1
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
2
|
Peters J, Oliva R, Caliò A, Oger P, Winter R. Effects of Crowding and Cosolutes on Biomolecular Function at Extreme Environmental Conditions. Chem Rev 2023; 123:13441-13488. [PMID: 37943516 DOI: 10.1021/acs.chemrev.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The extent of the effect of cellular crowding and cosolutes on the functioning of proteins and cells is manifold and includes the stabilization of the biomolecular systems, the excluded volume effect, and the modulation of molecular dynamics. Simultaneously, it is becoming increasingly clear how important it is to take the environment into account if we are to shed light on biological function under various external conditions. Many biosystems thrive under extreme conditions, including the deep sea and subseafloor crust, and can take advantage of some of the effects of crowding. These relationships have been studied in recent years using various biophysical techniques, including neutron and X-ray scattering, calorimetry, FTIR, UV-vis and fluorescence spectroscopies. Combining knowledge of the structure and conformational dynamics of biomolecules under extreme conditions, such as temperature, high hydrostatic pressure, and high salinity, we highlight the importance of considering all results in the context of the environment. Here we discuss crowding and cosolute effects on proteins, nucleic acids, membranes, and live cells and explain how it is possible to experimentally separate crowding-induced effects from other influences. Such findings will contribute to a better understanding of the homeoviscous adaptation of organisms and the limits of life in general.
Collapse
Affiliation(s)
- Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, 140 rue de la physique, 38400 St Martin d'Hères, France
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Antonino Caliò
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Philippe Oger
- INSA Lyon, Universite Claude Bernard Lyon1, CNRS, UMR5240, 69621 Villeurbanne, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
3
|
Yu K, Chai B, Zhuo T, Tang Q, Gao X, Wang J, He L, Lei X, Chen B. Hydrostatic pressure drives microbe-mediated biodegradation of microplastics in surface sediments of deep reservoirs: Novel findings from hydrostatic pressure simulation experiments. WATER RESEARCH 2023; 242:120185. [PMID: 37327543 DOI: 10.1016/j.watres.2023.120185] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Microplastics originate from the physical, chemical, or biological degradation of plastics in the environment. Once ingested by organisms at the bottom of the food chain, microplastics are passed on to organisms at higher trophic levels, posing a threat to human health. The distribution of microplastics and the metabolic pathways involved in their microbial degradation in surface sediments of drinking water reservoirs are still poorly understood. This study analyzed the occurrence patterns of microplastics and microbial community structure associated with microplastic biodegradation in surface sediments from a deep reservoir at various hydrostatic pressures. Based on the results of Fourier-transform and laser direct infrared spectroscopy, elevating the pressure resulted in altered sizes and shapes of microplastics in sediment samples with the presence of microorganisms. The influence of hydrostatic pressure on small-sized microplastics (20-500 μm) was pronounced. For instance, high pressure accelerated the breakdown of fibers, pellets, and fragments into smaller-sized microplastics. In particular, the mean size of polyethylene terephthalate microplastics decreased from 425.78 μm at atmospheric pressure to 366.62 μm at 0.7 Mpa. Metagenomic analysis revealed an increase in the relative abundances of plastic-degrading genera, such as Rhodococcus, Flavobacterium, and Aspergillus, in response to elevated pressures. Eight functional genes for biodegradation of polystyrene, polyethylene, and polyethylene terephthalate microplastics were annotated, including paaK, ladA, tphA3. Of these, tphA3 gene abundance was negatively influenced by hydrostatic pressure, providing direct evidence for the pathway by which microbial metabolism of polyethylene terephthalate led to decreased microplastic size under high pressure conditions. This study presents novel insights into hydrostatic pressure-driven microbial community structure, functional gene abundance, and key metabolic pathways associated with biodegradation of microplastics in reservoir sediments.
Collapse
Affiliation(s)
- Kehong Yu
- School of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Beibei Chai
- Hebei Collaborative Innovation Center for the Regulation and Comprehensive Management of Water Resources and Water Environment, Hebei University of Engineering, Handan 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan 056038, China.
| | - Tianyu Zhuo
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Qingfeng Tang
- Beijing Center for Physical & Chemical Analysis, Beijing 100089, China
| | - Xia Gao
- Beijing Center for Physical & Chemical Analysis, Beijing 100089, China
| | - Jiamin Wang
- Beijing Center for Physical & Chemical Analysis, Beijing 100089, China
| | - Lixin He
- Hebei Collaborative Innovation Center for the Regulation and Comprehensive Management of Water Resources and Water Environment, Hebei University of Engineering, Handan 056038, China
| | - Xiaohui Lei
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bin Chen
- Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan 056038, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Rai DK, Gillilan RE, Huang Q, Miller R, Ting E, Lazarev A, Tate MW, Gruner SM. High-pressure small-angle X-ray scattering cell for biological solutions and soft materials. J Appl Crystallogr 2021; 54:111-122. [PMID: 33841059 PMCID: PMC7941318 DOI: 10.1107/s1600576720014752] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Pressure is a fundamental thermodynamic parameter controlling the behavior of biological macromolecules. Pressure affects protein denaturation, kinetic parameters of enzymes, ligand binding, membrane permeability, ion trans-duction, expression of genetic information, viral infectivity, protein association and aggregation, and chemical processes. In many cases pressure alters the molecular shape. Small-angle X-ray scattering (SAXS) is a primary method to determine the shape and size of macromolecules. However, relatively few SAXS cells described in the literature are suitable for use at high pressures and with biological materials. Described here is a novel high-pressure SAXS sample cell that is suitable for general facility use by prioritization of ease of sample loading, temperature control, mechanical stability and X-ray background minimization. Cell operation at 14 keV is described, providing a q range of 0.01 < q < 0.7 Å-1, pressures of 0-400 MPa and an achievable temperature range of 0-80°C. The high-pressure SAXS cell has recently been commissioned on the ID7A beamline at the Cornell High Energy Synchrotron Source and is available to users on a peer-reviewed proposal basis.
