster towards the anterior pole of the oocyte is followed by the posterior migration of the main body cuboidal FCs to cover the expanding oocyte. Finally, during the onset of vitellogenesis, a distinct subset of FCs migrates towards the centre of the ovarian follicle to cover the oocyte's anterior pole. Our study also highlights specific actions of some FCs that accompany the migration process, which has not been previously documented in cyclorrhaphans. These results support the hypothesis that the posterior and centripetal migrations of morphologically unique FC subsets arose in the common ancestor of Cyclorrhapha. These events appear to have occurred fairly recently in the evolutionary timeline of Diptera.
Collapse
Affiliation(s)
- Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| | - Agata Kuziak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Wladyslawa Jankowska
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| |
Collapse
|
5
|
Mallart C, Netter S, Chalvet F, Claret S, Guichet A, Montagne J, Pret AM, Malartre M. JAK-STAT-dependent contact between follicle cells and the oocyte controls Drosophila anterior-posterior polarity and germline development. Nat Commun 2024; 15:1627. [PMID: 38388656 PMCID: PMC10883949 DOI: 10.1038/s41467-024-45963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The number of embryonic primordial germ cells in Drosophila is determined by the quantity of germ plasm, whose assembly starts in the posterior region of the oocyte during oogenesis. Here, we report that extending JAK-STAT activity in the posterior somatic follicular epithelium leads to an excess of primordial germ cells in the future embryo. We show that JAK-STAT signaling is necessary for the differentiation of approximately 20 specialized follicle cells maintaining tight contact with the oocyte. These cells define, in the underlying posterior oocyte cortex, the anchoring of the germ cell determinant oskar mRNA. We reveal that the apical surface of these posterior anchoring cells extends long filopodia penetrating the oocyte. We identify two JAK-STAT targets in these cells that are each sufficient to extend the zone of contact with the oocyte, thereby leading to production of extra primordial germ cells. JAK-STAT signaling thus determines a fixed number of posterior anchoring cells required for anterior-posterior oocyte polarity and for the development of the future germline.
Collapse
Affiliation(s)
- Charlotte Mallart
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sophie Netter
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Versailles-Saint-Quentin en Yvelines, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Fabienne Chalvet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sandra Claret
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne-Marie Pret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Versailles-Saint-Quentin en Yvelines, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
7
|
Sheahan TD, Grewal A, Korthauer LE, Blumenthal EM. The Drosophila drop-dead gene is required for eggshell integrity. PLoS One 2023; 18:e0295412. [PMID: 38051756 PMCID: PMC10697589 DOI: 10.1371/journal.pone.0295412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
The eggshell of the fruit fly Drosophila melanogaster is a useful model for understanding the synthesis of a complex extracellular matrix. The eggshell is synthesized during mid-to-late oogenesis by the somatic follicle cells that surround the developing oocyte. We previously reported that female flies mutant for the gene drop-dead (drd) are sterile, but the underlying cause of the sterility remained unknown. In this study, we examined the role of drd in eggshell synthesis. We show that eggs laid by drd mutant females are fertilized but arrest early in embryogenesis, and that the innermost layer of the eggshell, the vitelline membrane, is abnormally permeable to dye in these eggs. In addition, the major vitelline membrane proteins fail to become crosslinked by nonreducible bonds, a process that normally occurs during egg activation following ovulation, as evidenced by their solubility and detection by Western blot in laid eggs. In contrast, the Cp36 protein, which is found in the outer chorion layers of the eggshell, becomes crosslinked normally. To link the drd expression pattern with these phenotypes, we show that drd is expressed in the ovarian follicle cells beginning in mid-oogenesis, and, importantly, that all drd mutant eggshell phenotypes could be recapitulated by selective knockdown of drd expression in the follicle cells. To determine whether drd expression was required for the crosslinking itself, we performed in vitro activation and crosslinking experiments. The vitelline membranes of control egg chambers could become crosslinked either by incubation in hyperosmotic medium, which activates the egg chambers, or by exogenous peroxidase and hydrogen peroxide. In contrast, neither treatment resulted in the crosslinking of the vitelline membrane in drd mutant egg chambers. These results indicate that drd expression in the follicle cells is necessary for vitelline membrane proteins to serve as substrates for peroxidase-mediated cross-linking at the end of oogenesis.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Amanpreet Grewal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Laura E. Korthauer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Edward M. Blumenthal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
8
|
Papadopoulos AG, Koskinioti P, Zarpas KD, Papadopoulos NT. Differential Cold Tolerance on Immature Stages of Geographically Divergent Ceratitis capitata Populations. BIOLOGY 2023; 12:1379. [PMID: 37997978 PMCID: PMC10668952 DOI: 10.3390/biology12111379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Cold tolerance of adult medflies has been extensively studied but the effect of subfreezing temperatures on the immature stages remains poorly investigated, especially as far as different populations are regarded. In this study, we estimated the acute cold stress response of three geographically divergent Mediterranean fruit fly populations originating from Greece (Crete, Volos) and Croatia (Dubrovnik) by exposing immature stages (eggs, larvae, pupae) to subfreezing temperatures. We first determined the LT50 for each immature stage following one hour of exposure to different temperatures. Then eggs, larvae and pupae of the different populations were exposed to their respective LT50 for one hour (LT50 = -11 °C, LT50 = -4.4 °C, LT50 = -5 °C for eggs, larvae and pupae, respectively). Our results demonstrate that populations responded differently depending on their developmental stage. The population of Dubrovnik was the most cold-susceptible at the egg stage, whereas in that of Crete it was at the larval and pupal stage. The population of Volos was the most cold-tolerant at all developmental stages. The egg stage was the most cold-tolerant, followed by pupae and finally the 3rd instar wandering larvae. This study contributes towards understanding the cold stress response of this serious pest and provides data for important parameters that determine its successful establishment to unfavorable environments with an emphasis on range expansion to the northern, more temperate regions of Europe.
Collapse
Affiliation(s)
| | | | | | - Nikos T. Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (A.G.P.); (P.K.); (K.D.Z.)
| |
Collapse
|
9
|
Sim YW, Cho S, Lee SH, Kim JH, Lee J, Park S. Characterization of the common bed bug's eggshell and egg glue proteins. Int J Biol Macromol 2023; 249:126004. [PMID: 37517751 DOI: 10.1016/j.ijbiomac.2023.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
An insect egg is one of the most vulnerable stages of insect life, and the evolutionary success of a species depends on the eggshell protecting the embryo and the egg glue securing the attachment. The common bed bug (Cimex lectularius), notorious for its painful and itchy bites, infests human dwellings to feed on blood. They are easier to find these days as they adapt to develop resistance against commonly used insecticides. In this study, we identify and characterize the eggshell protein and the probable egg glue protein (i.e. keratin associated protein 5-10 like protein) of the bed bug by using mass spectrometry and bioinformatics analysis. Furthermore, by using transcription profiling and in vivo RNA interference, we show evidences that the keratin associated protein 5-10 like protein functions as the glue protein. Finally, structural characterizations on the two proteins are performed using recombinant proteins. Amino acid sequences of various insect eggshell and egg glue proteins support their independent evolution among different insect groups. Hence, inhibiting the function of these proteins related to the earliest stage of life can achieve species-specific population control. In this respect, our results would be a starting point in developing new ways to control bed bug population.
