1
|
Targeting Integrin-Dependent Adhesion and Signaling with 3-Arylquinoline and 3-Aryl-2-Quinolone Derivatives: A new Class of Integrin Antagonists. PLoS One 2015; 10:e0141205. [PMID: 26509443 PMCID: PMC4624933 DOI: 10.1371/journal.pone.0141205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 12/26/2022] Open
Abstract
We previously reported the anti-migratory function of 3-aryl-2-quinolone derivatives, chemically close to flavonoids (Joseph et al., 2002). Herein we show that 3-arylquinoline or 3-aryl-2-quinolone derivatives disrupt cell adhesion in a dose dependent and reversible manner yet antagonized by artificial integrin activation such as manganese. Relying on this anti-adhesive activity, a Structure-Activity Relationship (SAR) study was established on 20 different compounds to throw the bases of future optimization strategies. Active drugs efficiently inhibit platelet spreading, aggregation, and clot retraction, processes that rely on αllbβ3 integrin activation and clustering. In vitro these derivatives interfere with β3 cytoplasmic tail interaction with kindlin-2 in pulldown assays albeit little effect was observed with pure proteins suggesting that the drugs may block an alternative integrin activation process that may not be directly related to kindlin recruitment. Ex vivo, these drugs blunt integrin signaling assayed using focal adhesion kinase auto-phosphorylation as a read-out. Hence, 3-arylquinoline and 3-aryl-2-quinolone series are a novel class of integrin activation and signaling antagonists.
Collapse
|
2
|
Sa S, Wong L, McCloskey KE. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access 2014; 3:150-61. [PMID: 25126479 PMCID: PMC4120929 DOI: 10.1089/biores.2014.0018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cardiomyocytes (CMs) differentiated from human embryonic stem cells (hESCs) are a promising and potentially unlimited cell source for myocardial repair and regeneration. Recently, multiple methodologies-primarily based on the optimization of growth factors-have been described for efficient cardiac differentiation of hESCs. However, the role of extracellular matrix (ECM) signaling in CM differentiation has not yet been explored fully. This study examined the role of ECM signaling in the efficient generation of CMs from both H7 and H9 ESCs. The hESCs were differentiated on ECM substrates composed of a range of fibronectin (FN) and laminin (LN) ratios and gelatin and evaluated by the fluorescence activated cell scanning (FACS) analysis on day 14. Of the ECM substrates examined, the 70:30 FN:LN reproducibly generated the greatest numbers of CMs from both hESC lines. Moreover, the LN receptor integrin β4 (ITGB4) and FN receptor integrin β5 (ITGB5) genes, jointly with increased phosphorylated focal adhension kinase and phosphorylated extracellular signal-regulated kinases (p-ERKs), were up-regulated over 13-fold in H7 and H9 cultured on 70:30 FN:LN compared with gelatin. Blocking studies confirmed the role of all these molecules in CM specification, suggesting that the 70:30 FN:LN ECM promotes highly efficient differentiation of CMs through the integrin-mediated MEK/ERK signaling pathway. Lastly, the data suggest that FN:LN-induced signaling utilizes direct cell-to-cell signaling from distinct ITGB4(+) and ITGB5(+) cells.
Collapse
Affiliation(s)
- Silin Sa
- Graduate Group in Biological Engineering & Small-Scale Technologies, University of California, Merced, California
| | - Lian Wong
- Graduate Group in Biological Engineering & Small-Scale Technologies, University of California, Merced, California
| | - Kara E. McCloskey
- Graduate Group in Biological Engineering & Small-Scale Technologies, University of California, Merced, California
- School of Engineering, University of California, Merced, California
| |
Collapse
|
3
|
Weder G, Hendriks-Balk MC, Smajda R, Rimoldi D, Liley M, Heinzelmann H, Meister A, Mariotti A. Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:141-8. [DOI: 10.1016/j.nano.2013.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
|
4
|
Eapen A, Ramachandran A, George A. Dentin phosphoprotein (DPP) activates integrin-mediated anchorage-dependent signals in undifferentiated mesenchymal cells. J Biol Chem 2011; 287:5211-24. [PMID: 22134916 DOI: 10.1074/jbc.m111.290080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dentin phosphoprotein (DPP), a major noncollagenous protein of the dentin matrix, is a highly acidic protein that binds Ca(2+) avidly and is thus linked to matrix mineralization. Here, we demonstrate that the RGD domain in DPP can bind to integrins on the cell surface of undifferentiated mesenchymal stem cells and pulp cells. This coupling generates intracellular signals that are channeled along cytoskeletal filaments and activate the non-receptor tyrosine kinase focal adhesion kinase, which plays a key role in signaling at sites of cellular adhesion. The putative focal adhesion kinase autophosphorylation site Tyr(397) is phosphorylated during focal adhesion assembly induced by DPP on the substrate. We further demonstrate that these intracellular signals propagate through the cytoplasm and activate anchorage-dependent ERK signaling. Activated ERK translocates to the nucleus and phosphorylates the transcription factor ELK-1, which in turn coordinates the expression of downstream target genes such as DMP1 and dentin sialoprotein (DSP). These studies suggest a novel paradigm demonstrating that extracellular DPP can induce intracellular signaling that can be propagated to the nucleus and thus alter gene activities.
