1
|
Dai Y, Eustáquio AS. Evaluation of vectors for gene expression in Pseudovibrio marine bacteria. Appl Environ Microbiol 2025; 91:e0020725. [PMID: 40035598 PMCID: PMC12016493 DOI: 10.1128/aem.00207-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
α-Proteobacteria belonging to the Pseudovibrio genus have been isolated from different marine organisms including marine sponges, corals, and algae. This genus was first described in 2004 and has since garnered attention due to the potential ecological relevance and biotechnological application of its metabolites. For instance, we recently reported specialized metabolites that we named pseudovibriamides from Pseudovibrio brasiliensis Ab134. The pseudovibriamide encoding ppp gene cluster is found in two-thirds of Pseudovibrio genomes. Pseudovibriamides coordinate motility and biofilm formation, behaviors that are known to be important for host colonization. Although we previously established reverse genetics methods to delete genes via homologous recombination, no self-replicative vectors have been reported for Pseudovibrio. We show that plasmid vectors containing two different broad-host-range replicons, RSF1010 and pBBR1, can be used in P. brasiliensis. The efficiency of vector transfer by electroporation averaged ~3 × 103 CFU/µg plasmid DNA, whereas the conjugation frequency from Escherichia coli ranged from 10-3 to 10-6. We then tested the vectors for fluorescent protein expression and consequent labeling, which allowed us to observe their effects on swarming motility and to compare plasmid stability. This study expands the genetic toolbox available for Pseudovibrio, which is expected to enable future ecological and biotechnological studies.IMPORTANCEThe genus Pseudovibrio of α-Proteobacteria has consistently been isolated from marine sponges and other marine organisms such as corals and algae. Pseudovibrio bacteria are a source of antibiotics and other secondary metabolites with the potential to be developed into pharmaceuticals. Moreover, the secondary metabolites they produce are important for their physiology and for interactions with other organisms. Here we expand the genetic toolbox available for Pseudovibrio bacteria by establishing self-replicative vectors that can be used for the expression of, for example, fluorescent proteins. The availability of genetic tools is important to enable us to explore the emerging ecological and biotechnological potentials of Pseudovibrio bacteria.
Collapse
Affiliation(s)
- Yitao Dai
- />Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
- Center for Biomolecular Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Alessandra S. Eustáquio
- />Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
- Center for Biomolecular Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Bhatt P, Bhatt K, Huang Y, Li J, Wu S, Chen S. Biofilm formation in xenobiotic-degrading microorganisms. Crit Rev Biotechnol 2023; 43:1129-1149. [PMID: 36170978 DOI: 10.1080/07388551.2022.2106417] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
The increased presence of xenobiotics affects living organisms and the environment at large on a global scale. Microbial degradation is effective for the removal of xenobiotics from the ecosystem. In natural habitats, biofilms are formed by single or multiple populations attached to biotic/abiotic surfaces and interfaces. The attachment of microbial cells to these surfaces is possible via the matrix of extracellular polymeric substances (EPSs). However, the molecular machinery underlying the development of biofilms differs depending on the microbial species. Biofilms act as biocatalysts and degrade xenobiotic compounds, thereby removing them from the environment. Quorum sensing (QS) helps with biofilm formation and is linked to the development of biofilms in natural contaminated sites. To date, scant information is available about the biofilm-mediated degradation of toxic chemicals from the environment. Therefore, we review novel insights into the impact of microbial biofilms in xenobiotic contamination remediation, the regulation of biofilms in contaminated sites, and the implications for large-scale xenobiotic compound treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
3
|
Goodman RN, Tansirichaiya S, Roberts AP. Development of pBACpAK entrapment vector derivatives to detect intracellular transfer of mobile genetic elements within chloramphenicol resistant bacterial isolates. J Microbiol Methods 2023; 213:106813. [PMID: 37647945 DOI: 10.1016/j.mimet.2023.106813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Antimicrobial resistance disseminates throughout bacterial populations via horizontal gene transfer, driven mainly by mobile genetic elements (MGEs). Entrapment vectors are key tools in determining MGE movement within a bacterial cell between different replicons or between sites within the same replicon. The pBACpAK entrapment vector has been previously used to study intracellular transfer in Gram-negative bacteria however since pBACpAK contains a chloramphenicol resistance gene, it cannot be used in bacterial isolates which are already resistant to chloramphenicol. Therefore, we developed new derivatives of the pBACpAK entrapment vector to determine intracellular transfer of MGEs in an Escherichia coli DH5α transconjugant containing the chloramphenicol resistance plasmid pD25466. The catA1 of pBACpAK was replaced by both mcr-1 in pBACpAK-COL and aph(3')-Ia in pBACpAK-KAN, allowing it to be used in chloramphenicol resistant strains. The plasmid constructs were verified and then used to transform the E. coli DH5α/pD25466 transconjugants in order to detect intracellular movement of the MGEs associated with the pD25466 plasmid. Here we report on the validation of the expanded suite of pBACpAK vectors which can be used to study the intracellular transfer of MGEs between, and within, replicons in bacteria with different antimicrobial resistance profiles.