Collapse
Affiliation(s)
- Yeo Won Sim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Susie Cho
- Entomology Division, Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Si Hyeock Lee
- Entomology Division, Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| | - Julian Lee
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea.
| | - SangYoun Park
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea.
| |
Collapse
|
10
|
Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. Ovariole-specific Yellow-g and Yellow-g2 proteins are required for fecundity and egg chorion rigidity in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103984. [PMID: 37391088 DOI: 10.1016/j.ibmb.2023.103984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Most insects reproduce by laying eggs that have an eggshell/chorion secreted by follicle cells, which serves as a protective barrier for developing embryos. Thus, eggshell formation is vital for reproduction. Insect yellow family genes encode for secreted extracellular proteins that perform different, context-dependent functions in different tissues at various stages of development involving, for example, cuticle/eggshell coloration and morphology, molting, courtship behavior and embryo hatching. In this study we investigated the function of two of this family's genes, yellow-g (TcY-g) and yellow-g2 (TcY-g2), on the formation and morphology of the eggshell of the red flour beetle, Tribolium castaneum. Real-time PCR analysis revealed that both TcY-g and TcY-g2 were specifically expressed in the ovarioles of adult females. Loss of function produced by injection of double-stranded RNA (dsRNA) for either TcY-g or TcY-g2 gene resulted in failure of oviposition. There was no effect on maternal survival. Ovaries dissected from those dsRNA-treated females exhibited ovarioles containing not only developing oocytes but also mature eggs in their egg chambers. However, the ovulated eggs were collapsed and ruptured, resulting in swollen lateral oviducts and calyxes. TEM analysis showed that lateral oviducts were filled with electron-dense material, presumably from some cellular content leakage out of the collapsed eggs. In addition, morphological abnormalities in lateral oviduct epithelial cells and the tubular muscle sheath were evident. These results support the hypothesis that both TcY-g and TcY-g2 proteins are required for maintaining the rigidity and integrity of the chorion, which is critical for resistance to mechanical stress and/or rehydration during ovulation and egg activation in the oviducts of T. castaneum. Because Yellow-g and Yellow-g2 are highly conserved among insect species, both genes are potential targets for development of gene-based insect pest population control methods.
Collapse
Affiliation(s)
- Mi Young Noh
- Department of Forest Resources, AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, South Korea.
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
11
|
Mukherjee A, Schuppe M, Renault AD. The Lipid Phosphate Phosphatase Wunen Promotes Eggshell Formation and Is Essential for Fertility in Drosophila. BIOLOGY 2023; 12:1003. [PMID: 37508432 PMCID: PMC10376809 DOI: 10.3390/biology12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The eggshell that surrounds insect eggs acts as a barrier, protecting against biotic factors and desiccation. The eggshell is a multi-layered structure which is synthesised by the somatic follicle cells that surround the developing oocyte. Although the temporal order of expression of the protein eggshell components goes someway to explaining how the different layers are built up, but how the precise three-dimensional structure is achieved and how lipid components responsible for desiccation resistance are incorporated are poorly understood. In this paper, we demonstrate that wunen, which encodes a lipid phosphate phosphatase, is necessary for fertility in Drosophila females. Compared to sibling controls, females null for wunen lay fewer eggs which subsequently collapse such that no larvae emerge. We show that this is due to a requirement for wunen in the ovarian follicle cells which is needed to produce an ordered and functional eggshell. Knockdown of a septate junction component also results in collapsed eggs, supporting the idea that similar to its role in embryonic tracheal development, Wunen in follicle cells also promotes septate junction function.
Collapse
Affiliation(s)
- Amrita Mukherjee
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Michaela Schuppe
- Institute for Organic Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andrew D Renault
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK
| |
Collapse
|
12
|
Sheahan TD, Grewal A, Korthauer LE, Blumenthal EM. The Drosophila drop-dead gene is required for eggshell integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538335. [PMID: 37163052 PMCID: PMC10168300 DOI: 10.1101/2023.04.25.538335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The eggshell of the fruit fly Drosophila melanogaster is a useful model for understanding the synthesis of a complex extracellular matrix. The eggshell is synthesized during mid-to-late oogenesis by the somatic follicle cells that surround the developing oocyte. We previously reported that female flies mutant for the gene drop-dead ( drd ) are sterile, but the underlying cause of the sterility remained unknown. In this study, we examined the role of drd in eggshell synthesis. We show that eggs laid by drd mutant females are fertilized but arrest early in embryogenesis, and that the innermost layer of the eggshell, the vitelline membrane, is abnormally permeable to dye in these eggs. In addition, the major vitelline membrane proteins fail to become crosslinked by nonreducible bonds, a process that normally occurs during egg activation following ovulation, as evidenced by their solubility and detection by Western blot in laid eggs. In contrast, the Cp36 protein, which is found in the outer chorion layers of the eggshell, becomes crosslinked normally. To link the drd expression pattern with these phenotypes, we show that drd is expressed in the ovarian follicle cells beginning in mid-oogenesis, and, importantly, that all drd mutant eggshell phenotypes could be recapitulated by selective knockdown of drd expression in the follicle cells. To determine whether drd expression was required for the crosslinking itself, we performed in vitro activation and crosslinking experiments. The vitelline membranes of control egg chambers could become crosslinked either by incubation in hyperosmotic medium, which activates the egg chambers, or by exogenous peroxidase and hydrogen peroxide. In contrast, neither treatment resulted in the crosslinking of the vitelline membrane in drd mutant egg chambers. These results indicate that drd expression in the follicle cells is necessary for vitelline membrane proteins to serve as substrates for peroxidase-mediated cross-linking at the end of oogenesis.
Collapse
|
13
|
Donoughe S. Insect egg morphology: evolution, development, and ecology. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100868. [PMID: 34973433 DOI: 10.1016/j.cois.2021.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The insect egg can be viewed through many lenses: it is the single-celled developmental stage, a resource investment in the next generation, an unusually large and complex cell type, and the protective vessel for embryonic development. In this review, I describe the morphological diversity of insect eggs and then identify recent advances in understanding the patterns of egg evolution, the cellular mechanisms underlying egg development, and notable aspects of egg ecology. I also suggest areas for particularly promising future research on insect egg morphology; these topics touch upon diverse areas such as tissue morphogenesis, life history evolution, organismal scaling, cellular secretion, and oviposition ecology.