Collapse
Affiliation(s)
- Durgesh K. Rai
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Richard E. Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Robert Miller
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry, Cornell University, Ithaca, NY 14853, USA
| | - Edmund Ting
- Pressure BioSciences Inc., South Easton, MA 02375, USA
| | | | - Mark W. Tate
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Sol M. Gruner
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Chen HW, Chang YW, Fang WP. A New Approach for the Microencapsulation of Clitoria Ternatea Petal Extracts by a High-Pressure Processing Method. Pharmaceutics 2020; 13:pharmaceutics13010023. [PMID: 33374428 PMCID: PMC7824060 DOI: 10.3390/pharmaceutics13010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022] Open
Abstract
Toxic organic solvent residues and the active substances of thermal degradation (such as anthocyanin and polyphenols) are always a concern with the liposomes produced by traditional techniques. The present study focuses on a new approach for the microencapsulation of Clitoria ternatea petal (CTP) extracts, which contain anthocyanins, by high-pressure processing (HPP) at room temperature. Thus, a series of CTP liposomes were prepared and their physicochemical properties were analyzed by laser granulometry and by scanning electron microscopy (SEM). The results revealed that the average particle size of the liposomes after HPP treatment increased gradually from 300 MPa to 600 MPa, possibly due to the aggregation of liposomes and damage to the phospholipid bilayers. For the preparation of liposomes by the HPP method at 300 MPa, the mean particle size, polydispersity index (PDI), and encapsulation efficiency were 240.7 nm, 0.37, and 77.8%, respectively. The HPP method provided a number of advantages over conventional methods (magnet stirring and ultrasonication) as it could allow liposome preparation with higher encapsulation efficiency, smaller size, and narrower, more reproducible particle size distribution. Conclusively, microencapsulation in the liposomes was successfully achieved with the fast-adiabatic expansion of HPP.
Collapse
Affiliation(s)
- Hua-Wei Chen
- Correspondence: ; Tel.: +886-3-9317498; Fax: +886-3-9357025
| | | | | |
Collapse
|
6
|
Gerringer ME, Yancey PH, Tikhonova OV, Vavilov NE, Zgoda VG, Davydov DR. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes. FEBS J 2020; 287:5394-5410. [PMID: 32250538 PMCID: PMC7818408 DOI: 10.1111/febs.15317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 03/15/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
We explore the principles of pressure tolerance in enzymes of deep-sea fishes using lactate dehydrogenases (LDH) as a case study. We compared the effects of pressure on the activities of LDH from hadal snailfishes Notoliparis kermadecensis and Pseudoliparis swirei with those from a shallow-adapted Liparis florae and an abyssal grenadier Coryphaenoides armatus. We then quantified the LDH content in muscle homogenates using mass-spectrometric determination of the LDH-specific conserved peptide LNLVQR. Existing theory suggests that adaptation to high pressure requires a decrease in volume changes in enzymatic catalysis. Accordingly, evolved pressure tolerance must be accompanied with an important reduction in the volume change associated with pressure-promoted alteration of enzymatic activity ( Δ V PP ∘ ). Our results suggest an important revision to this paradigm. Here, we describe an opposite effect of pressure adaptation-a substantial increase in the absolute value of Δ V PP ∘ in deep-living species compared to shallow-water counterparts. With this change, the enzyme activities in abyssal and hadal species do not substantially decrease their activity with pressure increasing up to 1-2 kbar, well beyond full-ocean depth pressures. In contrast, the activity of the enzyme from the tidepool snailfish, L. florae, decreases nearly linearly from 1 to 2500 bar. The increased tolerance of LDH activity to pressure comes at the expense of decreased catalytic efficiency, which is compensated with increased enzyme contents in high-pressure-adapted species. The newly discovered strategy is presumably used when the enzyme mechanism involves the formation of potentially unstable excited transient states associated with substantial changes in enzyme-solvent interactions.
Collapse
|
7
|
Davydov DR, Yang Z, Davydova N, Halpert JR, Hubbell WL. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy. Biophys J 2016; 110:1485-1498. [PMID: 27074675 DOI: 10.1016/j.bpj.2016.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022] Open
Abstract
We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, Washington; V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | - Zhongyu Yang
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Nadezhda Davydova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - James R Halpert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
8
|
|
9
|
Biochemical and microstructural assessment of minimally processed peaches subjected to high-pressure processing: Implications on the freshness condition. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Infectious causes of cholesteatoma and treatment of infected ossicles prior to reimplantation by hydrostatic high-pressure inactivation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:761259. [PMID: 25705686 PMCID: PMC4330946 DOI: 10.1155/2015/761259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 11/26/2022]
Abstract
Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms.