Collapse
Affiliation(s)
- Richard N Goodman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Supathep Tansirichaiya
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| |
Collapse
|
4
|
Intracellular Transposition and Capture of Mobile Genetic Elements following Intercellular Conjugation of Multidrug Resistance Conjugative Plasmids from Clinical Enterobacteriaceae Isolates. Microbiol Spectr 2022; 10:e0214021. [PMID: 35044219 PMCID: PMC8768599 DOI: 10.1128/spectrum.02140-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile genetic elements (MGEs) are often associated with antimicrobial resistance genes (ARGs). They are responsible for intracellular transposition between different replicons and intercellular conjugation and are therefore important agents of ARG dissemination. Detection and characterization of functional MGEs, especially in clinical isolates, would increase our understanding of the underlying pathways of transposition and recombination and allow us to determine interventional strategies to interrupt this process. Entrapment vectors can be used to capture active MGEs, as they contain a positive selection genetic system conferring a selectable phenotype upon the insertion of an MGE within certain regions of that system. Previously, we developed the pBACpAK entrapment vector that results in a tetracycline-resistant phenotype when MGEs translocate and disrupt the cI repressor gene. We have previously used pBACpAK to capture MGEs in clinical Escherichia coli isolates following transformation with pBACpAK. In this study, we aimed to extend the utilization of pBACpAK to other bacterial taxa. We utilized an MGE-free recipient E. coli strain containing pBACpAK to capture MGEs on conjugative, ARG-containing plasmids following conjugation from clinical Enterobacteriaceae donors. Following the conjugative transfer of multiple conjugative plasmids and screening for tetracycline resistance in these transconjugants, we captured several insertion sequence (IS) elements and novel transposons (Tn7350 and Tn7351) and detected the de novo formation of novel putative composite transposons where the pBACpAK-located tet(A) is flanked by ISKpn25 from the transferred conjugative plasmid, as well as the ISKpn14-mediated integration of an entire 119-kb, blaNDM-1-containing conjugative plasmid from Klebsiella pneumoniae. IMPORTANCE By analyzing transposition activity within our MGE-free recipient, we can gain insights into the interaction and evolution of multidrug resistance-conferring MGEs following conjugation, including the movement of multiple ISs, the formation of composite transposons, and cointegration and/or recombination between different replicons in the same cell. This combination of recipient and entrapment vector will allow fine-scale experimental studies of factors affecting intracellular transposition and MGE formation in and from ARG-encoding MGEs from multiple species of clinically relevant Enterobacteriaceae.
Collapse
|
5
|
Lunde TM, Hjerde E, Al-Haroni M. Prevalence, diversity and transferability of the Tn 916-Tn 1545 family ICE in oral streptococci. J Oral Microbiol 2021; 13:1896874. [PMID: 33796228 PMCID: PMC7971310 DOI: 10.1080/20002297.2021.1896874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: The Tn916-Tn1545 family of Integrative Conjugative Elements (ICE) are mobile genetic elements (MGEs) that play a role in the spread of antibiotic resistance genes. The Tn916 harbors the tetracycline resistance gene tet(M) and it has been reported in various bacterial species. The increase in the levels of tetracycline resistance among oral streptococci is of great concern primarily due to the abundance of these species in the oral cavity and their ability to act as reservoirs for antibiotic resistance genes.Methods: In the current study, we screened 100 Norwegian clinical oral streptococcal isolates for the presence and diversity of the Tn916-Tn1545 family. In addition, we investigated the transferability the elements, and the associated transfer frequencies.Results: We observed that 21 isolates harboured the Tn916-Tn1545 family and that two of these elements were the novel Tn6815 and Tn6816. The most prevalent member of the Tn916 -Tn1545 family observed in the Norwegian clinical oral streptococcal isolates was the wild type Tn916.Conclusion: The detection of other members of this family of ICE and varying transfer frequencies suggests high versatility of the Tn916 element in oral streptococci in Norway.
Collapse
Affiliation(s)
- Tracy Munthali Lunde
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø
| | - Erik Hjerde
- bCenter for Bioinformatics, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Mohammed Al-Haroni
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø
| |
Collapse
|
6
|
Brouwer MSM, Goodman RN, Kant A, Mevius D, Newire E, Roberts AP, Veldman KT. Mobile colistin resistance gene mcr-1 detected on an IncI1 plasmid in Escherichia coli from meat. J Glob Antimicrob Resist 2020; 23:145-148. [PMID: 32889139 DOI: 10.1016/j.jgar.2020.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/20/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Mobile colistin resistance (mcr) genes encoded on conjugative plasmids, although described only relatively recently, have been reported globally both in humans and livestock. The genes are often associated with the insertion sequence ISApl1 that can transpose the genes to novel genetic locations. Since its first report, multiple variants of mcr have been discovered in a variety of genetic locations in Escherichia coli, in plasmids and integrated into the chromosome. METHODS Using hybrid assembly of short-read and long-read whole-genome sequencing data, the presence ofmcr-1 was confirmed on an IncI1 plasmid in E. coli. In vitro conjugation assays were performed to determine the potential to transfer between strains. Genetic comparison with previously reported IncI1 plasmids was performed. RESULTS The genomic sequence identified thatmcr-1 is present on a complete IncI1 plasmid. Comparison with previously reported extended-spectrum β-lactamase (ESBL)-encoding plasmids from E. coli in the Netherlands from the same time period indicated a distinct lineage for this plasmid. CONCLUSIONS The observation ofmcr-1 on an IncI1 plasmid confirms that the genetic region of this gene is actively transposed between genetic locations. This active transposition has consequences for the study of the epidemiology of mcr in populations.