Collapse
Affiliation(s)
- Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL, USA.
| |
Collapse
|
14
|
Horne-Badovinac S. The Drosophila micropyle as a system to study how epithelia build complex extracellular structures. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190561. [PMID: 32829690 PMCID: PMC7482212 DOI: 10.1098/rstb.2019.0561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
Dynamic rearrangements of epithelial cells play central roles in shaping tissues and organs during development. There are also scenarios, however, in which epithelial cell movements synergize with the secretion of extracellular matrix to build rigid, acellular structures that persist long after the cells are gone. The formation of the Drosophila micropyle provides an elegant example of this epithelial craftsmanship. The micropyle is a cone-shaped projection of the eggshell through which the sperm will enter to fertilize the oocyte. Though simple on the surface, both the inner structure and construction of the micropyle are remarkably complex. In this review, I first provide an overview of egg development, focusing on the key events required to understand micropyle formation. I then describe the structure of the micropyle, the cellular contributions to its morphogenesis and some interesting open questions about this process. There is a brief discussion of micropyle formation in other insects and fish to highlight the potential for comparative studies. Finally, I discuss how new studies of micropyle formation could reveal general mechanisms that epithelia use to build complex extracellular structures. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Davis MN, Horne-Badovinac S, Naba A. In-silico definition of the Drosophila melanogaster matrisome. Matrix Biol Plus 2019; 4:100015. [PMID: 33543012 PMCID: PMC7852309 DOI: 10.1016/j.mbplus.2019.100015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
The extracellular matrix (ECM) is an assembly of hundreds of proteins that structurally supports the cells it surrounds and biochemically regulates their functions. Drosophila melanogaster has emerged as a powerful model organism to study fundamental mechanisms underlying ECM protein secretion, ECM assembly, and ECM roles in pathophysiological processes. However, as of today, we do not possess a well-defined list of the components forming the ECM of this organism. We previously reported the development of computational pipelines to define the matrisome - the ensemble of genes encoding ECM and ECM-associated proteins - of humans, mice, zebrafish and C. elegans. Using a similar approach, we report here that our pipeline has identified 641 genes constituting the Drosophila matrisome. We further classify these genes into different structural and functional categories, including an expanded way to classify genes encoding proteins forming apical ECMs. We illustrate how having a comprehensive list of Drosophila matrisome proteins can be used to annotate large proteomic datasets and identify unsuspected roles for the ECM in pathophysiological processes. Last, to aid the dissemination and usage of the proposed definition and categorization of the Drosophila matrisome by the scientific community, our list has been made available through three public portals: The Matrisome Project (http://matrisome.org), The FlyBase (https://flybase.org/), and GLAD (https://www.flyrnai.org/tools/glad/web/).
Collapse
Affiliation(s)
- Martin N. Davis
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
16
|
A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface. Proc Natl Acad Sci U S A 2019; 116:21789-21799. [PMID: 31597735 DOI: 10.1073/pnas.1907397116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial spores are dormant cells that are encased in a thick protein shell, the "coat," which participates in protecting the organism's DNA from environmental insults. The coat is composed of dozens of proteins that assemble in an orchestrated fashion during sporulation. In Bacillus subtilis, 2 proteins initiate coat assembly: SpoVM, which preferentially binds to micron-scale convex membranes and marks the surface of the developing spore as the site for coat assembly; and SpoIVA, a structural protein recruited by SpoVM that uses ATP hydrolysis to drive its irreversible polymerization around the developing spore. Here, we describe the initiation of coat assembly by SpoVM and SpoIVA. Using single-molecule fluorescence microscopy in vivo in sporulating cells and in vitro on synthetic spores, we report that SpoVM's localization is primarily driven by a lower off-rate on membranes of preferred curvature in the absence of other coat proteins. Recruitment and polymerization of SpoIVA results in the entrapment of SpoVM on the forespore surface. Using experimentally derived reaction parameters, we show that a 2-dimensional ratchet model can describe the interdependent localization dynamics of SpoVM and SpoIVA, wherein SpoVM displays a longer residence time on the forespore surface, which favors recruitment of SpoIVA to that location. Localized SpoIVA polymerization in turn prevents further sampling of other membranes by prelocalized SpoVM molecules. Our model therefore describes the dynamics of structural proteins as they localize and assemble at the correct place and time within a cell to form a supramolecular complex.
Collapse
|
17
|
Taylor SE, Tuffery J, Bakopoulos D, Lequeux S, Warr CG, Johnson TK, Dearden PK. The torso-like gene functions to maintain the structure of the vitelline membrane in Nasonia vitripennis, implying its co-option into Drosophila axis formation. Biol Open 2019; 8:bio.046284. [PMID: 31488408 PMCID: PMC6777369 DOI: 10.1242/bio.046284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Axis specification is a fundamental developmental process. Despite this, the mechanisms by which it is controlled across insect taxa are strikingly different. An excellent example of this is terminal patterning, which in Diptera such as Drosophila melanogaster occurs via the localized activation of the receptor tyrosine kinase Torso. In Hymenoptera, however, the same process appears to be achieved via localized mRNA. How these mechanisms evolved and what they evolved from remains largely unexplored. Here, we show that torso-like, known for its role in Drosophila terminal patterning, is instead required for the integrity of the vitelline membrane in the hymenopteran wasp Nasonia vitripennis. We find that other genes known to be involved in Drosophila terminal patterning, such as torso and Ptth, also do not function in Nasonia embryonic development. These findings extended to orthologues of Drosophila vitelline membrane proteins known to play a role in localizing Torso-like in Drosophila; in Nasonia these are instead required for dorso–ventral patterning, gastrulation and potentially terminal patterning. Our data underscore the importance of the vitelline membrane in insect development, and implies phenotypes caused by knockdown of torso-like must be interpreted in light of its function in the vitelline membrane. In addition, our data imply that the signalling components of the Drosophila terminal patterning systems were co-opted from roles in regulating moulting, and co-option into terminal patterning involved the evolution of a novel interaction with the vitelline membrane protein Torso-like. This article has an associated First Person interview with the first author of the paper. Summary: In the parasitic wasp Nasonia, Tsl, a key component of the process that defines the termini of the embryo of Drosophila, has a function in the structure of the vitelline membrane.
Collapse
Affiliation(s)
- Shannon E Taylor
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa-New Zealand
| | - Jack Tuffery
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa-New Zealand
| | - Daniel Bakopoulos
- School of Biological Sciences, Monash University, 18 Innovation Walk, Clayton VIC 3800, Australia
| | - Sharon Lequeux
- Otago Micro- and Nano- scale Imaging, University of Otago, PO Box 913, Dunedin, New Zealand, Aotearoa-New Zealand
| | - Coral G Warr
- School of Medicine, University of Tasmania, 17 Liverpool St Hobart, TAS 7000, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, 18 Innovation Walk, Clayton VIC 3800, Australia
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa-New Zealand
| |
Collapse
|
18
|
Knapp EM, Li W, Sun J. Downregulation of homeodomain protein Cut is essential for Drosophila follicle maturation and ovulation. Development 2019; 146:dev179002. [PMID: 31444217 PMCID: PMC6765176 DOI: 10.1242/dev.179002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/19/2019] [Indexed: 01/19/2023]
Abstract
Proper development and maturation of a follicle is essential for successful ovulation and reproduction; however, the molecular mechanisms for follicle maturation, particularly for somatic follicle cell differentiation, are poorly understood. During Drosophila oogenesis, the somatic follicle cells encasing oocytes undergo two distinct well-established transitions: the mitotic to endocycle switch at stage 6/7 and the endocycle to gene amplification switch at stage10A/10B. Here, we identify a novel third follicle cell transition that occurs in the final stages of oogenesis (stage 13/14). This late follicle cell transition is characterized by upregulation of the transcription factor Hindsight (Hnt), and downregulation of the homeodomain transcription factor Cut and the zinc-finger transcription factor Tramtrack-69 (Ttk69). We demonstrate that inducing expression of Cut in stage 14 follicle cells is sufficient to inhibit follicle rupture and ovulation through its negative regulation of Hnt and promotion of Ttk69 expression. Our work illustrates the importance of the stage13/14 transition for follicle maturation and demonstrates the complex regulation required for somatic follicle cells to differentiate into a state primed for follicle rupture and ovulation.
