1
|
Yüksel MF, Doğulu N, Yıldırım M, Köse E, Bektaş Ö, Eminoğlu FT, Teber S. Metabolic etiologies in children with infantile epileptic spasm syndrome: Experience at a tertiary pediatric neurology center. Brain Dev 2024; 46:213-218. [PMID: 38493042 DOI: 10.1016/j.braindev.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Infantile epileptic spasm syndrome (IESS), including West syndrome (WS) and infantile spasm (IS), causes a challenging prognosis, particularly when associated with metabolic etiologies. METHODS This study, conducted at a tertiary pediatric neurology center, explored the prevalence and clinical features of inborn errors of metabolism in 112 children with IESS over 10 years. RESULTS Most patients presented with seizures, primarily flexor spasms, and the median age at onset was 5 months. Comprehensive clinical evaluation and neuroimaging revealed structural-acquired causes as the most common etiology. Notably, inborn errors of metabolism were identified in 5.4 % of cases, with six distinct diagnoses including nonketotic hyperglycinemia, pyridoxine-dependent epilepsy, primary coenzyme Q10 deficiency 7, congenital disorder of glycosylation type IIM, 6-pyruvoyl tetrahydrobiopterin synthase deficiency, and argininosuccinate lyase deficiency. The prevalence of inborn errors of metabolism in this cohort was consistent with global variations reported in the literature. Genetic testing, including karyotype analysis and whole exome sequencing, was performed in a subset of cases with no clear diagnosis, revealing abnormalities in approximately 50 % of cases. Adrenocorticotropic hormone emerged as the most frequently prescribed antiseizure medication. CONCLUSION This study provides insight into the diagnostic challenges associated with IESS and highlights the importance of metabolic investigations, especially in cases without a clear etiology. The findings emphasize the need for further genetic and metabolic studies to enhance prognostic accuracy and guide potential treatment options for children with IESS, particularly in populations with high rates of consanguinity.
Collapse
Affiliation(s)
- Merve Feyza Yüksel
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey.
| | - Neslihan Doğulu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Miraç Yıldırım
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Engin Köse
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ömer Bektaş
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serap Teber
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Chern CR, Lauková M, Schonwald A, Kudová E, Chodounská H, Chern CJ, Shakarjian MP, Velíšková J, Velíšek L. Novel neurosteroid pregnanolone pyroglutamate suppresses neurotoxicity syndrome induced by tetramethylenedisulfotetramine but is ineffective in a rodent model of infantile spasms. Pharmacol Rep 2023; 75:177-188. [PMID: 36422805 PMCID: PMC10785007 DOI: 10.1007/s43440-022-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neurosteroids are investigated as effective antidotes for the poisoning induced by tetramethylenedisulfotetramine (TMDT) as well as treatments for epileptic spasms during infancy. Both these conditions are quite resistant to pharmacotherapy; thus, a search for new treatments is warranted. METHODS In this study, we determined the efficacy of two novel neurosteroids, pregnanolone glutamate (PAG) and pregnanolone pyroglutamate (PPG), and tested these drugs in doses of 1-10 mg/kg (ip) against the TMDT syndrome and in our rodent model of infantile spasms. RESULTS Only PPG in doses 5 and 10 mg/kg suppressed the severity of the TMDT syndrome and TMDT-induced lethality, while the 1 mg/kg dose was without an effect. Interestingly, the 1 mg/kg dose of PPG in combination with 1 mg/kg of diazepam was also effective against TMDT poisoning. Neither PAG nor PPG were effective against experimental spasms in the N-methyl-D-aspartate (NMDA)-triggered model of infantile spasms. CONCLUSIONS While evidence suggests that PAG can act through multiple actions which include allosteric inhibition of NMDA-induced and glycine receptor-evoked currents as well as augmentation of ɣ-aminobutyric acid subtype A (GABAA) receptor-induced currents, the agent appears to neither have the appropriate mechanistic signature for activity in the infantile spasm model, nor the adequate potency, relative to PPG, for ameliorating the TMDT syndrome. The full mechanisms of action of PPG, which may become a potent TMDT antidote either alone or in combination with diazepam are yet unknown and thus require further investigation.