Collapse
Affiliation(s)
| | | | - Arie Kant
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Dik Mevius
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Enas Newire
- Institute of Systems, Molecular & Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | | | - Kees T Veldman
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
7
|
Abebe GM. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int J Microbiol 2020; 2020:1705814. [PMID: 32908520 PMCID: PMC7468660 DOI: 10.1155/2020/1705814] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Biofilm is a microbial association or community attached to different biotic or abiotic surfaces or environments. These surface-attached microbial communities can be found in food, medical, industrial, and natural environments. Biofilm is a critical problem in the medical sector since it is formed on medical implants within human tissue and involved in a multitude of serious chronic infections. Food and food processing surface become an ideal environment for biofilm formation where there are sufficient nutrients for microbial growth and attachment. Therefore, biofilm formation on these surfaces, especially on food processing surface becomes a challenge in food safety and human health. Microorganisms within a biofilm are encased within a matrix of extracellular polymeric substances that can act as a barrier and recalcitrant for different hostile conditions such as sanitizers, antibiotics, and other hygienic conditions. Generally, they persist and exist in food processing environments where they become a source of cross-contamination and foodborne diseases. The other critical issue with biofilm formation is their antibiotic resistance which makes medication difficult, and they use different physical, physiological, and gene-related factors to develop their resistance mechanisms. In order to mitigate their production and develop controlling methods, it is better to understand growth requirements and mechanisms. Therefore, the aim of this review article is to provide an overview of the role of bacterial biofilms in antibiotic resistance and food contamination and emphasizes ways for controlling its production.
Collapse
Affiliation(s)
- Gedif Meseret Abebe
- Wolaita Sodo University, College of Natural and Computational Science, Department of Biology, Wolaita Sodo, Ethiopia
| |
Collapse
|
8
|
Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation. Arch Microbiol 2020; 203:13-30. [PMID: 32785735 DOI: 10.1007/s00203-020-02012-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric substances (EPS). This review attempts to explain biofilm architecture, development phases, and forces that drive bacteria to promote biofilm mode of growth. Bacterial chemical communication, also known as Quorum sensing (QS), which involves the production, detection, and response to small molecules called autoinducers, is highlighted. The review also provides a brief outline of interspecies and intraspecies cell-cell communication. Additionally, we have performed docking studies using Discovery Studio 4.0, which has enabled our understanding of the prominent interactions between autoinducers and their receptors in different bacterial species while also scoring their interaction energies. Receptors, such as LuxN (Phosphoreceiver domain and RecA domain), LuxP, and LuxR, interacted with their ligands (AI-1, AI-2, and AHL) with a CDocker interaction energy of - 31.6083 kcal/mole; - 34.5821 kcal/mole, - 48.2226 kcal/mole and - 41.5885 kcal/mole, respectively. Since biofilms are ideal for the remediation of contaminants due to their high microbial biomass and their potential to immobilize pollutants, this article also provides an overview of biofilm-mediated bioremediation.
Collapse
|
9
|
Antibiotic Resistance Is Associated with Integrative and Conjugative Elements and Genomic Islands in Naturally Circulating Streptococcus pneumoniae Isolates from Adults in Liverpool, UK. Genes (Basel) 2020; 11:genes11060625. [PMID: 32517221 PMCID: PMC7348760 DOI: 10.3390/genes11060625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Pneumonia is the sixth largest cause of death in the UK. It is usually caused by Streptococcus pneumoniae, which healthy individuals can carry in their nose without symptoms of disease. Antimicrobial resistance further increases mortality and morbidity associated with pneumococcal infection, although few studies have analysed resistance in naturally circulating pneumococcal isolates in adult populations. Here, we report on the resistome and associated mobile genetic elements within circulating pneumococcus isolated from adult volunteers enrolled in the experimental human pneumococcal colonisation (EHPC) research program at the Liverpool School of Tropical Medicine, UK. Pneumococcal isolates collected from 30 healthy asymptomatic adults who had volunteered to take part in clinical research were screened for antibiotic susceptibility to erythromycin and tetracycline, and whole-genome sequenced. The genetic context of resistance to one or both antibiotics in four isolates was characterised bioinformatically, and any association of the resistance genes with mobile genetic elements was determined. Tetracycline and macrolide resistance genes [tet(M), erm(B), mef(A), msr(D)] were detected on known Tn916-like integrative and conjugative elements, namely Tn6002 and Tn2010, and tet(32) was found for the first time in S. pneumoniae located on a novel 50 kb genomic island. The widespread use of pneumococcal conjugate vaccines impacts on serotype prevalence and transmission within the community. It is therefore important to continue to monitor antimicrobial resistance (AMR) genes present in both vaccine types and non-vaccine types in response to contemporary antimicrobial therapies and characterise the genetic context of acquired resistance genes to continually optimise antibiotic therapies.