Collapse
Affiliation(s)
- Elizabeth M Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Wei Li
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
19
|
Velentzas AD, Velentzas PD, Katarachia SA, Anagnostopoulos AK, Sagioglou NE, Thanou EV, Tsioka MM, Mpakou VE, Kollia Z, Gavriil VE, Papassideri IS, Tsangaris GT, Cefalas AC, Sarantopoulou E, Stravopodis DJ. The indispensable contribution of s38 protein to ovarian-eggshell morphogenesis in Drosophila melanogaster. Sci Rep 2018; 8:16103. [PMID: 30382186 PMCID: PMC6208399 DOI: 10.1038/s41598-018-34532-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Drosophila chorion represents a remarkable model system for the in vivo study of complex extracellular-matrix architectures. For its organization and structure, s38 protein is considered as a component of major importance, since it is synthesized and secreted during early choriogenesis. However, there is no evidence that proves its essential, or redundant, role in chorion biogenesis. Hence, we show that targeted downregulation of s38 protein, specifically in the ovarian follicle-cell compartment, via employment of an RNAi-mediated strategy, causes generation of diverse dysmorphic phenotypes, regarding eggshell’s regionally and radially specialized structures. Downregulation of s38 protein severely impairs fly’s fertility and is unable to be compensated by the s36 homologous family member, thus unveiling s38 protein’s essential contribution to chorion’s assembly and function. Altogether, s38 acts as a key skeletal protein being critically implicated in the patterning establishment of a highly structured tripartite endochorion. Furthermore, it seems that s38 loss may sensitize choriogenesis to stochastic variation in its coordination and timing.
Collapse
Affiliation(s)
- Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Panagiotis D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.,Department of Cancer Biology, Medical School, University of Massachusetts, Worcester, Massachusetts (MA), USA
| | - Stamatia A Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Niki E Sagioglou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Eleni V Thanou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria M Tsioka
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassiliki E Mpakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Zoe Kollia
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (NHRF), Athens, Greece
| | - Vassilios E Gavriil
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (NHRF), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - George Th Tsangaris
- Systems Biology Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Evangelia Sarantopoulou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (NHRF), Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
20
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
21
|
Lou YH, Pan PL, Ye YX, Cheng C, Xu HJ, Zhang CX. Identification and functional analysis of a novel chorion protein essential for egg maturation in the brown planthopper. INSECT MOLECULAR BIOLOGY 2018; 27:393-403. [PMID: 29465791 DOI: 10.1111/imb.12380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In insect eggs, the chorion has the essential function of protecting the embryo from external agents during development while allowing gas exchange for respiration. In this study, we found a novel gene, Nilaparvata lugens chorion protein (NlChP), that is involved in chorion formation in the brown planthopper, Nilaparvata lugens. NlChP was highly expressed in the follicular cells of female adult brown planthoppers. Knockdown of NlChP resulted in oocyte malformation and the inability to perform oviposition, and electron microscopy showed that the malformed oocytes had thin and rough endochorion layers compared to the control group. Liquid chromatography with tandem mass spectrometry analysis of the eggshell components revealed four unique peptides that were matched to NlChP. Our results demonstrate that NlChP is a novel chorion protein essential for egg maturation in N. lugens, a hemipteran insect with telotrophic meroistic ovaries. NlChP may be a potential target in RNA interference-based insect pest management.
Collapse
Affiliation(s)
- Y-H Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - P-L Pan
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Y-X Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - C Cheng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - H-J Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - C-X Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Kairamkonda S, Nongthomba U. Beadex, a Drosophila LIM domain only protein, function in follicle cells is essential for egg development and fertility. Exp Cell Res 2018; 367:97-103. [PMID: 29580687 DOI: 10.1016/j.yexcr.2018.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
LIM domain, constituted by two tandem C2H2 zinc finger motif, proteins regulate several biological processes. They are usually found associated with various functional domains like Homeodomain, kinase domain and other protein binding domains. LIM proteins that are devoid of other domains are called LIM only proteins (LMO). LMO proteins were first identified in humans and are implicated in development and oncogenesis. They regulate various cell specifications by regulating the activity of respective transcriptional complexes. The Drosophila LMO protein (dLMO), Beadex (Bx), regulates various developmental processes like wing margin development and bristle development. It also regulates Drosophila behavior in response to cocaine and ethanol. We have previously generated Bx null flies and shown its essential function in neurons for multiple aspects of female reproduction. However, it was not known whether Bx affects reproduction through its independent function in ovaries. In this paper we show that female flies null for Bx lay eggs with multiple defects. Further, through knock down studies we demonstrate that function of Bx in follicle cells is required for normal egg development. We also show that function of Bx is particularly required in border cells for Drosophila fertility.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
23
|
Johnson TK, Henstridge MA, Warr CG. MACPF/CDC proteins in development: Insights from Drosophila torso-like. Semin Cell Dev Biol 2017; 72:163-170. [DOI: 10.1016/j.semcdb.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
24
|
Osterfield M, Berg CA, Shvartsman SY. Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model. Dev Cell 2017; 41:337-348. [PMID: 28535370 DOI: 10.1016/j.devcel.2017.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms.
Collapse
Affiliation(s)
- Miriam Osterfield
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Celeste A Berg
- Molecular and Cellular Biology Program and Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
25
|
Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel). Int J Mol Sci 2017; 18:ijms18071379. [PMID: 28665301 PMCID: PMC5535872 DOI: 10.3390/ijms18071379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets.