Collapse
Affiliation(s)
- Chian-Ru Chern
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Marcela Lauková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Science, Bratislava, Slovakia
| | - Antonia Schonwald
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Chodounská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Chian-Jiang Chern
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Michael P Shakarjian
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Public Health, Environmental Health Science Program, New York Medical College, Valhalla, NY, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Ln W, Piscataway, NJ, 08854, USA
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
- Department of Neurology, New York Medical College, Valhalla, NY, USA.
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
3
|
Chern CR, Chern CJ, Velíšková J, Velíšek L. ACTON PROLONGATUM® suppresses spasms head to head with Acthar® Gel in the model of infantile spasms. Epilepsy Behav 2020; 105:106950. [PMID: 32092460 DOI: 10.1016/j.yebeh.2020.106950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/18/2022]
Abstract
Epileptic spasms during infancy (infantile spasms, IS) are a rare epilepsy syndrome with dire prognosis. Current treatments, effective in about 55% of cases, include hormonal therapy (adrenocorticotropic hormone [ACTH] = adrenocorticotropin or corticosteroids) or vigabatrin (also in combination with hormones). In addition to their limited efficacy, these treatments may also carry serious adverse effects. Thus, the search for new effective drugs to treat this rare disease is desirable. In this study, we determined the efficacy of ACTON PROLONGATUM® (AP; Ferring Pharmaceuticals) in comparison with Acthar® Gel (Mallinckrodt) and full 39 amino-acid rat ACTH molecule (Genscript) in the rodent model of IS consisting of prenatal priming with betamethasone and repeated postnatal trigger of spasms with N-methyl-d-aspartate. Treatment with these ACTH varieties was given on postnatal days (P)12, P13, and P14 in a prospective test (treatment onset on P12 AFTER induction of spasms). Two independent arms were investigated: subcutaneous (SC) and intramuscular (IM) deliveries that were evaluated separately. In the SC arm, there was a significant suppression of the number of spasms after both Acthar® Gel and AP on P13 and P15 compared with gelatin control. In the IM arm, a significant suppression of the number of spasms was achieved only after AP on both P13 and P15 indicating that after IM delivery, Acthar® Gel was not as effective as AP. In this study, we confirmed the efficacy of two ACTH formulations (gelatin-based Acthar® Gel and carboxymethyl cellulose-based AP) in the model of IS. ACTON PROLONGATUM® may become a valuable therapy for IS. In our animal model, AP was at least as efficient as the standard of care, Acthar® Gel.
Collapse
Affiliation(s)
- Chian-Ru Chern
- Department of Cell Biology & Anatomy, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - Chian-Jiang Chern
- Department of Cell Biology & Anatomy, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Department of Obstetrics & Gynecology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Department of Neurology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Department of Neurology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Department of Pediatrics, New York Medical College, School of Medicine, Valhalla, NY 10595, USA.
| |
Collapse
|
4
|
Chern CR, Chern CJ, Velíšková J, Velíšek L. AQB-565 shows promise in preclinical testing in the model of epileptic spasms during infancy: Head-to-head comparison with ACTH. Epilepsy Res 2019; 152:31-34. [PMID: 30875634 DOI: 10.1016/j.eplepsyres.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
Abstract
Epileptic spasms during infancy (infantile spasms) represent a serious treatment and social problem despite their rare occurrence. Current treatments include hormonal therapy (adrenocorticotropin-ACTH or corticosteroids) or vigabatrin (per se or in the combination). These treatments are partially effective and with potentially significant adverse effects. Thus, the search for new effective drugs is warranted. We tested efficacy of a novel fusion peptide AQB-565 developed by Aequus Biopharma in a model of infantile spasms consisting of prenatal exposure to betamethasone and repeated postnatal trigger of spasms with N-methyl-d-aspartic acid (NMDA). AQB-565 molecule includes the first 24 amino acids of ACTH, a ten amino acid linker and a modified melanocyte-stimulating hormone molecule. In contrast to ACTH with almost uniform activity over all peripheral and central melanocortin receptor isoforms, AQB is preferentially active on central melanocortin receptors MC3 and MC4. Here, we used equivalent doses of rat ACTH (full molecule) and AQB-565 and compared their efficacy in a prospective randomized test against of repeated bouts of spasms on postnatal days (P)12, P13 and P15 in the rat model. All doses of ACTH (range 0.02-1.0 mg/kg s.c.) and all doses but one of AQB-565 in the same range suppressed spasms in P15 rats (treatment stopped on P14). There was no dose-dependent effect and both compounds had all-or-none effect that is similar to clinical outcome of hormonal treatment of infantile spasms in children. Thus, AQB-565 may represent a novel treatment of infantile spasms similarly effective as ACTH but with potentially limited side effects.