Collapse
|
10
|
Ben Maamar S, Hu J, Hartmann EM. Implications of indoor microbial ecology and evolution on antibiotic resistance. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:1-15. [PMID: 31591493 PMCID: PMC8075925 DOI: 10.1038/s41370-019-0171-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 05/19/2023]
Abstract
The indoor environment is an important source of microbial exposures for its human occupants. While we naturally want to favor positive health outcomes, built environment design and operation may counter-intuitively favor negative health outcomes, particularly with regard to antibiotic resistance. Indoor environments contain microbes from both human and non-human origins, providing a unique venue for microbial interactions, including horizontal gene transfer. Furthermore, stressors present in the built environment could favor the exchange of genetic material in general and the retention of antibiotic resistance genes in particular. Intrinsic and acquired antibiotic resistance both pose a potential threat to human health; these phenomena need to be considered and controlled separately. The presence of both environmental and human-associated microbes, along with their associated antibiotic resistance genes, in the face of stressors, including antimicrobial chemicals, creates a unique opportunity for the undesirable spread of antibiotic resistance. In this review, we summarize studies and findings related to various interactions between human-associated bacteria, environmental bacteria, and built environment conditions, and particularly their relation to antibiotic resistance, aiming to guide "healthy" building design.
Collapse
Affiliation(s)
- Sarah Ben Maamar
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
11
|
Stal LJ, Bolhuis H, Cretoiu MS. Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities. Environ Microbiol 2018; 21:1529-1551. [PMID: 30507057 DOI: 10.1111/1462-2920.14494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/02/2023]
Abstract
Phototrophic biofilms are multispecies, self-sustaining and largely closed microbial ecosystems. They form macroscopic structures such as microbial mats and stromatolites. These sunlight-driven consortia consist of a number of functional groups of microorganisms that recycle the elements internally. Particularly, the sulfur cycle is discussed in more detail as this is fundamental to marine benthic microbial communities and because recently exciting new insights have been obtained. The cycling of elements demands a tight tuning of the various metabolic processes and require cooperation between the different groups of microorganisms. This is likely achieved through cell-to-cell communication and a biological clock. Biofilms may be considered as a macroscopic biological entity with its own physiology. We review the various components of some marine phototrophic biofilms and discuss their roles in the system. The importance of extracellular polymeric substances (EPS) as the matrix for biofilm metabolism and as substrate for biofilm microorganisms is discussed. We particularly assess the importance of extracellular DNA, horizontal gene transfer and viruses for the generation of genetic diversity and innovation, and for rendering resilience to external forcing to these biological entities.
Collapse
Affiliation(s)
- Lucas J Stal
- IBED Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Mariana S Cretoiu
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| |
Collapse
|
12
|
Kambarev S, Pecorari F, Corvec S. Novel Tn916-like elements confer aminoglycoside/macrolide co-resistance in clinical isolates of Streptococcus gallolyticus ssp. gallolyticus. J Antimicrob Chemother 2018; 73:1201-1205. [DOI: 10.1093/jac/dky016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/03/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Stanimir Kambarev
- CRCINA, Inserm, CNRS, Université d’Angers, Université de Nantes, Nantes, France
| | - Frédéric Pecorari
- CRCINA, Inserm, CNRS, Université d’Angers, Université de Nantes, Nantes, France
| | - Stéphane Corvec
- Service de Bactériologie – Hygiène hospitalière, CHU de Nantes, Nantes, France
- CRCINA, Inserm 1232, Université de Nantes, Nantes, France
| |
Collapse
|
13
|
Tanner WD, Atkinson RM, Goel RK, Toleman MA, Benson LS, Porucznik CA, VanDerslice JA. Horizontal transfer of the blaNDM-1 gene to Pseudomonas aeruginosa and Acinetobacter baumannii in biofilms. FEMS Microbiol Lett 2017; 364:3052910. [DOI: 10.1093/femsle/fnx048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/24/2017] [Indexed: 01/10/2023] Open
|
14
|
Maheshwari M, Ahmad I, Althubiani AS. Multidrug resistance and transferability of bla CTX-M among extended-spectrum β-lactamase-producing enteric bacteria in biofilm. J Glob Antimicrob Resist 2016; 6:142-149. [DOI: 10.1016/j.jgar.2016.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023] Open
|
15
|
Yue M, Schifferli DM. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence. Front Microbiol 2014; 4:419. [PMID: 24454310 PMCID: PMC3882659 DOI: 10.3389/fmicb.2013.00419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected in well-curated repositories.