Collapse
|
11
|
Processing of protease under sub- and supercritical conditions for activity and stability enhancement. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
High-pressure SANS and fluorescence unfolding study of calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1560-8. [DOI: 10.1016/j.bbapap.2014.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/06/2014] [Accepted: 05/16/2014] [Indexed: 11/15/2022]
|
13
|
Zheng D, Zhang K, Gao K, Liu Z, Zhang X, Li O, Sun J, Zhang X, Du F, Sun P, Qu A, Wu X. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production. PLoS One 2013; 8:e85022. [PMID: 24376860 PMCID: PMC3871550 DOI: 10.1371/journal.pone.0085022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.
Collapse
Affiliation(s)
- Daoqiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ke Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kehui Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zewei Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xing Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ou Li
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianguo Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyang Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd.), Nanyang, Henan Province, China
| | - Fengguang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd.), Nanyang, Henan Province, China
| | - Peiyong Sun
- State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd.), Nanyang, Henan Province, China
| | - Aimin Qu
- State Key Laboratory of Motor Vehicle Biofuel Technology (Tianguan Group Co., Ltd.), Nanyang, Henan Province, China
| | - Xuechang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
14
|
Picard A, Daniel I. Pressure as an environmental parameter for microbial life--a review. Biophys Chem 2013; 183:30-41. [PMID: 23891571 DOI: 10.1016/j.bpc.2013.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 01/18/2023]
Abstract
Microbial life has been prevailing in the biosphere for the last 3.8 Ga at least. Throughout most of the Earth's history it has experienced a range of pressures; both dynamic pressure when the young Earth was heavily bombarded, and static pressure in subsurface environments that could have served as a refuge and where microbial life nowadays flourishes. In this review, we discuss the extent of high-pressure habitats in early and modern times and provide a short overview of microbial survival under dynamic pressures. We summarize the current knowledge about the impact of microbial activity on biogeochemical cycles under pressures characteristic of the deep subsurface. We evaluate the possibility that pressure can be a limiting parameter for life at depth. Finally, we discuss the open questions and knowledge gaps that exist in the field of high-pressure geomicrobiology.
Collapse
Affiliation(s)
- Aude Picard
- Center for Applied Geoscience, Eberhard Karls University Tübingen, Sigwartstrasse 10, 72076 Tübingen, Germany.
| | | |
Collapse
|
15
|
Bravim F, da Silva LF, Souza DT, Lippman SI, Broach JR, Fernandes AAR, Fernandes PMB. High hydrostatic pressure activates transcription factors involved in Saccharomyces cerevisiae stress tolerance. Curr Pharm Biotechnol 2013; 13:2712-20. [PMID: 23072392 DOI: 10.2174/138920112804724891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/05/2012] [Accepted: 09/30/2012] [Indexed: 11/22/2022]
Abstract
A number of transcriptional control elements are activated when Saccharomyces cerevisiae cells are submitted to various stress conditions, including high hydrostatic pressure (HHP). Exposure of Saccharomyces cerevisiae cells to HHP results in global transcriptional reprogramming, similar to that observed under other industrial stresses, such as temperature, ethanol and oxidative stresses. Moreover, treatment with a mild hydrostatic pressure renders yeast cells multistress tolerant. In order to identify transcriptional factors involved in coordinating response to high hydrostatic pressure, we performed a time series microarray expression analysis on a wild S. cerevisiae strain exposed to 50 MPa for 30 min followed by recovery at atmospheric pressure (0.1 MPa) for 5, 10 and 15 min. We identified transcription factors and corresponding DNA and RNA motifs targeted in response to hydrostatic pressure. Moreover, we observed that different motif elements are present in the promoters of induced or repressed genes during HHP treatment. Overall, as we have already published, mild HHP treatment to wild yeast cells provides multiple protection mechanisms, and this study suggests that the TFs and motifs identified as responding to HHP may be informative for a wide range of other biotechnological and industrial applications, such as fermentation, that may utilize HHP treatment.
Collapse
Affiliation(s)
- Fernanda Bravim
- Núcleo de Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, 29040-090, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
de Freitas JM, Bravim F, Buss DS, Lemos EM, Fernandes AAR, Fernandes PM. Influence of cellular fatty acid composition on the response ofSaccharomyces cerevisiaeto hydrostatic pressure stress. FEMS Yeast Res 2012; 12:871-8. [DOI: 10.1111/j.1567-1364.2012.00836.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/26/2012] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jéssica M. de Freitas
- Núcleo de Biotecnologia; Centro de Ciências da Saúde; Universidade Federal do Espírito Santo; Vitória; ES; Brazil
| | - Fernanda Bravim
- Núcleo de Biotecnologia; Centro de Ciências da Saúde; Universidade Federal do Espírito Santo; Vitória; ES; Brazil
| | - David S. Buss
- Núcleo de Biotecnologia; Centro de Ciências da Saúde; Universidade Federal do Espírito Santo; Vitória; ES; Brazil
| | - Elenice M. Lemos
- Núcleo de Doenças Infecciosas; Centro de Ciências da Saúde; Universidade Federal do Espírito Santo; Vitória; ES; Brazil
| | - A. Alberto R. Fernandes
- Núcleo de Biotecnologia; Centro de Ciências da Saúde; Universidade Federal do Espírito Santo; Vitória; ES; Brazil
| | - Patricia M.B. Fernandes
- Núcleo de Biotecnologia; Centro de Ciências da Saúde; Universidade Federal do Espírito Santo; Vitória; ES; Brazil
| |
Collapse
|
17
|
Dommerich S, Frickmann H, Ostwald J, Lindner T, Zautner AE, Arndt K, Pau HW, Podbielski A. Effects of high hydrostatic pressure on bacterial growth on human ossicles explanted from cholesteatoma patients. PLoS One 2012; 7:e30150. [PMID: 22291908 PMCID: PMC3264599 DOI: 10.1371/journal.pone.0030150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/10/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. METHODOLOGY Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. PRINCIPAL FINDINGS A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion.