Collapse
Affiliation(s)
- Chian-Ru Chern
- Department of Cell Biology & Anatomy, New York Medical College School of Medicine, Valhalla, NY, 10595, USA
| | - Chian-Jiang Chern
- Department of Cell Biology & Anatomy, New York Medical College School of Medicine, Valhalla, NY, 10595, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College School of Medicine, Valhalla, NY, 10595, USA; Department of Obstetrics & Gynecology, New York Medical College School of Medicine, Valhalla, NY, 10595, USA; Department of Neurology, New York Medical College School of Medicine, Valhalla, NY, 10595, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College School of Medicine, Valhalla, NY, 10595, USA; Department of Neurology, New York Medical College School of Medicine, Valhalla, NY, 10595, USA; Department of Pediatrics, New York Medical College School of Medicine, Valhalla, NY, 10595, USA.
| |
Collapse
|
5
|
Chachua T, Di Grazia P, Chern CR, Johnkutty M, Hellman B, Lau HA, Shakil F, Daniel M, Goletiani C, Velíšková J, Velíšek L. Estradiol does not affect spasms in the betamethasone-NMDA rat model of infantile spasms. Epilepsia 2016; 57:1326-36. [PMID: 27328917 PMCID: PMC10765244 DOI: 10.1111/epi.13434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study attempted to validate the effects of neonatal estradiol in ameliorating the spasms in the prenatally betamethasone-primed N-methyl-d-aspartate (NMDA) model of infantile spasms in rats as shown previously in a mouse Arx gene knock-in expansion model of infantile spasms. METHODS Neonatal rats prenatally exposed to betamethasone (on day 15 of pregnancy) were treated with subcutaneous 40 ng/g estradiol benzoate (EB) between postnatal days (P)3-P10 or P0-P5. A synthetic estrogen analogue, diethylstilbestrol, was used between P0 and P5 (2 μg per rat, s.c.). On P12, P13, and P15, the rats were subjected to NMDA-triggered spasms, and latency to onset and number of spasms were evaluated. Rats with EB on P3-P10 were tested after spasms in the open field, novel object recognition, and elevated plus maze to determine effects of treatment on behavior. Additional rats with P3-P10 or P0-P5 EB were investigated for γ-aminobutyric acid (GABA)ergic neurons (glutamate decarboxylase [GAD]67 expression) in the neocortex. As a positive control, a group of rats received either subcutaneous adrenocorticotropic hormone (ACTH) (2 × 0.3 mg/kg on P12 and 3 × 0.3 mg/kg on P13 and P14) or vehicle after the first episode of spasms on P12. RESULTS Neither EB treatment nor diethylstilbestrol consistently affected expression of spasms in this model, although we found a significant increase in GAD67-immunopositive cells in the neocortex after P3-P10 and P0-P5 EB treatment, consistent with a study in mice. Behavioral tests showed increase in lateralization in male rats treated with P3-P10 EB, a behavioral trait usually associated with female sex. Diethylstilbestrol treatment in male rats resulted in arrested pubertal descent of testes. ACTH had robust effects in suppressing spasms. SIGNIFICANCE Treatment of infantile spasms (IS) using neonatal EB may be justified in those cases of IS that present with detectable deficits in GABAergic neurons. In other types of IS, the efficacy of neonatal EB and its analogues is not supported.