Collapse
|
26
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
27
|
Velentzas AD, Velentzas PD, Katarachia S, Mpakou VE, Papassideri IS, Stravopodis DJ. Data of sperm-entry inability in Drosophila melanogaster ovarian follicles that are depleted of s36 chorionic protein. Data Brief 2017; 12:180-183. [PMID: 28443296 PMCID: PMC5394213 DOI: 10.1016/j.dib.2017.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/20/2017] [Accepted: 03/31/2017] [Indexed: 11/18/2022] Open
Abstract
This paper presents data associated with the research article entitled “Targeted downregulation of s36 protein unearths its cardinal role in chorion biogenesis and architecture during Drosophila melanogaster oogenesis” [1]. Drosophila chorion is produced by epithelial follicle cells and one of its functional serving role is egg fertilization through the micropyle, a specialized narrow channel at the anterior tip of the egg [2]. Sperm entry during fertilization is necessary for the egg to complete meiosis [3]. D. melanogaster flies being characterized by severe downregulation of the s36 chorionic protein, specifically in the follicle-cell compartment of their ovary, appear with impaired fly fertility (Velentzas et al., 2016) [1]. In an effort to further investigate whether the observed infertility in the s36-targeted flies derives from a fertilization failure, such as the inability of sperm to pass through egg׳s micropyle, we mated females carrying s36-depleted ovaries with males expressing the GFP protein either in their sperm tails, or in both their sperm tails and sperm heads.
Collapse
Affiliation(s)
- Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Panagiotis D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Stamatia Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassiliki E Mpakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
28
|
Transfer of Dorsoventral and Terminal Information from the Ovary to the Embryo by a Common Group of Eggshell Proteins in Drosophila. Genetics 2017; 205:1529-1536. [PMID: 28179368 DOI: 10.1534/genetics.116.197574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
The Drosophila eggshell is an extracellular matrix that confers protection to the egg and also plays a role in transferring positional information from the ovary to pattern the embryo. Among the constituents of the Drosophila eggshell, Nasrat, Polehole, and Closca form a group of proteins related by sequence, secreted by the oocyte, and mutually required for their incorporation into the eggshell. Besides their role in eggshell integrity, Nasrat, Polehole, and Closca are also required for embryonic terminal patterning by anchoring or stabilizing Torso-like at the eggshell. Here, we show that they are also required for dorsoventral patterning, thereby unveiling that the dorsoventral and terminal systems, hitherto considered independent, share a common extracellular step. Furthermore, we show that Nasrat, Polehole, and Closca are required for proper Nudel activity, a protease acting both in embryonic dorsoventral patterning and eggshell integrity, thus providing a means to account for the role of Nasrat, Polehole, and Closca. We propose that a Nasrat/Polehole/Closca complex acts as a multifunctional hub to anchor various proteins synthesized at oogenesis, ensuring their spatial and temporal restricted function.
Collapse
|
29
|
Rauzi M. Probing tissue interaction with laser-based cauterization in the early developing Drosophila embryo. Methods Cell Biol 2017; 139:153-165. [DOI: 10.1016/bs.mcb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Velentzas AD, Velentzas PD, Sagioglou NE, Konstantakou EG, Anagnostopoulos AK, Tsioka MM, Mpakou VE, Kollia Z, Consoulas C, Margaritis LH, Papassideri IS, Tsangaris GT, Sarantopoulou E, Cefalas AC, Stravopodis DJ. Targeted Downregulation of s36 Protein Unearths its Cardinal Role in Chorion Biogenesis and Architecture during Drosophila melanogaster Oogenesis. Sci Rep 2016; 6:35511. [PMID: 27752139 PMCID: PMC5067561 DOI: 10.1038/srep35511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/30/2016] [Indexed: 11/27/2022] Open
Abstract
Drosophila chorion represents a model biological system for the in vivo study of gene activity, epithelial development, extracellular-matrix assembly and morphogenetic-patterning control. It is produced during the late stages of oogenesis by epithelial follicle cells and develops into a highly organized multi-layered structure that exhibits regional specialization and radial complexity. Among the six major proteins involved in chorion’s formation, the s36 and s38 ones are synthesized first and regulated in a cell type-specific and developmental stage-dependent manner. In our study, an RNAi-mediated silencing of s36 chorionic-gene expression specifically in the follicle-cell compartment of Drosophila ovary unearths the essential, and far from redundant, role of s36 protein in patterning establishment of chorion’s regional specialization and radial complexity. Without perturbing the developmental courses of follicle- and nurse-cell clusters, the absence of s36 not only promotes chorion’s fragility but also induces severe structural irregularities on chorion’s surface and entirely impairs fly’s fertility. Moreover, we herein unveil a novel function of s36 chorionic protein in the regulation of number and morphogenetic integrity of dorsal appendages in follicles sporadically undergoing aged fly-dependent stress.
Collapse
Affiliation(s)
- Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Panagiotis D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Niki E Sagioglou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Athanasios K Anagnostopoulos
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria M Tsioka
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassiliki E Mpakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Zoe Kollia
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (NHRF), Athens, Greece
| | - Christos Consoulas
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Lukas H Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - George Th Tsangaris
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Evangelia Sarantopoulou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (NHRF), Athens, Greece
| | | | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
31
|
Furriols M, Casanova J. Germline and somatic vitelline proteins colocalize in aggregates in the follicular epithelium of Drosophila ovaries. Fly (Austin) 2015; 8:113-9. [PMID: 25483249 DOI: 10.4161/fly.29133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nasrat and Polehole, two Drosophila proteins related functionally and by sequence, are secreted from the oocyte and incorporated into the vitelline membrane, where they play a role in the integrity of the same and in the activation of embryonic Torso RTK. In addition, they also accumulate in a punctate pattern in the follicular epithelium. Here we show that their accumulation at the follicle cells depends on their gene expression in the germline, indicating that these proteins move from the oocyte to the follicle cells in a process that does not require endocytosis. Finally we used cell markers to examine the distribution of these proteins at the follicle cells and show they accumulated in aggregates with vitelline membrane proteins in close association with the plasmatic membrane. We propose that these aggregates represent spatially restricted sinks for vitelline membrane proteins that fail to be incorporated into vitelline bodies and later on into the vitelline membrane.
Collapse
Affiliation(s)
- Marc Furriols
- a Institut de Biologia Molecular de Barcelona (IBMB-CSIC); Barcelona, Catalonia, Spain
| | | |
Collapse
|
32
|
Horne-Badovinac S. The Drosophila egg chamber-a new spin on how tissues elongate. Integr Comp Biol 2014; 54:667-76. [PMID: 24920751 DOI: 10.1093/icb/icu067] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During development, tissues undergo complex cellular rearrangements and changes in shape that produce a diversity of body plans and the functional organs therein. The Drosophila egg chamber has emerged as an exciting and highly tractable model in which to investigate novel mechanisms driving the elongation of tissues. Egg chambers are multicellular assemblies within flies' ovaries that will each give rise to a single egg. Although initially spherical, these simple organ-like structures lengthen as they grow. This transformation depends on an unusual form of planar polarity in the egg chamber's outer epithelial layer, in which arrays of linear actin bundles and fibril-like structures in the basement membrane both align perpendicular to the axis of elongation. The resulting circumferential arrangement of structural molecules is then thought to act as a "molecular corset" that directionally biases growth of the egg chamber. I will explore four fundamental questions about this system: (1) How is the circumferential pattern generated in the follicular epithelium? (2) What is the physical nature of the corset? (3) How does a corset-type mechanism lead to the cellular rearrangements necessary for the elongation of tissues? and (4) To what extent are the cellular mechanisms controlling egg chamber elongation conserved in other systems? For each topic, I will present insights gleaned from the recent literature and highlight fertile areas for future investigation.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Marinotti O, Ngo T, Kojin BB, Chou SP, Nguyen B, Juhn J, Carballar-Lejarazú R, Marinotti PN, Jiang X, Walter MF, Tu Z, Gershon PD, James AA. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell. BMC DEVELOPMENTAL BIOLOGY 2014; 14:15. [PMID: 24707823 PMCID: PMC4234484 DOI: 10.1186/1471-213x-14-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/31/2014] [Indexed: 11/10/2022]
Abstract
Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed.