Collapse
Affiliation(s)
- Steffen Dommerich
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Rostock Hospital, Rostock, Germany
| | - Hagen Frickmann
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock Hospital, Rostock, Germany
- * E-mail:
| | - Jürgen Ostwald
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Rostock Hospital, Rostock, Germany
| | - Tobias Lindner
- Department of Orthopedics, Biomechanics and Implant Technology Research Laboratory, University of Rostock Hospital, Rostock, Germany
| | - Andreas Erich Zautner
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock Hospital, Rostock, Germany
| | - Kathleen Arndt
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock Hospital, Rostock, Germany
| | - Hans Wilhelm Pau
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Rostock Hospital, Rostock, Germany
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock Hospital, Rostock, Germany
| |
Collapse
|
18
|
Senyay-Oncel D, Yesil-Celiktas O. Activity and stability enhancement of α-amylase treated with sub- and supercritical carbon dioxide. J Biosci Bioeng 2011; 112:435-40. [PMID: 21824817 DOI: 10.1016/j.jbiosc.2011.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/17/2011] [Accepted: 07/10/2011] [Indexed: 11/17/2022]
Abstract
Various physical, chemical and genetic approaches have been applied in order to enhance enzyme stability and activity. In this study, the aim was to investigate the capability of sub- and supercritical carbon dioxide to alter the stability and activity of α-amylase as an alternative technique. The effects of operational parameters such as pressure (50-300 bar), temperature (28-80 °C), CO₂ flow (2-10 g min⁻¹) and time (60-180 min) were evaluated in regard to the activity and stability of fungal based α-amylase from Aspergillus oryzea. The activity of untreated enzyme was determined as 17,726 μmol/ml/min. While both sub- and supercritical conditions enhanced the activity, the increase in flow rate had an adverse effect and the activity was decreased by 28.9% at a flow rate of 10 g min⁻¹ under supercritical conditions. Nuclear magnetic resonance (NMR) spectra of untreated enzyme and treated samples exhibiting the lowest and the highest activities were almost identical except for the chemical shifts observed at the lowest activity sample from 4.0 to 4.4 ppm which were assigned to protons of hydrogen-bonded groups. Optimum conditions were determined as 240 bar, 41 °C, 4 g min⁻¹ CO₂ flow and 150 min of process duration yielding 67.7% (29,728 μmol/ml/min) higher activity than the untreated enzyme providing fundamental basis for enzymatic applications.
Collapse
Affiliation(s)
- Deniz Senyay-Oncel
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova-Izmir, Turkey
| | | |
Collapse
|
19
|
Water in the orchestration of the cell machinery. Some misunderstandings: a short review. J Biol Phys 2011; 38:13-26. [PMID: 23277667 DOI: 10.1007/s10867-011-9225-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022] Open
Abstract
Nowadays, biologists can explore the cell at the nanometre level. They discover an unsuspected world, amazingly overcrowded, complex and heterogeneous, in which water, also, is complex and heterogeneous. In the cell, statistical phenomena, such as diffusion, long considered as the main transport for water soluble substances, must be henceforth considered as inoperative to orchestrate cell activity. Results at this level are not yet numerous enough to give an exact representation of the cell machinery; however, they are sufficient to cease reasoning in terms of statistics (diffusion, law of mass action, pH, etc.) and encourage cytologists and biochemists to prospect thoroughly the huge panoply of the biophysical properties of macromolecule-water associations at the nanometre level. Our main purpose, here, is to discuss some of the more common misinterpretations due to the ignorance of these properties, and expose briefly the bases for a better approach of the cell machinery. Giorgio Careri, who demonstrated the correlation between proton currents at the surface of lysozyme and activity of this enzyme was one of the pioneers of this approach.