Collapse
Affiliation(s)
- Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Paola Di Grazia
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Chian-Ru Chern
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Meenu Johnkutty
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Benjamin Hellman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Ho An Lau
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Faariah Shakil
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Margaret Daniel
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Cezar Goletiani
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
6
|
Sadowski K, Kotulska-Jóźwiak K, Jóźwiak S. Role of mTOR inhibitors in epilepsy treatment. Pharmacol Rep 2015; 67:636-646. [PMID: 25933981 DOI: 10.1016/j.pharep.2014.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 01/16/2023]
Abstract
In spite of the fact, that subsequent new antiepileptic drugs (AEDs) are being introduced into clinical practice, the percentage of drug-resistant epilepsy cases remains stable. Although a substantial progress has been made in safety profile of antiepileptic drugs, currently available substances have not been unambiguously proven to display disease-modifying effect in epilepsy and their mechanisms of action influence mainly on the end-stage phase of epileptogenesis, namely seizures. Prevention of epileptogenesis requires new generation of drugs modulating molecular pathways engaged in epileptogenesis processes. The mammalian target of rapamycin (mTOR) pathway is involved in highly epileptogenic conditions, such as tuberous sclerosis complex (TSC) and represents a reasonable target for antiepileptogenic interventions. In animal models of TSC mTOR inhibitors turned out to prevent the development of epilepsy and reduce underlying brain abnormalities. Accumulating evidence from animal studies suggest the role of mTOR pathway in acquired forms of epilepsy. Preliminary clinical studies with patients affected by TSC demonstrated seizure reduction and potential disease-modifying effect of mTOR inhibitors. Further studies will determine the place for mTOR inhibitors in the treatment of patients with TSC as well as its potential antiepileptogenic effect in other types of genetic and acquired epilepsies. This review presents current knowledge of mTOR pathway physiology and pathology in the brain, as well as potential clinical use of its inhibitors.
Collapse
Affiliation(s)
| | | | - Sergiusz Jóźwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warszawa, Poland
| |
Collapse
|
7
|
Frost JD, Le JT, Lee CL, Ballester-Rosado C, Hrachovy RA, Swann JW. Vigabatrin therapy implicates neocortical high frequency oscillations in an animal model of infantile spasms. Neurobiol Dis 2015; 82:1-11. [PMID: 26026423 DOI: 10.1016/j.nbd.2015.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022] Open
Abstract
Abnormal high frequency oscillations (HFOs) in EEG recordings are thought to be reflections of mechanisms responsible for focal seizure generation in the temporal lobe and neocortex. HFOs have also been recorded in patients and animal models of infantile spasms. If HFOs are important contributors to infantile spasms then anticonvulsant drugs that suppress these seizures should decrease the occurrence of HFOs. In experiments reported here, we used long-term video/EEG recordings with digital sampling rates capable of capturing HFOs. We tested the effectiveness of vigabatrin (VGB) in the TTX animal model of infantile spasms. VGB was found to be quite effective in suppressing spasms. In 3 of 5 animals, spasms ceased after a daily two week treatment. In the other 2 rats, spasm frequency dramatically decreased but gradually increased following treatment cessation. In all animals, hypsarrhythmia was abolished by the last treatment day. As VGB suppressed the frequency of spasms, there was a decrease in the intensity of the behavioral spasms and the duration of the ictal EEG event. Analysis showed that there was a burst of high frequency activity at ictal onset, followed by a later burst of HFOs. VGB was found to selectively suppress the late HFOs of ictal complexes. VGB also suppressed abnormal HFOs recorded during the interictal periods. Thus VGB was found to be effective in suppressing both the generation of spasms and hypsarrhythmia in the TTX model. Vigabatrin also appears to preferentially suppress the generation of abnormal HFOs, thus implicating neocortical HFOs in the infantile spasms disease state.