Collapse
Affiliation(s)
- Min Yue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Dieter M Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
16
|
Ciric L, Mullany P, Roberts AP. Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087. J Antimicrob Chemother 2011; 66:2235-9. [PMID: 21816764 PMCID: PMC3172042 DOI: 10.1093/jac/dkr311] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Tn916-like elements are one of the most common types of integrative and conjugative element (ICE). In this study we aimed to determine whether novel accessory genes, i.e. genes whose products are not involved in mobility or regulation, were present on a Tn916-like element (Tn6087) isolated from Streptococcus oralis from the human oral cavity. Methods A minocycline-resistant isolate was analysed using restriction fragment length polymorphism (RFLP) analysis on amplicons derived from Tn916 and DNA sequencing to determine whether there were genetic differences in Tn6087 compared with Tn916. Mutational analysis was used to determine whether the novel accessory gene found was responsible for an observed extra phenotype. Results A novel Tn916-like element, Tn6087, is described that encodes both antibiotic and antiseptic resistance. The antiseptic resistance protein is encoded by a novel small multidrug resistance gene, designated qrg, that was shown to encode resistance to cetyltrimethylammonium bromide (CTAB), also known as cetrimide bromide. Conclusions This is the first Tn916-like element described that confers both antibiotic and antiseptic resistance, suggesting that selection of either antibiotic or antiseptic resistance will also select for the other and further highlights the need for prudent use of both types of compound.
Collapse
Affiliation(s)
- Lena Ciric
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| | | | | |
Collapse
|
17
|
Jasni AS, Mullany P, Hussain H, Roberts AP. Demonstration of conjugative transposon (Tn5397)-mediated horizontal gene transfer between Clostridium difficile and Enterococcus faecalis. Antimicrob Agents Chemother 2010; 54:4924-6. [PMID: 20713671 PMCID: PMC2976158 DOI: 10.1128/aac.00496-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/07/2010] [Accepted: 08/09/2010] [Indexed: 01/05/2023] Open
Abstract
Antibiotic-resistant Enterococcus faecalis and Clostridium difficile are responsible for nosocomial infections in humans, in which they inhabit the same niche. Here, we demonstrate transfer of the conjugative transposon Tn5397 from C. difficile 630 to E. faecalis JH2-2, the first reported gene transfer between these two bacteria. Furthermore, transfer from the E. faecalis EF20A transconjugant to the epidemic ribotype 027 C. difficile strain R20291 was also demonstrated. Tn5397 was shown to use a single specific target site in E. faecalis; it also has specific target sites in C. difficile. These experiments highlight the importance of continual monitoring for emerging resistances in these bacteria.
Collapse
Affiliation(s)
- Azmiza S. Jasni
- Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | - Peter Mullany
- Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | - Haitham Hussain
- Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | - Adam P. Roberts
- Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| |
Collapse
|
18
|
Hannan S, Ready D, Jasni AS, Rogers M, Pratten J, Roberts AP. Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. ACTA ACUST UNITED AC 2010; 59:345-9. [PMID: 20337719 DOI: 10.1111/j.1574-695x.2010.00661.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate that live donor Veillonella dispar cells can transfer the conjugative transposon Tn916 to four different Streptococcus spp. recipients in a multispecies oral consortium growing as a biofilm in a constant depth film fermentor. Additionally, we demonstrate that purified V. dispar DNA can transform Streptococcus mitis to tetracycline resistance in this experimental system. These data show that transfer of conjugative transposon-encoded antibiotic resistance can occur by transformation in addition to conjugation in biofilms.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
19
|
Warburton P, Roberts AP, Allan E, Seville L, Lancaster H, Mullany P. Characterization of tet(32) genes from the oral metagenome. Antimicrob Agents Chemother 2009; 53:273-6. [PMID: 18955517 PMCID: PMC2612163 DOI: 10.1128/aac.00788-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/20/2008] [Accepted: 10/20/2008] [Indexed: 11/20/2022] Open
Abstract
tet(32) Was identified in three bacterial isolates and in metagenomic DNA from the human oral cavity. The regions immediately flanking the gene were found to have similarities to the mobile elements TnB1230 from Butyrivibrio fibrisolvens, ATE-3 from Arcanobacterium pyogenes, and CTn5 from Clostridium difficile.