Collapse
Affiliation(s)
- Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Niepielko MG, Marmion RA, Kim K, Luor D, Ray C, Yakoby N. Chorion patterning: a window into gene regulation and Drosophila species' relatedness. Mol Biol Evol 2013; 31:154-64. [PMID: 24109603 DOI: 10.1093/molbev/mst186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Changes in gene regulation are associated with the evolution of morphologies. However, the specific sequence information controlling gene expression is largely unknown and discovery is time and labor consuming. We use the intricate patterning of follicle cells to probe species' relatedness in the absence of sequence information. We focus on one of the major families of genes that pattern the Drosophila eggshell, the Chorion protein (Cp). Systematically screening for the spatiotemporal patterning of all nine Cp genes in three species (Drosophila melanogaster, D. nebulosa, and D. willistoni), we found that most genes are expressed dynamically during mid and late stages of oogenesis. Applying an annotation code, we transformed the data into binary matrices that capture the complexity of gene expression. Gene patterning is sufficient to predict species' relatedness, consistent with their phylogeny. Surprisingly, we found that expression domains of most genes are different among species, suggesting that Cp regulation is rapidly evolving. In addition, we found a morphological novelty along the dorsalmost side of the eggshell, the dorsal ridge. Our matrix analysis placed the dorsal ridge domain in a cluster of epidermal growth factor receptor associated domains, which was validated through genetic and chemical perturbations. Expression domains are regulated cooperatively or independently by signaling pathways, supporting that complex patterns are combinatorially assembled from simple domains.
Collapse
Affiliation(s)
- Matthew G Niepielko
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ
| | | | | | | | | | | |
Collapse
|
35
|
ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein. Proc Natl Acad Sci U S A 2012; 110:E151-60. [PMID: 23267091 DOI: 10.1073/pnas.1210554110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of static supramolecular structures is a culminating event of developmental programs. One such structure, the proteinaceous shell (called the coat) that surrounds spores of the bacterium Bacillus subtilis, is composed of about 70 different proteins and represents one of the most durable biological structures known. The coat is built atop a basement layer that contains an ATPase (SpoIVA) that forms a platform required for coat assembly. Here, we show that SpoIVA belongs to the translation factors class of P-loop GTPases and has evolutionarily lost the ability to bind GTP; instead, it uses ATP hydrolysis to drive its self-assembly into static filaments. We demonstrate that ATP hydrolysis is required by every subunit for incorporation into the growing polymer by inducing a conformational change that drives polymerization of a nucleotide-free filament. SpoIVA therefore differs from other self-organizing polymers (dynamic cytoskeletal structures and static intermediate filaments) in that it uses ATP hydrolysis to self-assemble, not disassemble, into a static polymer. We further show that polymerization requires a critical concentration that we propose is only achieved once SpoIVA is recruited to the surface of the developing spore, thereby ensuring that SpoIVA polymerization only occurs at the correct subcellular location during spore morphogenesis.
Collapse
|
36
|
Abstract
The development of multicellular organisms relies on a small set of construction techniques-assembly, sculpting, and folding-that are spatially and temporally regulated in a combinatorial manner to produce the diversity of tissues within the body. These basic processes are well conserved across tissue types and species at the level of both genes and mechanisms. Here we review the signaling, patterning, and biomechanical transformations that occur in two well-studied model systems of epithelial folding to illustrate both the complexity and modularity of tissue development. In particular, we discuss the possibility of a spatial code specifying morphogenesis. To decipher this code, engineers and scientists need to establish quantitative experimental systems and to develop models that address mechanisms at multiple levels of organization, from gene sequence to tissue biomechanics. In turn, quantitative models of embryogenesis can inspire novel methods for creating synthetic organs and treating degenerative tissue diseases.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Department of Chemical Engineering, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
37
|
Garbiec A, Kubrakiewicz J. Differentiation of follicular cells in polytrophic ovaries of Neuroptera (Insecta: Holometabola). ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:165-176. [PMID: 22300788 DOI: 10.1016/j.asd.2011.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 05/31/2023]
Abstract
Mechanisms that underlie differentiation and diversification of the ovarian follicular epithelium in insects have been best characterized in a fruit fly, Drosophila melanogaster. Recent comparative analyses have shown that dipterans evolved a common, specific system of early patterning of their follicular epithelium, while some of the follicular cells acquired an ability to undertake active and invasive migrations. To gain insight into the evolution of the differentiation pathways we extended comparative analyses to Neuroptera, one of the most archaic holometabolan insects with polytrophic ovaries. Here, we show that the follicular cell differentiation pathway in neuropteran ovaries significantly differs from that observed in Drosophila and its relatives. In neuropteran ovaries differentiation of the germ line cells precedes the organization of the follicular epithelium. In consequence, at early stages of egg chamber formation germ cell clusters are not enveloped completely by the regular follicular epithelium but associate with two types of somatic cells: interstitial and prefollicular cells. Interstitial cells do not contribute to the formation of the follicular epithelium, while prefollicular cells diversify into a number of follicular cell subgroups. Some follicular cells remain in contact with the nurse cell compartment. The remaining ones associate with the lateral aspects of the oocyte and diversify into the mainbody follicular cells and the anterior and posterior centripetal cells. In the advanced stages of vitellogenesis protrusions of the anterior and posterior centripetal cells penetrate the nurse cell-oocyte interface and dragging behind their neighboring mainbody cells, eventually encapsulate the oocyte pole(s) with a confluent epithelial layer. The follicular cells in neuropteran ovaries are not migratory at all. They may only change their position relative to the germ line cells. Almost complete immobility of follicular cells in neuropteran egg chambers results in a lower number of diversified subpopulations when compared to Drosophila and other true flies.
Collapse
Affiliation(s)
- Arnold Garbiec
- Department of Animal Developmental Biology, Zoological Institute, University of Wrocław, Wrocław, Poland.
| | | |
Collapse
|
38
|
Mazurkiewicz-Kania M, Jędrzejowska I, Kubrakiewicz J. Differences in the relative timing of developmental events during oogenesis in lower dipterans (Nematocera) reveal the autonomy of follicular cells' differentiation program. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:65-70. [PMID: 21985902 DOI: 10.1016/j.asd.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 05/31/2023]
Abstract
Although the ovaries of Nematocera are of the same meroistic-polytrophic type, they show significant differences in the activity of germ cells (oocytes, nurse cells) and their relative contribution to ribosome synthesis and storage during oogenesis. These different activities result in the different growth rate of the germ cells and may determine the life span of the nurse cells. Comparative analysis revealed that with reference to germ cell activity, two basic types of oogenesis in Nematocera can be distinguished. In the Tinearia type, the nurse cells grow considerably and are active until advanced stages of oogenesis, whereas the oocyte is transcriptionally inert. Conversely, in the Tipula type of oogenesis, the oocyte nucleus contains transcriptionally active multiple nucleoli, while nurse cells probably do not contribute to ribosome synthesis, remain relatively small and degenerate early in oogenesis. We studied and compared the process of somatic follicular cell differentiation in nematoceran species representing both types of oogenesis. Our observations indicate that morphogenesis of the follicular cells is at least partly independent of the nurse cell activity, while the execution of their differentiation does not require direct contacts between the follicular cells and the oocyte.