Collapse
Affiliation(s)
- Asha Eapen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
5
|
Yang Y, Wu X, Gui P, Wu J, Sheng JZ, Ling S, Braun AP, Davis GE, Davis MJ. Alpha5beta1 integrin engagement increases large conductance, Ca2+-activated K+ channel current and Ca2+ sensitivity through c-src-mediated channel phosphorylation. J Biol Chem 2009; 285:131-41. [PMID: 19887442 DOI: 10.1074/jbc.m109.033506] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large conductance, calcium-activated K(+) (BK) channels are important regulators of cell excitability and recognized targets of intracellular kinases. BK channel modulation by tyrosine kinases, including focal adhesion kinase and c-src, suggests their potential involvement in integrin signaling. Recently, we found that fibronectin, an endogenous alpha5beta1 integrin ligand, enhances BK channel current through both Ca(2+)- and phosphorylation-dependent mechanisms in vascular smooth muscle. Here, we show that macroscopic currents from HEK 293 cells expressing murine BK channel alpha-subunits (mSlo) are acutely potentiated following alpha5beta1 integrin activation. The effect occurs in a Ca(2+)-dependent manner, 1-3 min after integrin engagement. After integrin activation, normalized conductance-voltage relations for mSlo are left-shifted at free Ca(2+) concentrations >or=1 microm. Overexpression of human c-src with mSlo, in the absence of integrin activation, leads to similar shifts in mSlo Ca(2+) sensitivity, whereas overexpression of catalytically inactive c-src blocks integrin-induced potentiation. However, neither integrin activation nor c-src overexpression potentiates current in BK channels containing a point mutation at Tyr-766. Biochemical tests confirmed the critical importance of residue Tyr-766 in integrin-induced channel phosphorylation. Thus, BK channel activity is enhanced by alpha5beta1 integrin activation, likely through an intracellular signaling pathway involving c-src phosphorylation of the channel alpha-subunit at Tyr-766. The net result is increased current amplitude, enhanced Ca(2+) sensitivity, and rate of activation of the BK channel, which would collectively promote smooth muscle hyperpolarization in response to integrin-extracellular matrix interactions.
Collapse
Affiliation(s)
- Yan Yang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Oh MA, Choi S, Lee MJ, Choi MC, Lee SA, Ko W, Cance WG, Oh ES, Buday L, Kim SH, Lee JW. Specific tyrosine phosphorylation of focal adhesion kinase mediated by Fer tyrosine kinase in suspended hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:781-91. [PMID: 19339212 DOI: 10.1016/j.bbamcr.2009.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/03/2009] [Accepted: 01/23/2009] [Indexed: 11/26/2022]
Abstract
Cell adhesion to the extracellular matrix (ECM) can activate signaling via focal adhesion kinase (FAK) leading to dynamic regulation of cellular morphology. Mechanistic basis for the lack of effective intracellular signaling by non-attached epithelial cells is poorly understood. To examine whether signaling in suspended cells is regulated by Fer cytoplasmic tyrosine kinase, we investigated the effect of ectopic Fer expression on signaling in suspended or adherent hepatocytes. We found that ectopic Fer expression in Huh7 hepatocytes in suspension or on non-permissive poly-lysine caused significant phosphorylation of FAK Tyr577, Tyr861, or Tyr925, but not Tyr397 or Tyr576. Fer-mediated FAK phosphorylation in suspended cells was independent of c-Src activity or growth factor stimulation, but dependent of cortactin expression. Consistent with these results, complex formation between FAK, Fer, and cortactin was observed in suspended cells. The Fer-mediated effect correlated with multiple membrane protrusions, even on poly-lysine. Together, these observations suggest that Fer may allow a bypass of anchorage-dependency for intracellular signal transduction in hepatocytes.