Collapse
Affiliation(s)
- James D Frost
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - John T Le
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chong L Lee
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos Ballester-Rosado
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Hrachovy
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; The Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - John W Swann
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Iacobas DA, Iacobas S, Chachua T, Goletiani C, Sidyelyeva G, Velíšková J, Velíšek L. Prenatal corticosteroids modify glutamatergic and GABAergic synapse genomic fabric: insights from a novel animal model of infantile spasms. J Neuroendocrinol 2013; 25:964-79. [PMID: 23763471 PMCID: PMC3855178 DOI: 10.1111/jne.12061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/25/2013] [Accepted: 06/09/2013] [Indexed: 12/16/2022]
Abstract
Prenatal exposure to corticosteroids has long-term postnatal somatic and neurodevelopmental consequences. Animal studies indicate that corticosteroid exposure-associated alterations in the nervous system include hypothalamic function. Infants with infantile spasms, a devastating epileptic syndrome of infancy with characteristic spastic seizures, chaotic irregular waves on interictal electroencephalogram (hypsarhythmia) and mental deterioration, have decreased concentrations of adrenocorticotrophic hormone (ACTH) and cortisol in cerebrospinal fluid, strongly suggesting hypothalamic dysfunction. We have exploited this feature to develop a model of human infantile spasms by using repeated prenatal exposure to betamethasone and a postnatal trigger of developmentally relevant spasms with NMDA. The spasms triggered in prenatally primed rats are more severe compared to prenatally saline-injected ones and respond to ACTH, a treatment of choice for infantile spasms in humans. Using autoradiography and immunohistochemistry, we have identified a link between the spasms in our model and the hypothalamus, especially the arcuate nucleus. Transcriptomic analysis of the arcuate nucleus after prenatal priming with betamethasone but before trigger of spasms indicates that prenatal betamethasone exposure down-regulates genes encoding several important proteins participating in glutamatergic and GABAergic transmission. Interestingly, there were significant sex-specific alterations after prenatal betamethasone in synapse-related gene expression but no such sex differences were found in prenatally saline-injected controls. A pairwise relevance analysis revealed that, although the synapse gene expression in controls was independent of sex, these genes form topologically distinct gene fabrics in males and females and these fabrics are altered by betamethasone in a sex-specific manner. These findings may explain the sex differences with respect to both normal behaviour and the occurrence and severity of infantile spasms. Changes in transcript expression and their coordination may contribute to a molecular substrate of permanent neurodevelopmental changes (including infantile spasms) found after prenatal exposure to corticosteroids.
Collapse
Affiliation(s)
- D A Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Jambaqué I, Pinabiaux C, Lassonde M. Cognitive disorders in pediatric epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2013; 111:691-5. [PMID: 23622216 DOI: 10.1016/b978-0-444-52891-9.00071-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Childhood epilepsy may cause cognitive disorders and the intellectual quotient is indeed not normally distributed in epileptic children, a fair proportion of whom show an IQ in the deficient range. Some epileptic syndromes happen during vulnerability periods of brain maturation and interfere with the development of specific cognitive functions. This is the case for the Landau-Kleffner syndrome, which generally appears during speech development and affects language. Similarly, West syndrome - or infantile spasms - is an epileptogenic encephalopathy appearing during the first years of life and induces a major delay in social and oculo-motor development. Specific impairments can also be identified in partial childhood epilepsies in relation with seizure focus localization. For instance, left temporal and frontal epilepsies are frequently associated with verbal impairments. Moreover, episodic memory disorders have been described in children suffering from temporal lobe epilepsy whereas executive deficits (planning, self-control, problem solving) have been reported in frontal lobe epilepsy. In most cases, including its mildest forms, childhood epilepsy induces attention deficits, which may affect academic achievement. These observations militate in favor of individual neuropsychological assessments as well as early interventions in order to provide the child with an optimal individualized treatment program.
Collapse
Affiliation(s)
- I Jambaqué
- INSERM U663; Université Paris Descartes, Institut de Psychologie, Paris, France; Fondation Rothschild, Unité de Neurochirurgie Pédiatrique, Paris, France.
| | | | | |
Collapse
|
10
|
Gkampeta A, Pavlou E. Infantile spasms (West syndrome) in children with inborn errors of metabolism: a review of the literature. J Child Neurol 2012; 27:1295-301. [PMID: 22832779 DOI: 10.1177/0883073812448532] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
West syndrome (infantile spasms) is an epileptic encephalopathy that includes psychomotor deterioration. In rare cases, it is due to an inherited, progressive metabolic disease. More than 25 inborn errors of metabolism have been considered etiologic or predisposing factors for infantile spasms. This is a review of the literature on reported cases of children diagnosed with a metabolic disease who developed infantile spasms. This article presents in brief the most frequent inborn errors of metabolism that have been associated with West syndrome and also illustrates the importance of screening for inborn errors of metabolism in infantile spasms.