Collapse
|
20
|
Morris SC. Predicting what extra-terrestrials will be like: and preparing for the worst. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:555-571. [PMID: 21220280 DOI: 10.1098/rsta.2010.0276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is difficult to imagine evolution in alien biospheres operating in any manner other than Darwinian. Yet, it is also widely assumed that alien life-forms will be just that: strange, un-nerving and probably repulsive. There are two reasons for this view. First, it is assumed that the range of habitable environments available to extra-terrestrial life is far wider than on Earth. I suggest, however, that terrestrial life is close to the physical and chemical limits of life anywhere. Second, it is a neo-Darwinian orthodoxy that evolution lacks predictability; imagining what extra-terrestrial life would look like in any detail is a futile exercise. To the contrary, I suggest that the outcomes of evolution are remarkably predictable. This, however, leads us to consider two opposites, both of which should make our blood run cold. The first, and actually extremely unlikely, is that alien biospheres will be strikingly similar to our terrestrial equivalent and that in such biospheres intelligence will inevitably emerge. The reasons for this revolve around the ubiquity of evolutionary convergence, the determinate structure of the Tree of Life and molecular inherency. But if something like a human is an inevitability, why do I also claim that the first possibility is 'extremely unlikely'? Simply because the other possibility is actually the correct answer. Paradoxically, we and our biosphere are completely alone. So which is worse? Meeting ourselves or meeting nobody?
Collapse
Affiliation(s)
- Simon Conway Morris
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EQ, UK.
| |
Collapse
|
21
|
Bravim F, Palhano FL, Fernandes AAR, Fernandes PMB. Biotechnological properties of distillery and laboratory yeasts in response to industrial stresses. J Ind Microbiol Biotechnol 2010; 37:1071-9. [DOI: 10.1007/s10295-010-0755-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/20/2010] [Indexed: 11/24/2022]
|
22
|
Rivalain N, Roquain J, Demazeau G. Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnol Adv 2010; 28:659-72. [PMID: 20398747 DOI: 10.1016/j.biotechadv.2010.04.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 11/16/2022]
Abstract
Compared to temperature, the development of pressure as a tool in the research field has emerged only recently (at the end of the XIXth century). Following several developments in Physics and Chemistry during the first half of the XXth century (in particular the synthesis of diamond in 1953-1954), high pressures were applied in Food Science, especially in Japan. The main objective was then to achieve the decontamination of foods while preserving their organoleptic properties. Now, a new step is engaged: the biological applications of high pressures, from food to pharmaceuticals and biomedical applications. This paper will focus on three main points: (i) a brief presentation of the pressure parameter and its characteristics, (ii) a description of the pressure effects on biological constituents from simple to more complex structures and (iii) a review of the different domains for which the application of high pressures is able to initiate potential developments in Biotechnologies.
Collapse
Affiliation(s)
- Nolwennig Rivalain
- ICMCB-CNRS - Université de Bordeaux - 87, avenue du Dr. Albert Schweitzer, PESSAC Cedex, France
| | | | | |
Collapse
|
23
|
Bravim F, de Freitas JM, Fernandes AAR, Fernandes PMB. High hydrostatic pressure and the cell membrane: stress response of Saccharomyces cerevisiae. Ann N Y Acad Sci 2010; 1189:127-32. [PMID: 20233378 DOI: 10.1111/j.1749-6632.2009.05182.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The brewing and baking yeast Saccharomyces cerevisiae is a useful eukaryotic model of stress response systems whose study could lead to the understanding of stress response mechanisms in other organisms. High hydrostatic pressure (HHP) exerts broad effects upon yeast cells, interfering with cell membranes, cellular architecture, and the processes of polymerization and denaturation of proteins. In this review, we focus on the effect of HHP on the S. cerevisiae cell membrane and describe the main signaling pathways involved in the pressure response.
Collapse
|
24
|
Pereira CS, Hünenberger PH. Effect of trehalose on a phospholipid membrane under mechanical stress. Biophys J 2008; 95:3525-34. [PMID: 18599628 PMCID: PMC2553110 DOI: 10.1529/biophysj.108.131656] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/05/2008] [Indexed: 11/18/2022] Open
Abstract
Explicit solvent molecular dynamics simulations were used to investigate at atomic resolution the effect of trehalose on a hydrated phospholipid bilayer under mechanical stress (stretching forces imposed in the form of negative lateral pressure). Simulations were performed in the absence or presence of trehalose at 325 K, and with different values for negative lateral pressure. In the concentration regime (2 molal) and range of lateral pressures (1 to -250 bar) investigated, trehalose was found to interact directly with the membrane, partially replacing water molecules in the formation of hydrogen bonds with the lipid headgroups. Similar to previous findings in the context of thermal stress, the number, degree of bridging, and reaching depth of these hydrogen bonds increased with the magnitude of perturbation. However, at the concentration considered, trehalose was not sufficient to preserve the integrity of the membrane structure and to prevent its extreme elongation (and possible disruption) under the effect of stretching forces.
Collapse
Affiliation(s)
- Cristina S Pereira
- Laboratory of Physical Chemistry, Eidgenössische technische Hochschule Zürich-Hönggerberg HCI, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
25
|
George VT, Brooks G, Humphrey TC. Regulation of cell cycle and stress responses to hydrostatic pressure in fission yeast. Mol Biol Cell 2007; 18:4168-79. [PMID: 17699598 PMCID: PMC1995737 DOI: 10.1091/mbc.e06-12-1141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress.