Collapse
Affiliation(s)
- Min-A Oh
- Cancer Research Institute, Cell Dynamics Research Center, Department of Tumor Biology, College of Medicine, Seoul National University, 101, Daehangro, Jongno-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim YB, Lee SY, Ye SK, Lee JW. Epigenetic regulation of integrin-linked kinase expression depending on adhesion of gastric carcinoma cells. Am J Physiol Cell Physiol 2006; 292:C857-66. [PMID: 16987993 DOI: 10.1152/ajpcell.00169.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell adhesion to the extracellular matrix (ECM) regulates gene expressions in diverse dynamic environments. However, the manner in which gene expressions are regulated by extracellular cues is largely unknown. In this study, suspended gastric carcinoma cells showed higher basal and transforming growth factor-beta1 (TGFbeta1)-mediated acetylations of histone 3 (H3) and Lys(9) of H3 and levels of integrin-linked kinase (ILK) mRNA and protein than did fibronectin-adherent cells did. Moreover, the insignificant acetylation and ILK expression in adherent cells were recovered by alterations of integrin signaling and actin organization, indicating a connection between cytoplasmic and nuclear changes. Higher acetylations in suspended cells were correlated with associations between Smad4, p300/CBP, and Lys(9)-acetylated H3. Meanwhile, adherent cells showed more associations between HDAC3, Ski, and MeCP2. Chromatin immunoprecipitations with anti-acetylated H3, Lys(9)-acetylated H3, or p300/CBP antibody resulted in more coprecipitated ILK promoter, correlated with enhanced ILK mRNA and protein levels, in suspended cells. Moreover, ILK expression inversely regulated cell adhesion to ECM proteins, and its overexpression enhanced cell growth in soft agar. These observations indicate that cell adhesion and/or its related molecular basis regulate epigenetic mechanisms leading to a loss of ILK transcription, which in turn regulates cell adhesion property in a feedback linkage.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Cancer Research Institute, Depts. of Tumor Biology and Molecular and Clinical Oncology, College of Medicine, Seoul National Univ., Seoul 110-799, Korea
| | | | | | | |
Collapse
|
8
|
Lee SY, Kim YT, Lee MS, Kim YB, Chung E, Kim S, Lee JW. Focal adhesion and actin organization by a cross-talk of TM4SF5 with integrin alpha2 are regulated by serum treatment. Exp Cell Res 2006; 312:2983-99. [PMID: 16828471 DOI: 10.1016/j.yexcr.2006.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/18/2006] [Accepted: 06/02/2006] [Indexed: 11/29/2022]
Abstract
The biological functions of transmembrane 4 L6 family member 5 (TM4SF5) homologues to a tumor-associated antigen L6 are unknown, although it is over-expressed in certain forms of cancer. In the present study, the ectopic expression of TM4SF5 in Cos7 cells reduced integrin signaling under serum-containing conditions, but increased integrin signaling upon serum-free replating on substrates. TM4SF5 regulated actin organization and focal contact dynamics via the serum treatment-dependent differential regulation of FAK Tyr925 and paxillin Tyr118 phosphorylations and their localizations on peripheral cell boundaries. Y925F FAK mutation abolished the TM4SF5 effects. TM4SF5 associated with integrin alpha2 subunit, and this association was abolished by serum treatment. Furthermore, functional blocking anti-integrin alpha2 antibody abolished TM4SF5-enhanced signaling activity and caused membrane blebbing with abnormal actin organization. TM4SF5 increased chemotactic but decreased haptotactic migration. Altogether, this study reveals the functions of TM4SF5 collaborative with integrin signaling to alter focal contact dynamics, actin reorganization, and migration. Furthermore, this study suggests a mechanism of cross-talk between TM4SF5 and integrin which is further regulated by growth factor signaling.