Collapse
Affiliation(s)
- Marta Mazurkiewicz-Kania
- Department of Animal Developmental Biology, Zoological Institute, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | | | | |
Collapse
|
39
|
Kim JY, Jang W, Lee HW, Park E, Kim C. Neurodegeneration of Drosophila drop-dead mutants is associated with hypoxia in the brain. GENES BRAIN AND BEHAVIOR 2011; 11:177-84. [PMID: 22010830 DOI: 10.1111/j.1601-183x.2011.00743.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Drosophila drop-dead (drd) mutant undergoes massive brain degeneration, resulting in sudden death. drd encodes a multi-pass membrane protein possessing nose resistant to fluoxetine (NRF) and putative acyltransferase domains. However, the etiology of brain degeneration that occurs in drd mutant flies is still poorly understood. Herein, we show that drd neurodegeneration may be because of an oxygen deficit in the brain. We found that DRD protein is selectively expressed in cells secreting cuticular and eggshell layers. These layers exhibit blue fluorescence upon UV excitation, which is reduced in drd flies. The drd tracheal air sacs lacking blue fluorescence collapse, which likely contributes to hypoxia. Consistently, genes induced in hypoxia are up-regulated in drd flies. Feeding of anti-reactive oxygen species agents partially rescue the drd from sudden death. We propose that drd flies can provide a non-invasive animal model for hypoxia-induced cell death.
Collapse
Affiliation(s)
- J Y Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju-Si, South Korea
| | | | | | | | | |
Collapse
|
40
|
Tootle TL, Williams D, Hubb A, Frederick R, Spradling A. Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS One 2011; 6:e19943. [PMID: 21637834 PMCID: PMC3102670 DOI: 10.1371/journal.pone.0019943] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/06/2011] [Indexed: 12/03/2022] Open
Abstract
Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals.
Collapse
Affiliation(s)
- Tina L Tootle
- Department of Anatomy and Cell Biology, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America.
| | | | | | | | | |
Collapse
|
41
|
Meyer H, Vitavska O, Wieczorek H. Identification of an animal sucrose transporter. J Cell Sci 2011; 124:1984-91. [PMID: 21586609 DOI: 10.1242/jcs.082024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
According to a classic tenet, sugar transport across animal membranes is restricted to monosaccharides. Here, we present the first report of an animal sucrose transporter, SCRT, which we detected in Drosophila melanogaster at each developmental stage. We localized the protein in apical membranes of the late embryonic hindgut as well as in vesicular membranes of ovarian follicle cells. The fact that knockdown of SCRT expression results in significantly increased lethality demonstrates an essential function for the protein. Experiments with Saccharomyces cerevisiae as a heterologous expression system revealed that sucrose is a transported substrate. Because the knockout of SLC45A2, a highly similar protein belonging to the mammalian solute carrier family 45 (SLC45) causes oculocutaneous albinism and because the vesicular structures in which SCRT is located appear to contain melanin, we propose that these organelles are melanosome-like structures and that the transporter is necessary for balancing the osmotic equilibrium during the polymerization process of melanin by the import of a compatible osmolyte. In the hindgut epithelial cells, sucrose might also serve as a compatible osmolyte, but we cannot exclude the possibility that transport of this disaccharide also serves nutritional adequacy.
Collapse
Affiliation(s)
- Heiko Meyer
- Department of Biology and Chemistry, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | |
Collapse
|
42
|
Amenya DA, Chou W, Li J, Yan G, Gershon PD, James AA, Marinotti O. Proteomics reveals novel components of the Anopheles gambiae eggshell. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1414-9. [PMID: 20433845 PMCID: PMC2918668 DOI: 10.1016/j.jinsphys.2010.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 05/20/2023]
Abstract
While genome and transcriptome sequencing has revealed a large number and diversity of Anopheles gambiae predicted proteins, identifying their functions and biosynthetic pathways remains challenging. Applied mass spectrometry-based proteomics in conjunction with mosquito genome and transcriptome databases were used to identify 44 proteins as putative components of the eggshell. Among the identified molecules are two vitelline membrane proteins and a group of seven putative chorion proteins. Enzymes with peroxidase, laccase and phenoloxidase activities, likely involved in cross-linking reactions that stabilize the eggshell structure, also were identified. Seven odorant binding proteins were found in association with the mosquito eggshell, although their role has yet to be demonstrated. This analysis fills a considerable gap of knowledge about proteins that build the eggshell of anopheline mosquitoes.
Collapse
Affiliation(s)
- Dolphine A. Amenya
- Program in Public Health, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Wayne Chou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Anthony A. James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
43
|
Wu T, Manogaran AL, Beauchamp JM, Waring GL. Drosophila vitelline membrane assembly: a critical role for an evolutionarily conserved cysteine in the "VM domain" of sV23. Dev Biol 2010; 347:360-8. [PMID: 20832396 DOI: 10.1016/j.ydbio.2010.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/16/2010] [Accepted: 08/29/2010] [Indexed: 11/18/2022]
Abstract
The vitelline membrane (VM), the oocyte proximal layer of the Drosophila eggshell, contains four major proteins (VMPs) that possess a highly conserved "VM domain" which includes three precisely spaced, evolutionarily conserved, cysteines (CX⁷CX⁸C). Focusing on sV23, this study showed that the three cysteines are not functionally equivalent. While substitution mutations at the first (C123S) or third (C140S) cysteines were tolerated, females with a substitution at the second position (C131S) were sterile. Fractionation studies showed that sV23 incorporates into a large disulfide linked network well after its secretion ceases, suggesting that post-depositional mechanisms are in place to restrict disulfide bond formation until late oogenesis, when the oocyte no longer experiences large volume increases. Affinity chromatography utilizing histidine tagged sV23 alleles revealed small sV23 disulfide linked complexes during the early stages of eggshell formation that included other VMPs, namely sV17 and Vml. The early presence but late loss of these associations in an sV23 double cysteine mutant suggests that reorganization of disulfide bonds may underlie the regulated growth of disulfide linked networks in the vitelline membrane. Found within the context of a putative thioredoxin active site (CXXS) C131, the critical cysteine in sV23, may play an important enzymatic role in isomerizing intermolecular disulfide bonds during eggshell assembly.