Collapse
Affiliation(s)
- Vinoj T. George
- *Medical Research Council Radiation Oncology and Biology Unit, Harwell, Didcot, Oxfordshire, OX11 0RD, United Kingdom; and
| | - Gavin Brooks
- Cardiovascular Research Group, School of Pharmacy, University of Reading, Reading, Berkshire, RG6 6AP, United Kingdom
| | - Timothy C. Humphrey
- *Medical Research Council Radiation Oncology and Biology Unit, Harwell, Didcot, Oxfordshire, OX11 0RD, United Kingdom; and
| |
Collapse
|
26
|
Girard E, Prangé T, Dhaussy AC, Migianu-Griffoni E, Lecouvey M, Chervin JC, Mezouar M, Kahn R, Fourme R. Adaptation of the base-paired double-helix molecular architecture to extreme pressure. Nucleic Acids Res 2007; 35:4800-8. [PMID: 17617642 PMCID: PMC1950552 DOI: 10.1093/nar/gkm511] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/13/2007] [Accepted: 06/13/2007] [Indexed: 11/14/2022] Open
Abstract
The behaviour of the d(GGTATACC) oligonucleotide has been investigated by X-ray crystallography at 295 K in the range from ambient pressure to 2 GPa (approximately 20,000 atm). Four 3D-structures of the A-DNA form (at ambient pressure, 0.55, 1.09 and 1.39 GPa) were refined at 1.60 or 1.65 A resolution. In addition to the diffraction pattern of the A-form, the broad meridional streaks previously explained by occluded B-DNA octamers within the channels of the crystalline A-form matrix were observed up to at least 2 GPa. This work highlights an important property of nucleic acids, their capability to withstand very high pressures, while keeping in such conditions a nearly invariant geometry of base pairs that store and carry genetic information. The double-helix base-paired architecture behaves as a molecular spring, which makes it especially adapted to very harsh conditions. These features may have contributed to the emergence of a RNA World at prebiotic stage.
Collapse
Affiliation(s)
- Eric Girard
- Synchrotron-SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kusube M, Goto M, Tamai N, Matsuki H, Kaneshina S. Bilayer phase transitions of N-methylated dioleoylphosphatidylethanolamines under high pressure. Chem Phys Lipids 2006; 142:94-102. [PMID: 16620796 DOI: 10.1016/j.chemphyslip.2006.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/12/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
The bilayer phase transitions of four kinds of unsaturated phospholipids with different-sized polar head groups, dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidyl-N-methylethanolamine (DOMePE), dioleoylphosphatidyl-N,N-dimethylethanolamine (DOMe2PE) and dioleoylphosphatidylcholine (DOPC), were observed by means of differential scanning calorimetry (DSC) and high-pressure light-transmittance. DSC thermogram and light-transmittance curve for each phospholipid vesicle solution exhibited only one phase transition under ambient pressure, respectively. The light-transmittance of DOPC solution at pressure higher than 234 MPa abruptly increased stepwise at two temperatures, which corresponds to the appearance of stable subgel and lamellar gel phases under high pressure in addition to the liquid crystal phase. The constructed temperature (T)-pressure (p) phase diagrams were compared among these phospholipids. The phase-transition temperatures of the phospholipids decreased stepwise by N-methylation of the head group. The slops of the T-p phase boundary (dT/dp) of DOPE, DOMePE and DOMe2PE bilayers (0.127-0.145 K MPa-1) were found to be close to that of the transition from the lamellar crystal (or subgel; Lc) phase to the liquid crystal (Lalpha) phase for DOPC bilayer (0.131 K MPa-1). On the other hand, the dT/dp value of the main transition from the lamellar gel (Lbeta) phase to the Lalpha phase for DOPC bilayer (0.233 K MPa-1) was significantly different from that of the Lc/Lalpha transition, hence both curves intersected with each other at 234 MPa. The thermodynamic quantities associated with the phase transition of DOPE, DOMePE and DOMe2PE bilayers had also similar values to those for the Lc/Lalpha transition of DOPC bilayer. Taking into account of the values of transition temperature, dT/dp and thermodynamic quantities compared with the corresponding results of saturated phospholipids, we identified the phase transitions observed in the DOPE, DOMePE and DOMe2PE bilayers as the transition from the Lc phase to the Lalpha phase although they have been regarded as the main transition in the previous studies. The Lbeta phase is probably unstable for DOPE, DOMePE and DOMe2PE bilayers at all pressures, it exists as a metastable phase at pressures below 234 MPa while as a stable phase at pressures above 234 MPa in DOPC bilayer. The difference in phase stability among the phospholipid bilayers is originated from that in hydration structure of the polar head groups.