Collapse
Affiliation(s)
- Sung-Yul Lee
- Cancer Research Institute, Department of Molecular and Clinical Oncology, College of Medicine, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Denti S, Sirri A, Cheli A, Rogge L, Innamorati G, Putignano S, Fabbri M, Pardi R, Bianchi E. RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1. J Biol Chem 2004; 279:13027-34. [PMID: 14722085 DOI: 10.1074/jbc.m313515200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Integrin adhesion receptors can act as signaling receptors that transmit information from the extracellular environment to the interior of the cell, affecting many fundamental cellular processes, such as cell motility, proliferation, differentiation, and survival. Integrin signaling depends on the formation of organized sub-membrane complexes that comprise cytoskeletal, adapter, and signaling molecules. The identification of molecules that interact with the cytoplasmic domain of integrins has been the focus of research aimed to elucidating the mechanistic basis of integrin signal transduction. We have identified RanBPM as a novel interactor of the beta(2) integrin LFA-1 in a yeast-two-hybrid screen. In the same assay, RanBPM also interacted with the beta(1) integrin cytoplasmic domain. We demonstrate that RanBPM is a peripheral membrane protein and that integrins and RanBPM interact in vitro and in vivo and co-localize at the cell membrane. We find that RanBPM is phosphorylated on serine residues; phosphorylation of RanBPM is increased by stress stimuli and decreased by treatment with the p38 kinase inhibitor SB203580. Transfection of RanBPM synergizes with LFA-1-mediated adhesion in the transcriptional activation of an AP-1-dependent promoter, indicating that the two proteins interact functionally as well. We suggest that RanBPM may constitute a molecular scaffold that contributes to coupling LFA-1 and other integrins with intracellular signaling pathways.
Collapse
Affiliation(s)
- Simona Denti
- Laboratory of Immunoregulation, Department of Immunology, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma H, Calderon TM, Kessel T, Ashton AW, Berman JW. Mechanisms of Hepatocyte Growth Factor–Mediated Vascular Smooth Muscle Cell Migration. Circ Res 2003; 93:1066-73. [PMID: 14576199 DOI: 10.1161/01.res.0000102867.54523.7f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The migration of vascular smooth muscle cells (SMCs) from the media into the neointima and their subsequent proliferation is important in the pathogenesis of atherosclerosis. This process is regulated by multiple factors, including growth factors, and involves changes in the interaction of SMCs with the extracellular matrix and in intracellular signaling cascades that regulate cell movement. We demonstrated previously that hepatocyte growth factor (HGF) is expressed in human atherosclerotic plaques. Although HGF has been shown to promote SMC migration, the mechanisms involved in this process have not been characterized fully. In this study, inhibitory antibodies were used to determine which integrins mediated HGF-induced SMC migration. Inhibition of β
1
or β
3
integrin resulted in a significant decrease in migration. Subsequent experiments were performed to characterize additional biochemical mechanisms involved in HGF-mediated migration. HGF induced the redistribution of focal adhesions, the activation of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and their increased association with β
1
and β
3
integrins, and the production of pro-matrix metalloproteinase-2. Migration levels were significantly reduced by cotreatment of SMCs with the extracellular signal–regulated kinase 1/2 (ERK1/2) inhibitor, UO126, the p38 inhibitor, SB203580, or the phosphatidylinositol-3 kinase inhibitor, LY294002. In HGF-treated SMCs, focal adhesion redistribution and FAK and Pyk2 activation were decreased by ERK1/2 inhibition. Neither SB203580 nor LY294002 inhibited HGF-induced ERK1/2 activation. Thus, ERK1/2 signaling may play an important role in HGF-mediated SMC migration by contributing to focal adhesion redistribution and FAK and Pyk2 activation.
Collapse
Affiliation(s)
- Harry Ma
- Department of Pathology, Albert Einstein College of Medicine, Forchheimer 727, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Multicellular organisms must coordinate signals from adhesion receptors with those from other signalling receptors (for example, growth factor receptors). Here, we briefly review paradigms of integrin-adhesion-receptor signalling. We discuss how adhesive signalling is coordinately regulated through intersecting networks. We also examine some examples of how some forms of integrin crosstalk may lead to unforeseen and potentially deleterious responses.
Collapse
Affiliation(s)
- Martin A Schwartz
- Division of Vascular Biology, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|