Collapse
Affiliation(s)
- Philip Warburton
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Hogg JS, Hu FZ, Janto B, Boissy R, Hayes J, Keefe R, Post JC, Ehrlich GD. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 2007; 8:R103. [PMID: 17550610 PMCID: PMC2394751 DOI: 10.1186/gb-2007-8-6-r103] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/17/2007] [Accepted: 06/05/2007] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The distributed genome hypothesis (DGH) posits that chronic bacterial pathogens utilize polyclonal infection and reassortment of genic characters to ensure persistence in the face of adaptive host defenses. Studies based on random sequencing of multiple strain libraries suggested that free-living bacterial species possess a supragenome that is much larger than the genome of any single bacterium. RESULTS We derived high depth genomic coverage of nine nontypeable Haemophilus influenzae (NTHi) clinical isolates, bringing to 13 the number of sequenced NTHi genomes. Clustering identified 2,786 genes, of which 1,461 were common to all strains, with each of the remaining 1,328 found in a subset of strains; the number of clusters ranged from 1,686 to 1,878 per strain. Genic differences of between 96 and 585 were identified per strain pair. Comparisons of each of the NTHi strains with the Rd strain revealed between 107 and 158 insertions and 100 and 213 deletions per genome. The mean insertion and deletion sizes were 1,356 and 1,020 base-pairs, respectively, with mean maximum insertions and deletions of 26,977 and 37,299 base-pairs. This relatively large number of small rearrangements among strains is in keeping with what is known about the transformation mechanisms in this naturally competent pathogen. CONCLUSION A finite supragenome model was developed to explain the distribution of genes among strains. The model predicts that the NTHi supragenome contains between 4,425 and 6,052 genes with most uncertainty regarding the number of rare genes, those that have a frequency of <0.1 among strains; collectively, these results support the DGH.
Collapse
Affiliation(s)
- Justin S Hogg
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
- Joint Carnegie Mellon University - University of Pittsburgh Ph.D. Program in Computational Biology. 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Fen Z Hu
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Benjamin Janto
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Robert Boissy
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Jay Hayes
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Randy Keefe
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - J Christopher Post
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Garth D Ehrlich
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| |
Collapse
|
21
|
Singh R, Paul D, Jain RK. Biofilms: implications in bioremediation. Trends Microbiol 2006; 14:389-97. [PMID: 16857359 DOI: 10.1016/j.tim.2006.07.001] [Citation(s) in RCA: 395] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 06/12/2006] [Accepted: 07/05/2006] [Indexed: 11/16/2022]
Abstract
Biofilms are assemblages of single or multiple populations that are attached to abiotic or biotic surfaces through extracellular polymeric substances. Gene expression in biofilm cells differs from planktonic stage expression and these differentially expressed genes regulate biofilm formation and development. Biofilm systems are especially suitable for the treatment of recalcitrant compounds because of their high microbial biomass and ability to immobilize compounds. Bioremediation is also facilitated by enhanced gene transfer among biofilm organisms and by the increased bioavailability of pollutants for degradation as a result of bacterial chemotaxis. Strategies for improving bioremediation efficiency include genetic engineering to improve strains and chemotactic ability, the use of mixed population biofilms and optimization of physico-chemical conditions. Here, we review the formation and regulation of biofilms, the importance of gene transfer and discuss applications of biofilm-mediated bioremediation processes.
Collapse
Affiliation(s)
- Rajbir Singh
- Institute of Microbial Technology, Sector 39-A, Chandigarh-160036, India
| | | | | |
Collapse
|
22
|
Rossi-Fedele G, Scott W, Spratt D, Gulabivala K, Roberts AP. Incidence and behaviour of Tn916-like elements within tetracycline-resistant bacteria isolated from root canals. ACTA ACUST UNITED AC 2006; 21:218-22. [PMID: 16842505 DOI: 10.1111/j.1399-302x.2006.00279.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Tetracycline resistance is commonly found in endodontic bacteria. One of the most common tetracycline-resistance genes is tet(M), which is often encoded on the broad-host-range conjugative transposon Tn916. This study aimed to determine whether tet(M) was present in bacteria isolated from endodontic patients at the Eastman Dental Institute and whether this gene was carried on the transferable conjugative transposon Tn916. METHODS The cultivable microflora isolated from 15 endodontic patients was screened for resistance to tetracycline. Polymerase chain reactions for tet(M) and for unique regions of Tn916 were carried out on the DNA of all tetracycline-resistant bacteria. Filter-mating experiments were used to see if transfer of any Tn916-like elements could occur. RESULTS Eight out of 15 tetracycline-resistant bacteria isolated were shown to possess tet(M). Furthermore, four of these eight were shown to possess the Tn916-unique regions linked to the tet(M) gene. Transfer experiments demonstrated that a Neisseria sp. donor could transfer an extremely unstable Tn916-like element to Enterococcus faecalis. CONCLUSIONS The tet(M) gene is present in the majority of tetracycline-resistant bacteria isolated in this study and the conjugative transposon Tn916 has been shown to be responsible for the support and transfer of this gene in some of the bacteria isolated.