Collapse
Affiliation(s)
- Anastasia Gkampeta
- 2nd Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece.
| | | |
Collapse
|
11
|
Abstract
Epilepsy accounts for a significant portion of the dis-ease burden worldwide. Research in this field is fundamental and mandatory. Animal models have played, and still play, a substantial role in understanding the patho-physiology and treatment of human epilepsies. A large number and variety of approaches are available, and they have been applied to many animals. In this chapter the in vitro and in vivo animal models are discussed,with major emphasis on the in vivo studies. Models have used phylogenetically different animals - from worms to monkeys. Our attention has been dedicated mainly to rodents.In clinical practice, developmental aspects of epilepsy often differ from those in adults. Animal models have often helped to clarify these differences. In this chapter, developmental aspects have been emphasized.Electrical stimulation and chemical-induced models of seizures have been described first, as they represent the oldest and most common models. Among these models, kindling raised great interest, especially for the study of the epileptogenesis. Acquired focal models mimic seizures and occasionally epilepsies secondary to abnormal cortical development, hypoxia, trauma, and hemorrhage.Better knowledge of epileptic syndromes will help to create new animal models. To date, absence epilepsy is one of the most common and (often) benign forms of epilepsy. There are several models, including acute pharmacological models (PTZ, penicillin, THIP, GBL) and chronic models (GAERS, WAG/Rij). Although atypical absence seizures are less benign, thus needing more investigation, only two models are so far available (AY-9944,MAM-AY). Infantile spasms are an early childhood encephalopathy that is usually associated with a poor out-come. The investigation of this syndrome in animal models is recent and fascinating. Different approaches have been used including genetic (Down syndrome,ARX mutation) and acquired (multiple hit, TTX, CRH,betamethasone-NMDA) models.An entire section has been dedicated to genetic models, from the older models obtained with spontaneous mutations (GEPRs) to the new engineered knockout, knocking, and transgenic models. Some of these models have been created based on recently recognized patho-genesis such as benign familial neonatal epilepsy, early infantile encephalopathy with suppression bursts, severe myoclonic epilepsy of infancy, the tuberous sclerosis model, and the progressive myoclonic epilepsy. The contribution of animal models to epilepsy re-search is unquestionable. The development of further strategies is necessary to find novel strategies to cure epileptic patients, and optimistically to allow scientists first and clinicians subsequently to prevent epilepsy and its consequences.
Collapse
Affiliation(s)
- Antonietta Coppola
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | | |
Collapse
|
12
|
Chachua T, Yum MS, Velíšková J, Velíšek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia 2011; 52:1666-77. [PMID: 21854372 DOI: 10.1111/j.1528-1167.2011.03220.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine whether a new model of cryptogenic infantile spasms consisting of prenatal priming with betamethasone and postnatal trigger of spasms by N-methyl-D-aspartate (NMDA) responds to chronic adrenocorticotropic hormone (ACTH) treatment, and has electroencephalography (EEG) signature, efficacy of treatments, and behavioral impairments similar to those in human infantile spasms. METHODS Rats prenatally primed with betamethasone on gestational day 15 were used. Spasms were triggered with NMDA between postnatal days (P) 10 and 15 in a single session or in multiple sessions in one subject. The expression of spasms was compared to prenatally saline-injected controls. Effects of relevant treatments (ACTH, vigabatrin, methylprednisolone, rapamycin) were determined in betamethasone-primed rats. In the rats after spasms, behavioral evaluation was performed in the open field and elevated plus maze on P20-22. KEY FINDINGS NMDA at P10-15 (the rat "infant" period) triggers the spasms significantly earlier and in greater numbers in the prenatal betamethasone-exposed brain compared to controls. Similar to human condition, the spasms occur in clusters. Repeated trigger of spasms is associated with ictal EEG electrodecrements and interictal large-amplitude waves, a possible rat variant of hypsarrhythmia. Chronic ACTH treatment in a randomized experiment, and chronic pretreatment with methylprednisolone significantly suppress the number of spasms similar to the human condition. Pretreatment with vigabatrin, but not rapamycin, suppressed the spasms. Significant behavioral changes occurred following multiple bouts of spasms. SIGNIFICANCE The model of infantile spasms has remarkable similarities with the human condition in semiology, EEG, pharmacologic response, and long-term outcome. Therefore, the model can be used to search for novel and more effective treatments for infantile spasms.