Collapse
Affiliation(s)
- T Wu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | | | | |
Collapse
|
44
|
Ventura G, Furriols M, Martín N, Barbosa V, Casanova J. closca, a new gene required for both Torso RTK activation and vitelline membrane integrity. Germline proteins contribute to Drosophila eggshell composition. Dev Biol 2010; 344:224-32. [PMID: 20457146 DOI: 10.1016/j.ydbio.2010.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 04/29/2010] [Accepted: 05/01/2010] [Indexed: 11/29/2022]
Abstract
The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.
Collapse
Affiliation(s)
- Gemma Ventura
- Institut de Biologia Molecular de Barcelona (CSIC) and Institut de Recerca de Biomèdica, Barcelona, Spain
| | | | | | | | | |
Collapse
|
45
|
Dinkins MB, Fratto VM, Lemosy EK. Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary. Dev Dyn 2009; 237:3927-39. [PMID: 19035354 DOI: 10.1002/dvdy.21802] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors that modulate cell adhesion, migration, and signaling. Multiple integrin chains contribute to development and morphogenesis of a given tissue. Here, we analyze the expression of Drosophila integrin alpha chains in the ovarian follicular epithelium, a model for tissue morphogenesis and cell migration. We find expression throughout development of the beta chain, betaPS. Alpha chains, however, exhibit both spatial and temporal expression differences. alphaPS1 and alphaPS2 integrins are detected during early and mid-oogenesis on apical, lateral, and basal membranes with the betaPS chain, whereas alphaPS3-family integrins (alphaPS3, alphaPS4, alphaPS5) are expressed in anterior cells late in oogenesis. Surprisingly, we find that alphaPS3-family integrins are dispensable for dorsal appendage morphogenesis but play a role in the final length of the egg, suggesting redundant functions of integrins in a simple tissue. We also demonstrate roles for alphaPS3betaPS integrin in border cell migration and in stretch cells.
Collapse
Affiliation(s)
- Michael B Dinkins
- Department of Cellular Biology, Medical College of Georgia, 1120 15th Street, CB1101, Augusta, GA 30912, USA
| | | | | |
Collapse
|
46
|
Abstract
The reorganization of epithelial sheets into tubes is a fundamental process in the formation of many organs, such as the lungs, kidneys, gut, and neural tube. This process involves the patterning of distinct cell types and the coordination of those cells during the shape changes and rearrangements that produce the tube. A better understanding of the cellular and genetic mechanisms that regulate tube formation is necessary for tissue engineers to develop functional organs in vitro. The Drosophila egg chamber has emerged as an outstanding model for studying tubulogenesis. Synthesis of the dorsal respiratory appendages by the follicular epithelium resembles primary neurulation in vertebrates. This review summarizes work on the patterning and morphogenesis of the dorsal-appendage tubes and highlights key areas where mathematical modeling could contribute to our understanding of these processes.
Collapse
Affiliation(s)
- Celeste A Berg
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065, USA.
| |
Collapse
|
47
|
Zartman JJ, Kanodia JS, Yakoby N, Schafer X, Watson C, Schlichting K, Dahmann C, Shvartsman SY. Expression patterns of cadherin genes in Drosophila oogenesis. Gene Expr Patterns 2008; 9:31-6. [PMID: 18817893 DOI: 10.1016/j.gep.2008.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/28/2008] [Accepted: 09/03/2008] [Indexed: 01/31/2023]
Abstract
In Drosophila oogenesis, the follicular epithelium that envelops the oocyte is patterned by a small set of inductive signals and gives rise to an elaborate three-dimensional eggshell. Several eggshell structures provide sensitive readouts of the patterning signals, but the formation of these structures is still poorly understood. In other systems, epithelial morphogenesis is guided by the spatial patterning of cell adhesion and cytoskeleton genes. As a step towards developing a comprehensive description of patterning events leading to eggshell morphogenesis, we report the expression of Drosophila cadherins, calcium-dependent adhesion molecules that are repeatedly used throughout development. We found that 9/17 of Drosophila cadherins are expressed in the follicular epithelium in dynamic patterns during oogenesis. In late oogenesis, the expression patterns of cadherin genes in the main body follicle cells is summarized using a compact set of simple geometric shapes, reflecting the integration of the EGFR and DPP inductive signals. The multi-layered composite patterning of the cadherins is hypothesized to play a key role in the formation of the eggshell. Of particular note is the complex patterning of the region of the follicular epithelium that gives rise to the dorsal appendages, which are tubular structures that serve as respiratory organs for the developing embryo.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Lewis Sigler Institute, Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ramamurthi KS, Losick R. ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis. Mol Cell 2008; 31:406-14. [PMID: 18691972 DOI: 10.1016/j.molcel.2008.05.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 04/16/2008] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
Abstract
A hallmark of morphogenesis is the orchestrated assembly of complex, supramolecular structures. One such structure is the proteineous coat that surrounds spores of the bacterium Bacillus subtilis. The coat is a multilayered shell that is composed of more than 50 proteins. These proteins assemble around a basement layer composed of the morphogenetic protein SpoIVA. We show that SpoIVA harbors a Walker A box that is required for the proper deployment of the protein to the surface of the developing spore and proper assembly of the entire coat. We further show that purified SpoIVA both binds and hydrolyzes ATP and that the protein self-assembles into cable-like structures in a manner that depends on ATP hydrolysis. Self-assembly driven by ATP is an unusual mechanism for the construction of a large cellular structure.
Collapse
Affiliation(s)
- Kumaran S Ramamurthi
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
49
|
Cavaliere V, Bernardi F, Romani P, Duchi S, Gargiulo G. Building up theDrosophilaeggshell: First of all the eggshell genes must be transcribed. Dev Dyn 2008; 237:2061-72. [DOI: 10.1002/dvdy.21625] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
50
|
Two subunits specific to the PBAP chromatin remodeling complex have distinct and redundant functions during drosophila development. Mol Cell Biol 2008; 28:5238-50. [PMID: 18573871 DOI: 10.1128/mcb.00747-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chromatin remodeling complexes control the availability of DNA binding sites to transcriptional regulators. Two distinct conserved forms of the SWI/SNF class of complexes are characterized by the presence of specific accessory subunits. In Drosophila, the core Brahma complex associates either with Osa to form the BAP complex or with Bap170 and Bap180 to form the PBAP complex. osa mutations reproduce only a subset of the developmental phenotypes caused by mutations in subunits of the core complex. To test whether the PBAP complex performs the remaining functions, we generated mutations in bap170 and bap180. Surprisingly, we found that Bap180 is not essential for viability, although it is required in ovarian follicle cells for normal eggshell development. Bap170 is necessary to stabilize the Bap180 protein, but a mutant form that retains this function is sufficient for both survival and fertility. The two subunits act redundantly to allow metamorphosis; using gene expression profiling of bap170 bap180 double mutants, we found that the PBAP complex regulates genes involved in tissue remodeling and immune system function. Finally, we generated mutants lacking Bap170, Bap180, and Osa in the germ line to demonstrate that the core Brahma complex can function in oogenesis without any of these accessory subunits.
Collapse
|