Collapse
Affiliation(s)
- G Rossi-Fedele
- Endodontic Unit, Eastman Dental Institute, University College London, University of London, London, UK
| | | | | | | | | |
Collapse
|
23
|
Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S. Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett 2006; 255:115-20. [PMID: 16436070 DOI: 10.1111/j.1574-6968.2005.00072.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We tested the possibility of nonconjugative lateral DNA transfer in a colony biofilm of mixed Escherichia coli strains. By simply coculturing a plasmid-free F(-) strain and another F(-) strain harboring a nonconjugative plasmid in a colony biofilm on antibiotic-free agar media, transformed cells were produced within 24-48 h at the frequency of 10(-10)-10(-9) per recipient cell. PCR analysis of the transformed cells demonstrated the occurrence of lateral plasmid transfer. These cells survived until at least day 7 under antibiotic-free conditions. Liquid cultures of the same strains in Luria-Bertani broth produced no or few transformants, suggesting the importance of colony-biofilm formation for plasmid transfer. This is a novel line of evidence indicating that nonconjugative, nonviral horizontal gene transfer can occur between E. coli cells.
Collapse
Affiliation(s)
- Sumio Maeda
- Faculty of Human Life and Environment, Nara Women's University, Kitauoya-nishi-machi, Nara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Roberts AP, Davis IJ, Seville L, Villedieu A, Mullany P. Characterization of the ends and target site of a novel tetracycline resistance-encoding conjugative transposon from Enterococcus faecium 664.1H1. J Bacteriol 2006; 188:4356-61. [PMID: 16740942 PMCID: PMC1482970 DOI: 10.1128/jb.00129-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium 664.1H1 is multiply antibiotic resistant and mercury resistant. In this study, the genetic support for the tetracycline resistance of E. faecium 664.1H1 was characterized. The tet(S) gene is responsible for tetracycline resistance, and this gene is located on the chromosome of E. faecium 664.1H1, on a novel conjugative transposon. The element is transferable to Enterococcus faecalis, where it integrates into a specific site. The element was designated EfcTn1. The integrase of EfcTn1 is related to the integrase proteins found on staphylococcal pathogenicity islands. We show that the transposon is flanked by an 18-bp direct repeat, a copy of which is also present at the target site and at the joint of a circular form, and we propose a mechanism of insertion and excision.
Collapse
Affiliation(s)
- Adam P Roberts
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, University of London, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Hussain HA, Roberts AP, Mullany P. Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Δerm) and demonstration that the conjugative transposon Tn916ΔE enters the genome of this strain at multiple sites. J Med Microbiol 2005; 54:137-141. [PMID: 15673506 DOI: 10.1099/jmm.0.45790-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythromycin resistance in Clostridium difficile strain 630 is conferred by a genetic element termed Tn5398 which contains two erm(B) genes: erm1(B) and erm2(B). An erythromycin-sensitive derivative of strain 630 (designated 630Deltaerm) was generated by spontaneous mutation after continuous subculture for 30 days. This strain had lost the erm2(B) gene from within Tn5398 but retained erm1(B). However, the strain could revert to erythromycin resistance at a frequency of 2.79 x 10(-8), although it still contained the deletion of erm2(B). The availability of C. difficile 630Deltaerm allowed the behaviour of Tn916DeltaE to be investigated in this strain. This element entered the genome at multiple sites indicating that it could be useful as an insertional mutagen.
Collapse
Affiliation(s)
- Haitham A Hussain
- Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - Adam P Roberts
- Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| | - Peter Mullany
- Division of Microbial Diseases, Eastman Dental Institute for Oral Health Care Sciences, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| |
Collapse
|
26
|
Davis IJ, Roberts AP, Ready D, Richards H, Wilson M, Mullany P. Linkage of a novel mercury resistance operon with streptomycin resistance on a conjugative plasmid in Enterococcus faecium. Plasmid 2004; 54:26-38. [PMID: 15907536 DOI: 10.1016/j.plasmid.2004.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/15/2004] [Accepted: 10/24/2004] [Indexed: 11/17/2022]
Abstract
It has been shown that the mercury in dental amalgam and other environmental sources can select for mercury resistant bacteria and that this can lead to an increase in resistance to antibiotics. To understand more about this linkage we have investigated the genetic basis for mercury and antibiotic resistance in a variety of oral bacteria. In this study we have cloned and sequenced the mer operon from an Enterococcus faecium strain which was resistant to mercury, tetracycline, and streptomycin. This strain was isolated, in a previous investigation, from a cynomolgus monkey post-installation of amalgam fillings. The mer operon was contained within a putative transposon (Tnmer1) of the ISL3 family. This element was located on a streptomycin resistant plasmid, pPPM1000, which shares homology with pRE25.
Collapse
Affiliation(s)
- Ian J Davis
- Division of Microbial Diseases, Eastman Dental Institute, University College London, 256 Gray's Inn Road, London, WC1X 8LD, UK
| | | | | | | | | | | |
Collapse
|
27
|
Maeda S, Sawamura A, Matsuda A. Transformation of colonialEscherichia colion solid media. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09627.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Roberts AP, Hennequin C, Elmore M, Collignon A, Karjalainen T, Minton N, Mullany P. Development of an integrative vector for the expression of antisense RNA in Clostridium difficile. J Microbiol Methods 2004; 55:617-24. [PMID: 14607405 DOI: 10.1016/s0167-7012(03)00200-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A method was developed to use the conjugative transposon Tn916 as a vector for introducing recombinant DNA into Clostridium difficile. This was used to introduce antisense RNA for the adhesin encoding gene cwp66 into C. difficile 79-685. RT-PCR demonstrated that cwp66 specific antisense RNA was produced. However, there was no statistically significant difference in the protein expression or in the adherence of recombinant C. difficile strains. This may be due to the amount of transcripts of the wild-type (sense) cwp66 outnumbering the antisense transcripts or secondary structures present within the cwp66 mRNA. Unlike in other strains of C. difficile, where Tn916 inserts into the genome at highly preferred sites, in C. difficile 79-685, it integrates into multiple sites opening up the possibility of using Tn916 as a mutagen in this strain.