Collapse
Affiliation(s)
- Tamar Chachua
- Department of Neurology, Albert Einstein College of Medicine Einstein/Montefiore Comprehensive Epilepsy Center, Bronx, New York, USA
| | | | | | | |
Collapse
|
13
|
Frost JD, Lee CL, Hrachovy RA, Swann JW. High frequency EEG activity associated with ictal events in an animal model of infantile spasms. Epilepsia 2011; 52:53-62. [PMID: 21204817 DOI: 10.1111/j.1528-1167.2010.02887.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE To describe high frequency (HF) electrographic activity accompanying ictal discharges in the tetrodotoxin (TTX) model of infantile spasms. Previous studies of HF oscillations in humans and animals suggest that they arise at sites of seizure onset. We compared HF oscillations at several cortical sites to determine regional differences. METHODS TTX was infused for 4 weeks into the neocortex of rats beginning on postnatal days 11 or 12. Electroencephalography (EEG) electrodes were implanted 2 weeks later and video-EEG recordings were analyzed between postnatal days 31 and 47. EEG recordings were digitally sampled at 2,048 Hz. HF EEG activity (20-900 Hz) was quantified using compressed spectral arrays and band-pass filtering. KEY FINDINGS Multiple seizures were analyzed in 10 rats. Ictal onset was associated with multiple bands of rhythmic HF activity that could extend to 700 Hz. The earliest and most intense discharging typically occurred contralaterally to where TTX was infused. HF activity continued to occur throughout the seizure (even during the electrodecrement that is recorded with more traditional filter settings), although there was a gradual decrease of the intensity of the highest frequency components as the amplitude of lower frequency oscillations increased. Higher frequencies sometimes reappeared in association with spike/sharp-waves at seizure termination. SIGNIFICANCE The findings show that HF EEG activity accompanies ictal events in the TTX model. Results also suggest that the seizures in this model do not originate from the TTX infusion site. Instead HF discharges are usually most intense and occur earliest contralaterally, suggesting that these homologous regions may be involved in seizure generation.
Collapse
Affiliation(s)
- James D Frost
- Department of Neurology Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
14
|
Velísek L, Chachua T, Yum MS, Poon KL, Velísková J. Model of cryptogenic infantile spasms after prenatal corticosteroid priming. Epilepsia 2010; 51 Suppl 3:145-9. [PMID: 20618421 DOI: 10.1111/j.1528-1167.2010.02630.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infantile spasms (IS) is a devastating epilepsy syndrome of childhood. IS occurs in 3-12-month-old infants and is characterized by spasms, interictal electroencephalography (EEG) hypsarrhythmia, and profound mental retardation. Hormonal therapy [adrenocorticotropic hormone (ACTH), corticosteroids] is frequently used, but its efficacy is tainted by severe side effects. For research of novel therapies, a validated animal model of IS is required. We propose the model of spastic seizures triggered by N-methyl-d-aspartate (NMDA) in infant rats prenatally exposed to betamethasone. The spasms have remarkable similarity to human IS, including motor flexion spasms, ictal EEG electrodecrement, and responsiveness to ACTH. Interestingly, the spasms do not involve the hippocampus. Autoradiographic metabolic mapping as well as tagging of the areas of neuronal excitation with c-fos indicates a strong involvement of hypothalamic structures such as the arcuate nucleus, which has significant bilateral connections with other hypothalamic nuclei as well as with the brainstem.
Collapse
Affiliation(s)
- Libor Velísek
- The Saul R Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Infantile spasms is a developmental epilepsy syndrome with unique clinical and EEG features, a specific pattern of pharmacological responsiveness, and poor outcome in terms of cognition and epilepsy. Despite the devastating nature of infantile spasms, little is known about its pathogenesis. Until recently, there has been no animal model available to investigate the pathophysiology of the syndrome or to generate and test novel therapies. Now, several promising animal models have emerged, spanning the etiological spectrum from genetic causes (e.g., Down syndrome or Aristaless-related homeobox [ARX] mutation) to acquired causes (e.g., endogenous and exogenous toxins or stress hormones with convulsant activity or blockade of neural activity). These new models are discussed in this review, with emphasis on the insights each can provide for understanding, treating, and preventing infantile spasms.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, University of Wisconsin Madison, Wisconsin, USA.