Collapse
Affiliation(s)
- Masataka Kusube
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | | | | | | | | |
Collapse
|
28
|
Appavou MS, Gibrat G, Bellissent-Funel MC. Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): small angle and quasi-elastic neutron scattering studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:414-23. [PMID: 16513440 DOI: 10.1016/j.bbapap.2006.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/16/2005] [Accepted: 01/11/2006] [Indexed: 11/18/2022]
Abstract
We have studied the influence of pressure on structure and dynamics of a small protein belonging to the enzymatic catalysis: the bovine pancreatic trypsin inhibitor (BPTI). Using a copper-beryllium high-pressure cell, we have performed small angle neutron scattering (SANS) experiment on NEAT spectrometer at HMI (Berlin, Germany). In the SANS configuration, the evolution of the radius of gyration and of the shape of the protein under pressures up to 6,000 bar has been studied. When increasing pressure from atmospheric pressure up to 6,000 bar, the pressure effects on the global structure of BPTI result on a reduction of the radius of gyration from 13.4 A down to 12.0 A. Between 5,000 and 6,000 bar, some transition already detected by FTIR [N. Takeda, K. Nakano, M. Kato, Y. Taniguchi, Biospectroscopy, 4, 1998, pp. 209-216] is observed. The pressure effect is not reversible because the initial value of the radius of gyration is not recovered after pressure release. By extending the range of wave-vectors to high q, we have observed a change of the form factor (shape) of the BPTI under pressure. At atmospheric pressure BPTI exhibits an ellipsoidal form factor that is characteristic of the native state. When the pressure is increased from atmospheric pressure up to 6,000 bar, the protein keeps its ellipsoidal shape. The parameters of the ellipsoid vary and the transition detected between 5,000 and 6,000 bar in the form factor of BPTI is in agreement with the FTIR results. After pressure release, the form factor of BPTI is characteristic of an ellipsoid of revolution with a semi-axis a, slightly elongated with respect to that of the native one, indicating that the pressure-induced structural changes on the protein are not reversible. The global motions and the internal dynamics of BPTI protein have been investigated in the same pressure range by quasi-elastic neutron scattering experiments on IN5 time-of-flight spectrometer at ILL (Grenoble, France). The diffusion coefficients D and the internal relaxation times <tau(2)> of BPTI deduced from the analysis of the intermediate scattering functions show a slowing down of protein dynamics when increasing pressure.
Collapse
Affiliation(s)
- M-S Appavou
- Laboratoire Léon Brillouin, CEA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
29
|
Abstract
Water was called by Szent-Gyorgi "life's mater and matrix, mother and medium." This chapter considers both aspects of his statement. Many astrobiologists argue that some, if not all, of Earth's water arrived during cometary bombardments. Amorphous water ices of comets possibly facilitated organization of complex organic molecules, kick-starting prebiotic evolution. In Gaian theory, Earth retains its water as a consequence of biological activity. The cell cytomatrix is a proteinaceous matrix/lattice incorporating the cytoskeleton, a pervasive, holistic superstructural network that integrates metabolic pathways. Enzymes of metabolic pathways are ordered in supramolecular clusters (metabolons) associated with cytoskeleton and/or membranes. Metabolic intermediates are microchanneled through metabolons without entering a bulk aqueous phase. Rather than being free in solution, even major signaling ions are probably clustered in association with the cytomatrix. Chloroplasts and mitochondria, like bacteria and archaea, also contain a cytoskeletal lattice, metabolons, and channel metabolites. Eukaryotic metabolism is mathematically a scale-free or small-world network. Enzyme clusters of bacterial origin are incorporated at a pathway level that is architecturally archaean. The eucaryotic cell may be a product of serial endosymbiosis, a chimera. Cell cytoplasm is approximately 80% water. Water is indisputably a conserved structural element of proteins, essential to their folding, specificity, ligand binding, and to enzyme catalysis. The vast literature of organized cell water has long argued that the cytomatrix and cell water are an entire system, a continuum, or gestalt. Alternatives are offered to mainstream explanations of cell electric potentials, ion channel, enzyme, and motor protein function, in terms of high-order cooperative systems of ions, water, and macromolecules. This chapter describes some prominent concepts of organized cell water, including vicinal water network theory, the association-induction hypothesis, wave-cluster theory, phase-gel transition theories, and theories of low- and high-density water polymorphs.
Collapse
Affiliation(s)
- V A Shepherd
- Department of Biophysics, School of Physics, The University of NSW NSW 2052, Sydney, Australia
| |
Collapse
|
30
|
Hamdane D, Kiger L, Hoa GHB, Dewilde S, Uzan J, Burmester T, Hankeln T, Moens L, Marden MC. High Pressure Enhances Hexacoordination in Neuroglobin and Other Globins. J Biol Chem 2005; 280:36809-14. [PMID: 16100391 DOI: 10.1074/jbc.m506253200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The techniques of high applied pressure and flash photolysis have been combined to study ligand rebinding to neuroglobin (Ngb) and tomato Hb, globins that may display a His-Fe-His hexacoordination in the absence of external ligands. High pressure induces a moderate decrease in the His association rate and a large decrease in His dissociation rate, thus leading to an enhancement of the overall His affinity. The overall structural difference between penta- and hexacoordinated globins may be rather small and can be overcome by external modifications such as high pressure. Over the pressure range 0.1-700 MPa (7 kbar), the globins may show a loss of over a factor of 100 in the amplitude of the bimolecular rebinding phase after photodissociation. The kinetic data show that pressure induces a moderate increase of the rate for ligand binding from the correlated pair state (just after photodissociation) and a large (factor of 1000) decrease in rate for migration through the protein. The effect on the ligand migration phase was similar for both the external ligands (such as oxygen) as for the internal (histidine) ligand, suggesting the dominant role of protein fluctuations, rather than specific chemical barriers. Thus high pressure efficiently closes the protein migration channels; however, contrary to the effect of high viscosity, high pressure induces a greater decrease in rate for ligand migration toward the exterior (heme to the solvent) versus inward migration, as if the presence of the ligand itself induces an additional steric constraint.
Collapse
Affiliation(s)
- Djemel Hamdane
- INSERM U473, 78 rue du General Leclerc, 94275 Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP) on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm) yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.