Collapse
Affiliation(s)
- Adam P Roberts
- Division of Infection and Immunity, Eastman Dental Institute for Oral Health Care Sciences, University College London, University of London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Wang GR, Shelby A, Shoemaker NB, Salyers AA. A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in gram-positive bacteria. Appl Environ Microbiol 2003; 69:4595-603. [PMID: 12902247 PMCID: PMC169073 DOI: 10.1128/aem.69.8.4595-4603.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Results of a recent study of antibiotic resistance genes in human colonic Bacteroides strains suggested that gene transfer events between members of this genus are fairly common. The identification of Bacteroides isolates that carried an erythromycin resistance gene, ermG, whose DNA sequence was 99% identical to that of an ermG gene found previously only in gram-positive bacteria raised the further possibility that conjugal elements were moving into Bacteroides species from other genera. Six of seven ermG-containing Bacteroides strains tested were able to transfer ermG by conjugation. One of these strains was chosen for further investigation. Results of pulsed-field gel electrophoresis experiments showed that the conjugal element carrying ermG in this strain is an integrated element about 75 kb in size. Thus, the element appears to be a conjugative transposon (CTn) and was designated CTnGERM1. CTnGERM1 proved to be unrelated to the predominant type of CTn found in Bacteroides isolates-CTns of the CTnERL/CTnDOT family-which sometimes carry another type of erm gene, ermF. A 19-kbp segment of DNA from CTnGERM1 was cloned and sequenced. A 10-kbp portion of this segment hybridized not only to DNA from all the ermG-containing strains but also to DNA from strains that did not carry ermG. Thus, CTnGERM1 seems to be part of a family of CTns, some of which have acquired ermG. The percentage of G+C content of the ermG region was significantly lower than that of the chromosome of Bacteroides species-an indication that CTnGERM1 may have entered Bacteroides strains from some other bacterial genus. A survey of strains isolated before 1970 and after 1990 suggests that the CTnGERM1 type of CTn entered Bacteroides species relatively recently. One of the genes located upstream of ermG encoded a protein that had 85% amino acid sequence identity with a macrolide efflux pump, MefA, from Streptococcus pyogenes. Our having found >90% sequence identity of two upstream genes, including mefA, and the remnants of two transposon-carried genes downstream of ermG with genes found previously only in gram-positive bacteria raises the possibility that gram-positive bacteria could have been the origin of CTnGERM1.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
30
|
Hope CK, Petrie A, Wilson M. In vitro assessment of the plaque-removing ability of hydrodynamic shear forces produced beyond the bristles by 2 electric toothbrushes. J Periodontol 2003; 74:1017-22. [PMID: 12931764 DOI: 10.1902/jop.2003.74.7.1017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of this study was to compare the efficacy of interproximal plaque removal by the hydrodynamic shear forces produced by 2 electric toothbrushes (toothbrush A, Sonicare Plus and toothbrush B, Braun Oral B) using laboratory-grown plaque biofilms in an anatomically correct in vitro brushing model. METHODS In vitro oral biofilms were grown in a constant-depth film fermenter on hydroxyapatite (HA) discs. Brushing experiments were conducted in a specially constructed machine designed to simulate the brushing of interproximal plaque between mandibular molar teeth; the bristles of the toothbrush did not make contact with the biofilm at any time. The load force between the brushes and teeth were in accordance with typical use and an exposure time of 5 seconds was used throughout. The efficacy of brushing was assessed by enumeration of the percentage of viable bacteria removed from the HA discs. These experiments were conducted with the electronic effect of the toothbrushes either activated or inactivated. RESULTS Activation of toothbrush A significantly (P = 0.004) increased the median percentage of bacteria removed from 0.47% to 48.45%. Likewise, activation of toothbrush B significantly (P = 0.015) increased the median percentage of bacteria removed from 2.85% to 15.86%. The median percentage of plaque bacteria removed by the active toothbrush A was significantly (P = 0.009) greater than that removed by toothbrush B in this model system. CONCLUSION These data imply that toothbrush A would be more effective than toothbrush B at removing interproximal dental plaque in vivo.
Collapse
Affiliation(s)
- Christopher K Hope
- Department of Microbiology, Eastman Dental Institute for Oral Health Care Sciences, University College London, U.K
| | | | | |
Collapse
|