| |
Collapse
|
16
|
Zou LP, Zhang WH, Wang HM, Zen M, Chen K, Mix E. Maternal IgG suppresses NMDA-induced spasms in infant rats and inhibits NMDA-mediated neurotoxicity in hippocampal neurons. J Neuroimmunol 2006; 181:106-11. [PMID: 17027092 DOI: 10.1016/j.jneuroim.2006.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 08/30/2006] [Indexed: 11/19/2022]
Abstract
Maternal immunoglobulin G (IgG) was derived from Wistar rats that just delivered the new offsprings. We examined the effect of this maternal IgG on infantile spasms induced by N-methyl-d-aspartate (NMDA) in immature rats. Pup animals were treated subcutaneously with 10 mg/kg/day maternal IgG from day 11 to day 15 after birth followed by a single intraperitoneal dose of NMDA (15 mg/kg). Administration of maternal IgG decreased the severity and increased the number of ACTH immunoreactive cells in the cortex of rats with NMDA-induced spasms. Furthermore, maternal IgG inhibited NMDA-induced intracellular LDH activity in cultured hippocampal neurons in a dose-dependent manner. The results indicate that maternal IgG can attenuate NMDA-induced seizures. In infantile spasms, some factors may during pregnancy negatively affect the transfer of maternal IgG from mother to fetus thereby causing a decrease in the amount of protective maternal IgG.
Collapse
Affiliation(s)
- Li-Ping Zou
- Department of Neurology, Beijing Children's Hospital, The Capital University of Medical Sciences, Beijing 100045, China.
| | | | | | | | | | | |
Collapse
|
17
|
Ganor Y, Goldberg-Stern H, Lerman-Sagie T, Teichberg VI, Levite M. Autoimmune epilepsy: Distinct subpopulations of epilepsy patients harbor serum autoantibodies to either glutamate/AMPA receptor GluR3, glutamate/NMDA receptor subunit NR2A or double-stranded DNA. Epilepsy Res 2005; 65:11-22. [PMID: 15978777 DOI: 10.1016/j.eplepsyres.2005.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2004] [Revised: 03/10/2005] [Accepted: 03/12/2005] [Indexed: 10/25/2022]
Abstract
We studied 82 patients with different types of epilepsy and 49 neurologically intact non-epileptic controls, and identified three different subpopulations of epilepsy patients bearing significantly elevated levels of autoantibodies to either GluR3B-peptide of glutamate/AMPA receptor subtype 3 (17/82; 21% of patients), or to a peptide of NR2A subunit of glutamate/NMDA receptors (15/82; 18%), or to double-stranded (ds) DNA, the hallmark of systemic lupus erythematosus (13/80; 16%). Most patients had only one antibody type, arguing against cross-reactivity. Nearly all anti-dsDNA Ab-positive patients did not harbor anti-nuclear autoantibodies. Most patients had no history of brain damage, febrile convulsions, early onset epilepsy, acute epilepsy or intractable seizures. We suggest to measure the 'autoimmune-fingerprints' of epilepsy patients for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Yonatan Ganor
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
18
|
Abstract
Pediatric epilepsy surgery has come of age, from being considered as a last resort in medically refractory focal epilepsy, after failure of numerous antiepileptic drug trials spanning many years, to a preferred treatment option in carefully selected candidates. There have been certain key developments that have catalyzed this change. First, we are able to predict medical intractability earlier during the course of epilepsy. Second, improved understanding of how the maturing brain recovers from neurologic insults has led to earlier consideration of surgical intervention during a window of developmental plasticity. Finally, improved diagnostic and surgical capabilities now enable us to identify more candidates suitable for surgery. At the same time, as the surgical frontier has been rapidly pushed to new horizons, we have also unearthed new challenges. In this review, several pediatric epilepsy syndromes are discussed to highlight these important developments.
Collapse
Affiliation(s)
- Deepak K Lachhwani
- Division of Pediatric Epilepsy and Pediatric Neurology, Cleveland Clinic Foundation, Cleveland, OH 44122, USA.
| |
Collapse
|