Collapse
Affiliation(s)
- P M B Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brasil.
| |
Collapse
|
32
|
Klett MV, Boneberg EM, Trenz K, Knippers R, Illges H. Hydrostatic Pressure Induces Apoptosis in the Human Leukaemic T-Cell Line Jurkat Via the Mitochondrial Pathway. Scand J Immunol 2004; 60:403-11. [PMID: 15379865 DOI: 10.1111/j.0300-9475.2004.01496.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the effect of pressure levels ranging from 80 to 500 bar on the proliferative capacity and viability of Jurkat leukaemic T cells. Pressurization at 360 bar induced apoptotic cell death as shown by apoptotic morphology after Hoechst staining, DNA fragmentation in the TdT-mediated dUTP nick end labelling-assay and cleavage of several caspase substrates. Cell death could be prevented by the general caspase inhibitor zVAD-fmk. Breakdown of the mitochondrial membrane potential and the release of cytochrome c provided strong evidence for an involvement of the mitochondrial pathway, whereas a central role of the death receptor pathway was excluded because caspase-8 was not significantly activated. Pressure incubation led to calcium influx after 5 min, and we hypothesize that calcium influx could be the primary trigger for pressure-induced apoptosis.
Collapse
Affiliation(s)
- M V Klett
- Biotechnology Institute Thurgau, Taegerwilen, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Palhano FL, Orlando MTD, Fernandes PMB. Induction of baroresistance by hydrogen peroxide, ethanol and cold-shock inSaccharomyces cerevisiae. FEMS Microbiol Lett 2004; 233:139-45. [PMID: 15043880 DOI: 10.1016/j.femsle.2004.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/02/2004] [Accepted: 02/03/2004] [Indexed: 11/19/2022] Open
Abstract
The acquisition of tolerance to high hydrostatic pressure of 220 MPa (HHP) in response to a 0.4 mM hydrogen peroxide, 6% ethanol and cold-shock (10 degrees C) pretreatment for different lengths of times was studied in the yeast Saccharomyces cerevisiae. The protection conferred by these different treatments was similar ( approximately 3 log cycles) and time-dependent. Analysis of the induction of the most pressure up-regulated genes under these conditions was investigated by RT-PCR. Our results revealed that the cell stress response to HHP shares common features with hydrogen peroxide and ethanol stresses, but differs in some way to cold-shock.
Collapse
Affiliation(s)
- Fernando L Palhano
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, 29040-090, Vitória, ES, Brazil
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Antonio D Molina-García
- Department of Engineering, Instituto del Frío, C.S.I.C., José Antonio Novais, 10, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
35
|
Domitrovic T, Palhano FL, Barja-Fidalgo C, DeFreitas M, Orlando MTD, Fernandes PMB. Role of nitric oxide in the response of Saccharomyces cerevisiae cells to heat shock and high hydrostatic pressure. FEMS Yeast Res 2003; 3:341-6. [PMID: 12748047 DOI: 10.1016/s1567-1356(03)00039-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a simple and unique molecule that has diverse functions in organisms, including intracellular and intercellular messenger. The influence of NO on cell growth of Saccharomyces cerevisiae and as a signal molecule in stress response was evaluated. Respiring cells were more sensitive to an increase in intracellular NO concentration than fermentatively growing cells. Low levels of NO demonstrated a cytoprotective effect during stress from heat-shock or high hydrostatic pressure. Induction of NO synthase was isoform-specific and dependent on the metabolic state of the cells and the stress response pathway. These results support the hypothesis that an increase in intracellular NO concentration leads to stress protection.
Collapse
Affiliation(s)
- Tatiana Domitrovic
- Dept. C. Fisiológicas/CBM/UFES Av. Marechal Campos, 1468 Marui;pe 29040-090, ES, Vitória, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Kornblatt JA, Kornblatt MJ. The effects of osmotic and hydrostatic pressures on macromolecular systems. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:30-47. [PMID: 11983385 DOI: 10.1016/s0167-4838(01)00333-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osmotic pressure and hydrostatic pressure can be used effectively to probe the behavior of biologically important macromolecules and their complexes. Using the two techniques requires a theoretical framework as well as knowledge of the more common pitfalls. Both are discussed in this review in the context of several examples.
Collapse
Affiliation(s)
- Jack A Kornblatt
- Enzyme Research Group, Department of Biology, Concordia University, Montreal, QC, Canada.
| | | |
Collapse
|
37
|
Abstract
Hydrostatic pressure (<100 MPa) affects the kinetics of ion channels but not their conductance. In voltage-gated channels, pressure acts on the movement of the charge sensor and on the conformational change involved in opening the channel pore. It has also been shown to act on N-type inactivation ball-binding, C-type inactivation and to activate BK channels. There is little doubt that these are sites of adaptation to high pressure in the channels of deep-sea animals. Pressure studies should not be regarded in isolation; they relate well to experiments using other variables such as osmotic pressure, solvent viscosity and temperature. Furthermore ion channels could transduce pressure in the sensory system of aquatic animals, providing information about the animals' depth, a prediction supported by our knowledge of heat-activated channels in mammals.
Collapse
Affiliation(s)
- A G Macdonald
- Department of Biomedical Sciences, University of Aberdeen, Zoology Building, Aberdeen AB24 2TZ, Scotland, UK.
| |
Collapse
|